
Deep Learning (BEV033DLE)
Lecture 8 Training Neural Networks 1.

Czech Technical University in Prague

� Data augmentation

� Weight initialisation

� Batch normalisation



2/12
Data augmentation

Goals of data augmentation:

� Artificially enlarge the training set – an attempt to bound the generalisation error
(i.e. prevent overfitting).

� Enforce invariance of the predictor w.r.t. certain transformations of the input space.

Technically: online augmentation generates new data on the fly, whereas offline
augmentation stores augmented datasets.

We discuss it here in context of image processing (classification, segmentation . . . )

(1) Image data augmentation: Create a new image from a single training image

� geometric transformations: flip, crop, rotate, nonlinear transformations,. . .

� photometric transformations: color space transformations, histogram changes,. . .

� kernel transforms: sharpening, blurring,. . .

� noise: pixelwise independent noise, jitter, random erasing,. . .

http://cmp.felk.cvut.cz


3/12
Data augmentation

(2) NN based augmentation:

� Apply distortions and noise on the level of intermediate NN features

� NNs for generating new images from image pairs

� use VAEs and its conditional versions: a VAE learns to map a noise space onto an
image domain.

� style transfer & cycle GANs: A cycle GAN maps image domains onto each other,
without the need to have paired training data.

http://cmp.felk.cvut.cz


4/12
Data augmentation

Geirhos et al., ImageNet-trained CNNs are biased towards texture; Increasing shape bias
improves accuracy and robustness, ICLR 2019

http://cmp.felk.cvut.cz


5/12
Weight initialisation

Question: How to initialise the parameters, i.e. weights and biases, of a network?

(1) Initialising all weights and biases with zero is bad because networks are invariant
w.r.t. permutations of neurons.

� This network is invariant w.r.t. permuting the
neurons in the hidden layer and the weights of
the output neuron.

� If we start training from zero weights and biases,
will keep having identical weights and biases.

� The same holds for the weights of the output neuron
– they will keep being equal.

Explanation: Let f : Rn→ R be invariant w.r.t. a linear operator B, i.e. f(Bw) = f(w) for
all w. The we can compute its gradient ∇f in Bw from its gradient in w:

∇f(Bw) =B−T∇f(w).

Notice also, that we have B−T =B if B is a permutation.

http://cmp.felk.cvut.cz


6/12
Weight initialisation

If SGD is started from an invariant point w0 =Bw0, we have

B
[
w0+α∇f(w0)

]
= w0+α∇f(Bw0) = w0+α∇f(w0)

(2) Unfortunately, initialising all weights and biases of a deep network randomly from a
uniform distribution (or a normal distribution) is not a good idea either.

0 3 6 9 12 15 18
layer

0.2

0.0

0.2

0.4

0.6

0.8

ReLU: layer statistics 

http://cmp.felk.cvut.cz


7/12
Weight initialisation

This can lead to vanishing/exploding gradients and “dead units” during learning

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
vanishing gradient

2 1 0 1
0.00

0.25

0.50

0.75

1.00

1.25

1.50
dead units

(3) Proper initialisation: Initialise weights/biases so that each neuron has activation
statistic (over the dataset) with certain mean and variance.

This can be, in principle, achieved by the following “forward initialisation pass”
· · ·
Layer k:

� randomly pre-initialise the weights by wkij ∼N (0,1)

� compute statistic for neuron activations
� rescale weights and set biases so as to achieve the desired activation statistic

· · ·

http://cmp.felk.cvut.cz


8/12
Weight initialisation

(4) (Glorot & Bengio, 2010) Analyse variance of neuron outputs and backprop gradients
under the following simplifying assumptions

� Tanh activation function f(x) in linear regime, i,e, f(x)≈ x

� Neuron outputs as well as gradient components are i.i.d.

Start from y = wTx, x ∈ Rn. We have V[y]≈ nV[w]V[x]

Denote variance of weights in layer k by vk, neuron outputs by xk, gradients by ∇k and
number of neurons by nk.

