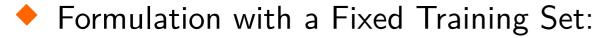
Deep Learning (BEV033DLE) Lecture 5. SGD

Alexander Shekhovtsov

Czech Technical University in Prague

- → Definitions and Main Properties
 - Gradient Descent and SGD
 - Convergence properties, step size
- **→** Important Details
 - Dataset sampling with and without replacement
 - How to monitor progress, Running averages
 - Momentum
 - Implicit regularization: early stopping, batch size and weight norm

Problem Setup



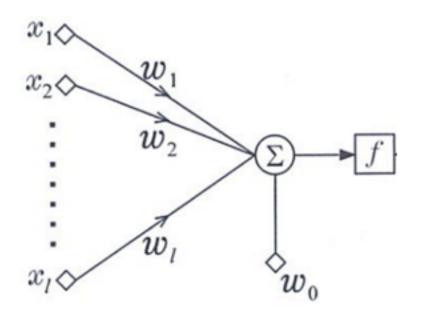
- Training set: $\mathcal{T} = (x_i, y_i)_{i=1}^n$ i.i.d.
- Predictor: $f(x;\theta)$, θ vector of all parameters θ
- Loss: $L = \frac{1}{n} \sum_{i} l(y_i, f(x_i; \theta)) = \frac{1}{n} \sum_{i} l_i(\theta)$
- ullet Learning problem: $\min_{\theta} L(\theta)$
- Regression in \mathbb{R}^m :
 - $f(x;\theta) \in \mathbb{R}^m$ predicted values
 - Squared error loss: $l_i = ||y_i f(x_i; \theta)||^2$
- Classification with K classes:
 - $f(x) \in \mathbb{R}^K$ scores
 - Predictive probabilities $p(y = k|x) = \operatorname{softmax}(f(x;\theta))_k$
 - NLL loss: $l_i(\theta) = -(\log \operatorname{softmax}(f(x_i; \theta)))_{y_i}$

Batch GD and SGD

- Gradient at current point θ_t : $g_t = \nabla L(\theta_t) = \frac{1}{n} \sum_i \nabla l_i(\theta_t)$
- Make a small step in the steepest descent direction of L:
- $\bullet \ \theta_{t+1} = \theta_t \alpha_t g_t$
- Historically called "'batch gradient descent"
- If the dataset is very large, lots of computation to make a small step
- Stochastic Gradient Descent (SGD):
 - ullet Pick M data points $I=\{i_1,\ldots i_M\}$ at random
 - Estimate gradient as $\tilde{g}_t = \frac{1}{M} \sum_{i \in I} \nabla l_i(\theta_t)$
 - $\bullet \ \theta_{t+1} = \theta_t \alpha_t \tilde{g}_t$
 - $\{(x_i, y_i) | i \in I\}$ is called a **(mini)-batch**
- "Noisy" gradient \tilde{g}_t :
 - $\mathbb{E}[\tilde{g}_t] = g_t$
 - $\mathbb{V}[\tilde{g}_t] = \frac{1}{M} \mathbb{V}[\tilde{g}_t^1]$, where \tilde{g}^1 is stochastic gradient with 1 sample
 - ullet Diminishing gain in accuracy with larger batch size M
 - In the beginning a small subset of data suffices for a good direction

Perceptron Algorithm

→ First Neural Network 1950s: Perceptron



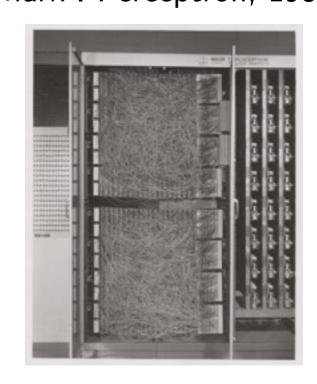
Press: "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence"

Frank Rosenblatt

First SGD:

