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� Data augmentation

� Weight initialisation

� Batch normalisation
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Data augmentation

Goals of data augmentation:

� Artificially enlarge the training set – an attempt to bound the generalisation error
(i.e. prevent overfitting).

� Enforce invariance of the predictor w.r.t. certain transformations of the input space.

Technically: online augmentation generates new data on the fly, whereas offline
augmentation stores augmented datasets.

We discuss it here in context of image processing (classification, segmentation . . . )

(1) Image data augmentation: Create a new image from a single training image

� geometric transformations: flip, crop, rotate, nonlinear transformations,. . .

� photometric transformations: color space transformations, histogram changes,. . .

� kernel transforms: sharpening, blurring,. . .

� noise: pixelwise independent noise, jitter, random erasing,. . .
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Data augmentation

(2) NN based augmentation:

� Apply distortions and noise on the level of intermediate NN features

� NNs for generating new images from image pairs

� use VAEs and its conditional versions: a VAE learns to map a noise space onto an
image domain.

� style transfer & cycle GANs: A cycle GAN maps image domains onto each other,
without the need to have paired training data.

http://cmp.felk.cvut.cz
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Data augmentation

Geirhos et al., ImageNet-trained CNNs are biased towards texture; Increasing shape bias
improves accuracy and robustness, ICLR 2019
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Weight initialisation

Question: How to initialise the parameters, i.e. weights and biases, of a network?

(1) Initialising all weights and biases with zero is bad because networks are invariant
w.r.t. permutations of neurons.

� This network is invariant w.r.t. permuting the
neurons in the hidden layer and the weights of
the output neuron.

� If we start training from zero weights and biases,
will keep having identical weights and biases.

� The same holds for the weights of the output neuron
– they will keep being equal.

Explanation: Let f : Rn→ R be invariant w.r.t. a linear operator B, i.e. f(Bw) = f(w) for
all w. The we can compute its gradient ∇f in Bw from its gradient in w:

∇f(Bw) =B−T∇f(w).

Notice also, that we have B−T =B if B is a permutation.

http://cmp.felk.cvut.cz
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Weight initialisation

If SGD is started from an invariant point w0 =Bw0, we have

B
[
w0+α∇f(w0)

]
= w0+α∇f(Bw0) = w0+α∇f(w0)

(2) Unfortunately, initialising all weights and biases of a deep network randomly from a
uniform distribution (or a normal distribution) is not a good idea either.
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Weight initialisation

This can lead to vanishing/exploding gradients and “dead units” during learning
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(3) Proper initialisation: Initialise weights/biases so that each neuron has activation
statistic (over the dataset) with certain mean and variance.

This can be, in principle, achieved by the following “forward initialisation pass”
· · ·
Layer k:

� randomly pre-initialise the weights by wkij ∼N (0,1)

� compute statistic for neuron activations
� rescale weights and set biases so as to achieve the desired activation statistic

· · ·
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Weight initialisation

(4) (Glorot & Bengio, 2010) Analyse variance of neuron outputs and backprop gradients
under the following simplifying assumptions

� Tanh activation function f(x) in linear regime, i,e, f(x)≈ x

� Neuron outputs as well as gradient components are i.i.d.

Start from y = wTx, x ∈ Rn. We have V[y]≈ nV[w]V[x]

Denote variance of weights in layer k by vk, neuron outputs by xk, gradients by ∇k and
number of neurons by nk.

� forward: V[xk] = nk−1vkV[xk−1]
We want V[xk]≈ V[xk−1], i.e. nk−1vk = 1.

� backward: V[∇k] = nk+1vk+1V[∇k+1]
We want V[∇k]≈ V[∇k+1], i.e. nkvk = 1

� Compromise: Set vk = 2
nk−1+nk

. Assuming that
the inputs x0 have zero mean and unit variance,
initialise the weights randomly by wkij ∼N (0,

√
vk).

Similar considerations for ReLu activation lead to a different scheme (He et al., 2015)
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Batch normalisation

(Joffe & Szegedy, 2015) Motivation:
� Keep control over neuron activation statistics during training
� Alleviate the need of specialised initialisation variants
� Regularise learning & pre-condition gradients

Batch normalisation: Denote by B ⊂ T m a mini-batch of training examples and by ai the
activation of a network unit ai =

∑
jwijxj. Re-parametrise it (stochastically) by using its

statistic over mini-batches

µB = EB[ai] σ2
B = VB[ai]

âi =
ai−µB√
σ2
B+ε

ai← γâi+β ≡BNγ,β(ai)

� γi, βi are learnable parameters
� µB and σB have to be differentiated w.r.t. network parameters
� exponentially weighted averages of µB and σB are kept during training and used for
inference.
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Batch normalisation

Technical implementation of batch normalisation in PyTorch: A layer BatchNorm1d that
� takes a tensor x with dimension [batchsize, channels] on input and returns a
tensor y with same dimension on output,

� has learnable parameters γ and β for each channel (init: γ = 1, β = 0)
� keeps running averages of the batch statistic µB and σB for each channel,
� depending on its state (train, eval) uses either the batch statistics or the saved
running averages to compute its outputs.

For convolutional networks: use the layer BatchNorm2d, which computes statistics over
batchsize and spatial dimensions.

Batch normalisation:
� alleviates the need of special weight initialisation since it implements the scheme (3)
discussed above for the first minibatch,

� the neuron outputs for a particular training example depend on the outputs of the other
examples in the mini-batch, which in turn is stochastic.

� can be seen as stochastic re-parametrisation of weights and gradient preconditioning

w→ γ
w

σB
b→ γ

(b−µB)
σB

+β

http://cmp.felk.cvut.cz
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Reparametrisation and gradient preconditioning

Let f(x) be a function on Rn, which we minimise by gradient descent

xk+1 = xk+α∇f(xk).

Using new coordinates x=H(y) and defining g = f ◦H, we can use instead gradient
descent of for g

yk+1 = yk+α∇g(xk),
where the gradient of g is obtained form the gradient of f by

〈∇g(y), dy〉=
〈
∇f(H−1y), J−1y dx

〉
=
〈
J−Ty ∇f(H−1y), dx

〉
, (1)

where Jy denotes the Jacobian of the mapping G in the point y.

Question: which of the two versions of the gradient descent can be made converging faster?
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Reparametrisation and gradient preconditioning

(Static) preconditioning of gradient descent

xk+1 = xk+αP∇f(xk),

where P is a positive definite matrix.

Another view: Newton method

xk+1 = xk+α
[
Hf(xk)

]−1∇f(xk),
where Hf(xk) is the Hessian of f in xk. Now, approximate the Hessian by a constant
matrix P−1 ≈Hf(x∗).
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