� forward: V[xk] = nk−1vkV[xk−1]
We want V[xk]≈ V[xk−1], i.e. nk−1vk = 1.

� backward: V[∇k] = nk+1vk+1V[∇k+1]
We want V[∇k]≈ V[∇k+1], i.e. nkvk = 1

� Compromise: Set vk = 2
nk−1+nk

. Assuming that
the inputs x0 have zero mean and unit variance,
initialise the weights randomly by wkij ∼N (0,

√
vk).

Similar considerations for ReLu activation lead to a different scheme (He et al., 2015)

http://cmp.felk.cvut.cz


9/12
Batch normalisation

(Joffe & Szegedy, 2015) Motivation:
� Keep control over neuron activation statistics during training
� Alleviate the need of specialised initialisation variants
� Regularise learning & pre-condition gradients

Batch normalisation: Denote by B ⊂ T m a mini-batch of training examples and by ai the
activation of a network unit ai =

∑
jwijxj. Re-parametrise it (stochastically) by using its

statistic over mini-batches

µB = EB[ai] σ2
B = VB[ai]

âi =
ai−µB√
σ2
B+ε

ai← γâi+β ≡BNγ,β(ai)

� γi, βi are learnable parameters
� µB and σB have to be differentiated w.r.t. network parameters
� exponentially weighted averages of µB and σB are kept during training and used for
inference.

http://cmp.felk.cvut.cz


10/12
Batch normalisation

Technical implementation of batch normalisation in PyTorch: A layer BatchNorm1d that
� takes a tensor x with dimension [batchsize, channels] on input and returns a
tensor y with same dimension on output,

� has learnable parameters γ and β for each channel (init: γ = 1, β = 0)
� keeps running averages of the batch statistic µB and σB for each channel,
� depending on its state (train, eval) uses either the batch statistics or the saved
running averages to compute its outputs.

For convolutional networks: use the layer BatchNorm2d, which computes statistics over
batchsize and spatial dimensions.

Batch normalisation:
� alleviates the need of special weight initialisation since it implements the scheme (3)
discussed above for the first minibatch,

� the neuron outputs for a particular training example depend on the outputs of the other
examples in the mini-batch, which in turn is stochastic.

� can be seen as stochastic re-parametrisation of weights and gradient preconditioning

w→ γ
w

σB
b→ γ

(b−µB)
σB

+β

http://cmp.felk.cvut.cz


11/12
Reparametrisation and gradient preconditioning

Let f(x) be a function on Rn, which we minimise by gradient descent

xk+1 = xk+α∇f(xk).

Using new coordinates x=H(y) and defining g = f ◦H, we can use instead gradient
descent of for g

yk+1 = yk+α∇g(xk),
where the gradient of g is obtained form the gradient of f by

〈∇g(y), dy〉=
〈
∇f(H−1y), J−1y dx

〉
=
〈
J−Ty ∇f(H−1y), dx

〉
, (1)

where Jy denotes the Jacobian of the mapping G in the point y.

Question: which of the two versions of the gradient descent can be made converging faster?

2 0 23

2

1

0

1

2

3

2 0 23

2

1

0

1

2

3

http://cmp.felk.cvut.cz


12/12
Reparametrisation and gradient preconditioning

(Static) preconditioning of gradient descent

xk+1 = xk+αP∇f(xk),

where P is a positive definite matrix.

Another view: Newton method

xk+1 = xk+α
[
Hf(xk)

]−1∇f(xk),
where Hf(xk) is the Hessian of f in xk. Now, approximate the Hessian by a constant
matrix P−1 ≈Hf(x∗).

http://cmp.felk.cvut.cz

	First page
	cmporange Data augmentation
	cmporange Data augmentation
	cmporange Data augmentation
	cmporange Weight initialisation
	cmporange Weight initialisation
	cmporange Weight initialisation
	cmporange Weight initialisation
	cmporange Batch normalisation
	cmporange Batch normalisation
	cmporange Reparametrisation and gradient preconditioning
	cmporange Reparametrisation and gradient preconditioning
	Last page