- Two classes $y = \pm 1$
- Predictor: $f(x) = w^{\mathsf{T}}x$, decide by sign
- Loss: $l(y, f(x)) = \max(-yw^{\mathsf{T}}x, 0)$
- ullet Draw a point (x,y) from the training data at random
- Stochastic gradient: $\tilde{g}_t = \begin{cases} -yx, & \text{if classified incorrectly} \\ 0, & \text{otherwise} \end{cases}$
- Make a step: $w_{t+1} = w_t + yx$
- No need of step size thanks to scale invariance

♦ First GPU: Mark I Perceptron, 1958



SGD for Expectation

m

Data augmentation (Lecture 10)

rigid transforms



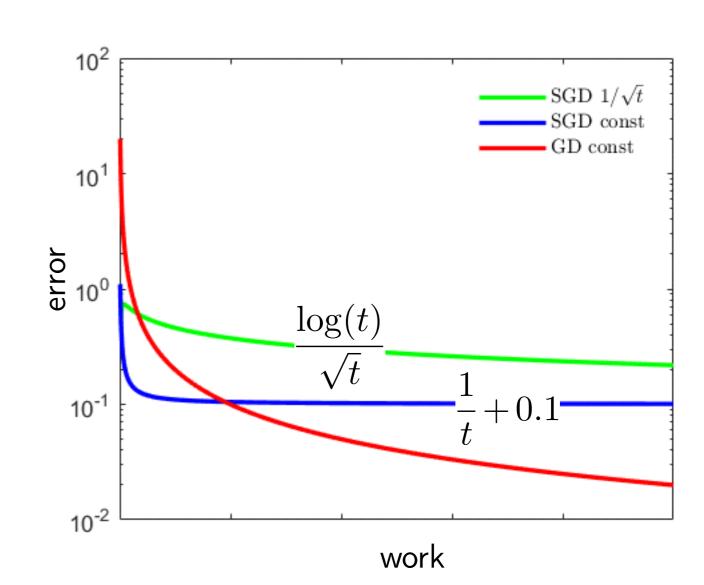
rendering

- Fixed Training Set:
 - Training set: $\mathcal{T} = (x_i, y_i)_{i=1}^n$ i.i.d.
 - Loss: $L = \frac{1}{n} \sum_{i} l(y_i, f(x_i; \theta)) = \frac{1}{n} \sum_{i} l_i(\theta)$
- General Expectation:
 - Loss: $L = \mathbb{E}_{(x,y) \sim p^*}[l(y,f(x;\theta))] + R(\theta)$
 - ullet Training set is given as a generator p^*
 - \bullet $R(\theta)$ is a regularizer, not dependent on the data
 - Fixed training set is a special case
- SGD:
 - ullet Draw a batch of data $(x_i,y_i)_{i=1}^M$ i.i.d. from p^*
 - $\tilde{g} = \frac{1}{M} \sum_{i} \nabla l(y_i, f(x_i, \theta)) + \nabla R(\theta)$

Convergence Rates

6

- Iteration cost:
 - GD: O(n) full data
 - SGD: O(M) mini-batch
- Convergence rates depend on **assumptions**. Setup closest to NNs:
 - $L(\theta)$ is bounded from below
 - $\nabla L(\theta)$ is Lipschitz continuous with constant ρ
 - $\mathbb{E}[\|\nabla l_i(\theta)\|] \leq \sigma^2$ for some σ and all θ ("variance" is bounded)
- Convergence rates:
 - Error at iteration t: best over iterations expected gradient norm, $\min_{k=1...t-1}\{\|\mathbb{E}[\nabla L(\theta_k)]\|\}$
 - GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$
 - SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$
 - SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$



Convergence Rates

m p

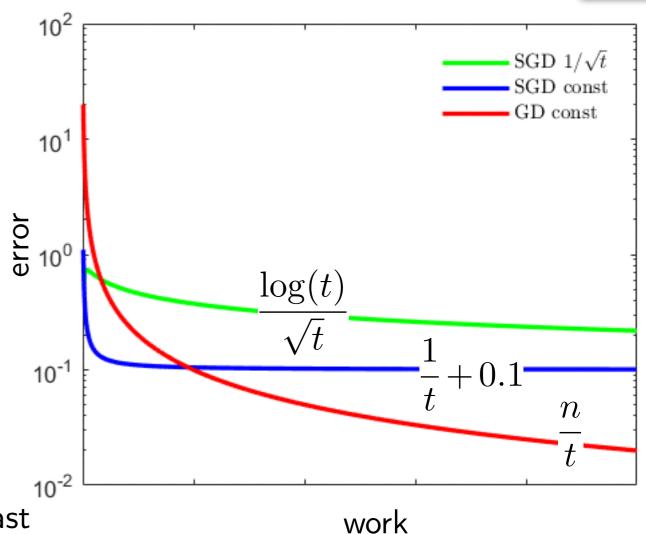
7

Convergence rates:

- GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$
- SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$
- SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$

Insights:

- SGD wins when there is a lot of data
- Convergence with a constant step size is fast but to within a "region" around optimum



→ Remarks:

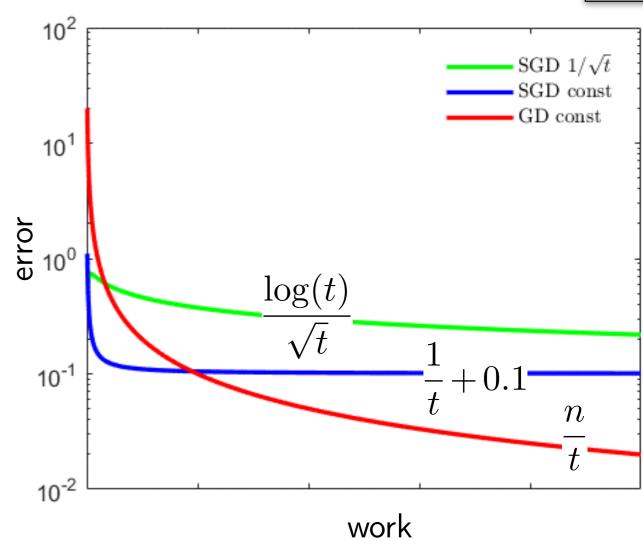
- To have guarantees need to use conservative estimates with very small step sizes, etc.
- Different other setups possible: convex / strongly convex, smooth/non-smooth
- The rate is often faster in practice, but the general picture stays

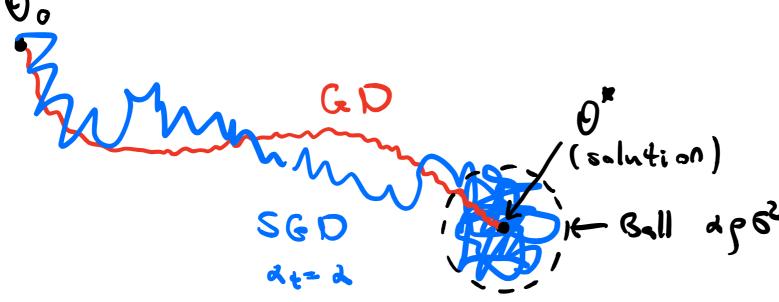
Convergence Rates

m p

8

- Convergence rates:
 - GD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t})$
 - SGD with step size $\alpha_t = \alpha/\sqrt{t}$ Error: $O(\frac{\log(t)}{\sqrt{t}})$
 - SGD with step size $\alpha_t = \alpha$ Error: $O(\frac{1}{t}) + O(\alpha \rho \sigma^2)$



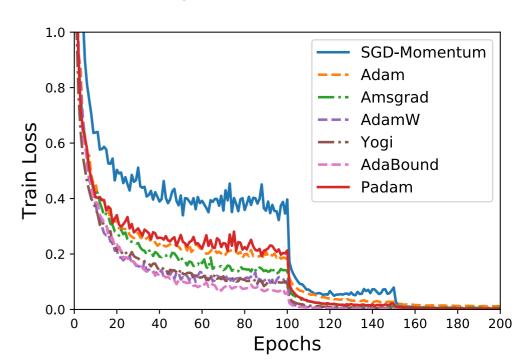


Learning Rate Schedule

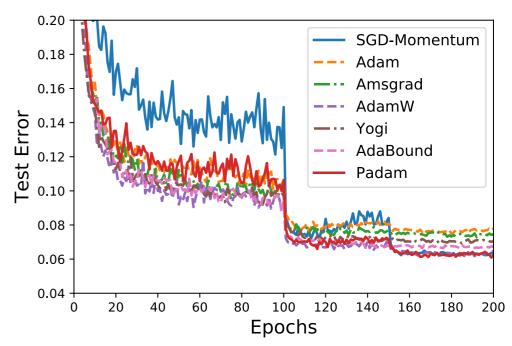
m

9

- Common practice: decrease learning rate in steps
 - ullet Example: start with lpha=0.1 then decrease by factor of 10 at epochs 100 and 150
- Comments
 - Consistent with the idea of fast convergence to a region
 - After the sep size decrease, "1/n" rate replays
 - Many other empirically proposed schedules



(a) Train Loss for VGGNet



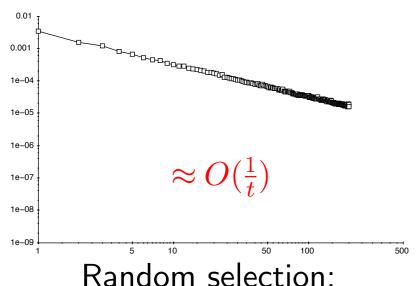
(d) Test Error for VGGNet

Courtesy: [Chen et al. "Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks"]

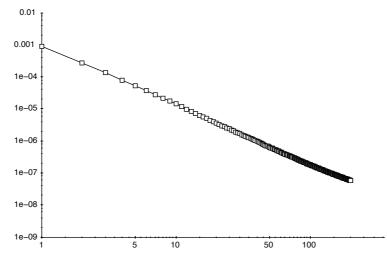
- How should we draw data points for SGD:
 - every time select randomly with replacement
 - shuffle the data once
 - shuffle at each epoch but draw without replacement
- → Empirical evidence:

Bottou (2009): "Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms"

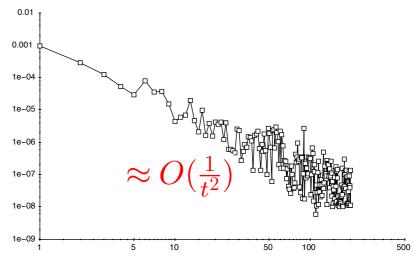
logistic regression d = 47,152, n = 781,256



Random selection: slope=-1.0003



Cycling the same random shuffle: slope=-1.8393



Random shuffle at each epoch: slope=-2.0103

♦ A simple consideration:

Drawing n times with replacement from the dataset of size n some points may not be selected. On average each point is selected with probability ≈ 0.63 for large n. Takes long time to even out (\star) – associated exercise

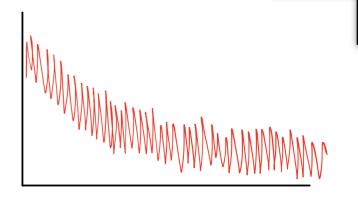
- ♦ Batch Estimate
 - Batch mean: $\tilde{L} = \frac{1}{M} \sum_{i \in I} l_i$
 - Not good idea, too high variance
- → Training data mean
 - $L = \frac{1}{n} \sum_{i} l_i$
 - Accurate, good if the dataset not too large
- ♦ Average using all last known loss values

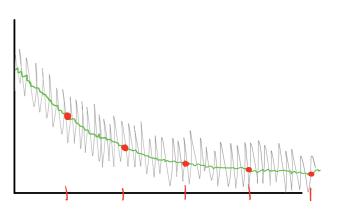
•
$$L := \frac{1}{n} \left(\sum_{i \in I} l_i^{\text{new}} + \sum_{i \notin I} l_i^{\text{old}} \right)$$

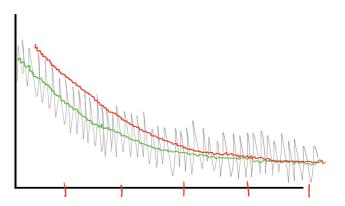
- Low variance, hysteresis 1 epochs
- need to remember losses for full dataset
- → Running Exponentially Weighted Average (EWA)

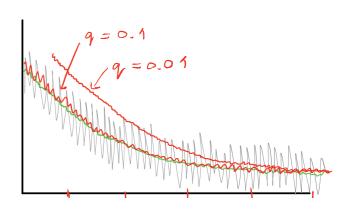
$$\bullet \ \ L:=(1-q)L+q\tilde{L}$$

- Higher variance/ larger hysteresis
- remember only the running average loss









12

♦ SGD

- Batch mean: $\tilde{g} = \frac{1}{M} \sum_{i \in I} \nabla l_i$
- need a small step size

♦ GD

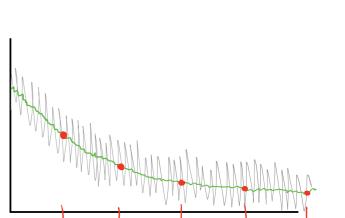
- Full gradient: $g = \frac{1}{n} \sum_{i} \nabla l_{i}$
- too costly
- ◆ Stochastic Average Gradient (SAG)

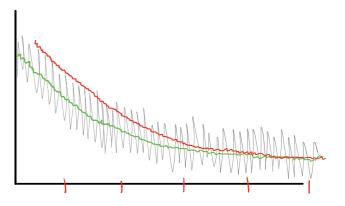
•
$$\tilde{g} := \frac{1}{n} \left(\sum_{i \in I} (\nabla l_i)^{\text{new}} + \sum_{i \notin I} (\nabla l_i)^{\text{old}} \right)$$

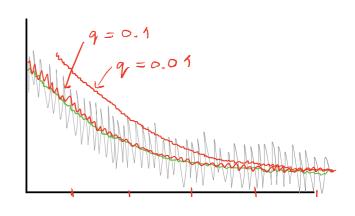
- Improved convergence rates (convex analysis)
- need to remember gradients

♦ SGD with momentum

- $g := (1-q)g + q\tilde{g}$
- practical variance reduction
- remember only the running average gradient



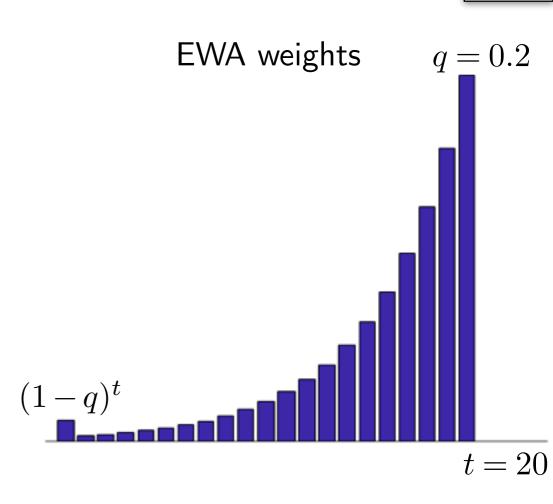




- General setup:
 - X_k , k = 1, ..., t independent random variables
 - $q_t \in (0,1]$
 - Running mean: $\mu_t = (1 q_t)\mu_{t-1} + q_t X_t$
- Exponentially Weighted Average (EWA):
 - Constant $q_t = q$
 - $\mu_1 = (1-q)\mu_0 + qX_1$
 - $\mu_2 = (1-q)^2 \mu_0 + (1-q)qX_1 + qX_2$
 - ...
 - $\mu_t = (1-q)^t \mu_0 + \sum_{1 \le k \le t} (1-q)^{t-k} q X_k$ = $w_0 \mu_0 + \sum_{1 \le k \le t} w_k X_k$

Running mean:

- $\bullet \ q_t = \frac{1}{t}$
- $\mu_1 = 0\mu_0 + X_1$
- $\mu_t = \frac{t-1}{t} \mu_{t-1} + \frac{1}{t} X_t$
- $\mu_{t+1} = \frac{t}{t+1}\mu_t + \frac{1}{t+1}X_{t+1} = \frac{t-1}{t+1}\mu_{t-1} + \frac{1}{t+1}(X_t + X_{t+1})$
- (\star) Smooth transition from running mean to EWA



Running mean weights

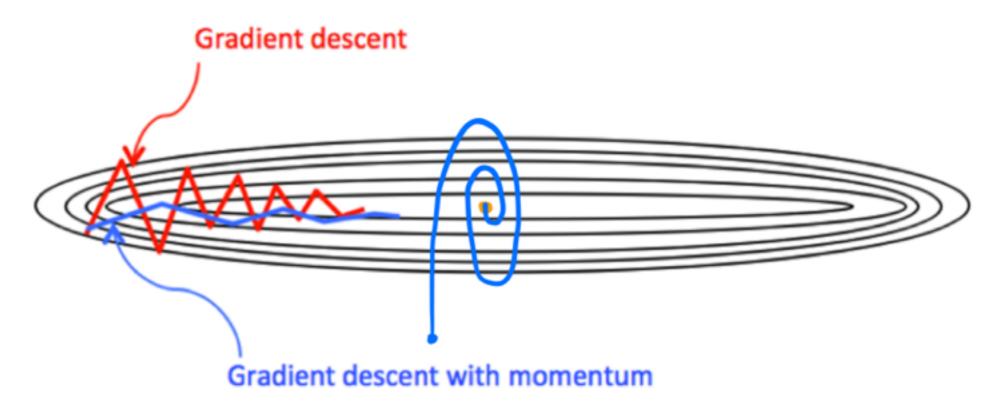
* Running Averages: How Much Smoothing?

- X_t independent random variables
- $q_t \in (0,1]$
- Running mean: $\mu_t = (1 q_t)\mu_{t-1} + q_t X_t$ is a r.v.
- Expectation:
 - $\mathbb{E}[\mu_t] = (1-q_t)\mathbb{E}[\mu_{t-1}] + q_t\mathbb{E}[X_t]$ running average of expectations
 - $\mathbb{E}[\mu_t] = w_0 \mathbb{E}[\mu_0] + \sum_{k=1}^t w_k \mathbb{E}[X_k]$
 - ullet When iterations stabilize (heta does not change much) an unbiased estimate
- Variance:
 - $V[\mu_t] = (1 q_t)^2 V[\mu_{t-1}] + q_t^2 V[X_t]$
 - $\mathbb{V}[\mu_t] = w_0^2 \mathbb{V}_0 + \sum_{k=1}^t w_k^2 \mathbb{V}[X_k]$
 - Variance reduction of running mean: $\sum_{k=1}^t w_k^2 = \sum_{k=1}^t \frac{1}{t^2} = \frac{1}{t}$
 - \bullet Variance reduction of EWA: $\sum_{k=1}^t w_k^2 = \frac{q^2}{1-(1-q)^2}$ independent of t
 - (*) Equivalent window size of EWA: $n = \frac{2}{q} 1$. E.g. $q = 0.1 \leftrightarrow n = 19$
- ◆ Can use EWA or a decreasing q series for a progressive smoothing
- ◆ Can estimate confidence intervals on the running means

- Algorithm
 - Stochastic gradient: $\tilde{g} = \frac{1}{M} \sum_{i \in I_t} \nabla l_i$
 - EWA gradient: $g_t = (1-q)g_{t-1} + q\tilde{g}$
 - Step: $\theta_t = \theta_{t-1} \alpha g_t$
- Can rewrite in different forms, e.g. in pytorch:
 - Velocity: $v_t = \mu v_{t-1} + \tilde{g}$
 - Step: $\theta_t = \theta_{t-1} \varepsilon v_t$
 - (*) Equivalent by setting: $v_t = g_t/q$, $\mu = (1-q)$, $\varepsilon = q\alpha$
 - ullet When changing momentum μ often need to adjust the learning rate as well

SGD with Momentum

- lacktriangle With variance sufficiently low ightarrow GD with momentum, *i.e.* consider $ilde{g}$ is noise-free
 - Velocity: $v_t := \mu v_{t-1} + \tilde{g}$
 - Step: $\theta_t = \theta_{t-1} \varepsilon v_t$
- Even exact gradient may not be a good direction
- ◆ Cancels "noise" in the incorrect prediction of the function change



- ♦ The "heavy ball" method
 - ullet Friction $(\mu < 1)$ and slope forces build up velocity
 - Recall the hysteresis effect from using estimates from the past
 - The inertia may lead to oscillatory behavior (not good)
 - Sometimes helpful to overcome plateaus

"Nesteroy" Momentum

- Common Momentum
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(x_t)$
 - Step: $x_{t+1} = x_t \varepsilon v_{t+1}$

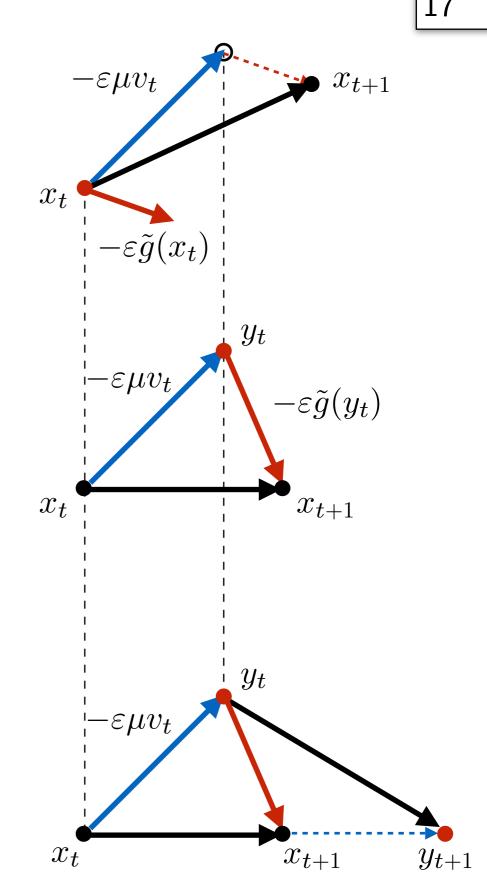
The step consists of momentum and current gradient The momentum part of the step is known in advance Can make it before computing the gradient:

- Nesterov Momentum
 - Leading sequence: $y_t = x_t \varepsilon \mu v_t$
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(y_t)$
 - Step: $x_{t+1} = y_t \varepsilon \tilde{g}(y_t)$

Takes advantage of the known part of the step Less overshooting

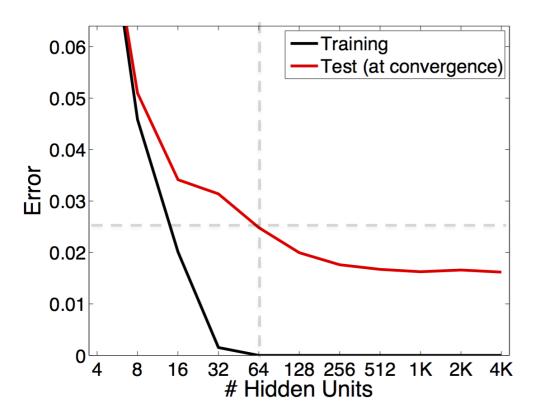
- Can express as steps on the leading sequence alone (\star) :
 - Velocity: $v_{t+1} = \mu v_t + \tilde{g}(y_t)$
 - Step: $y_{t+1} = y_t \varepsilon (\tilde{g}(y_t) + \mu v_{t+1})$

The two sequences eventually converge

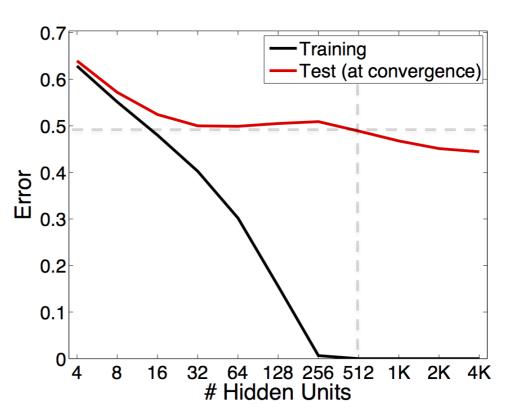


Implicit Regularization

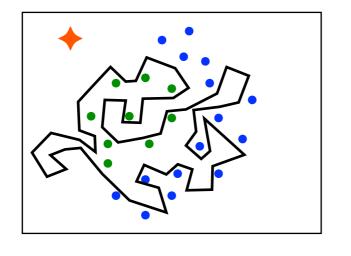
MNIST

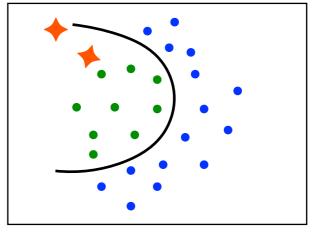


CIFAR-10



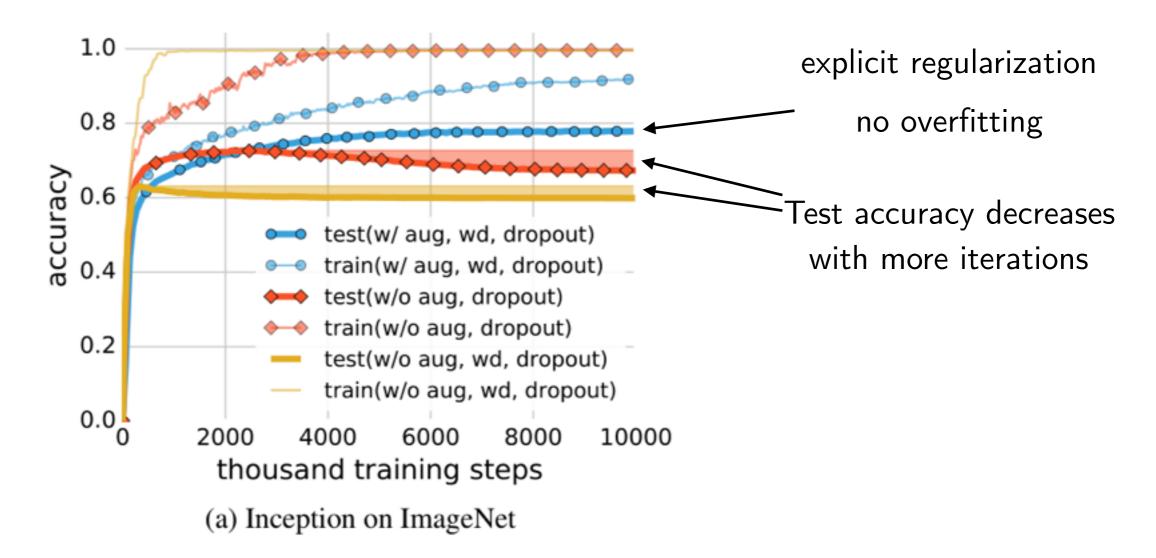
- ♦ We increase the network capacity but generalization improves, why?
 - There exist global minima that do not generalize
 - SGD somehow finds a good global minimum





★ Implicit Regularization: Early Stopping

- We expect the learning to overfit, often it does not
- ♦ Example when it does:



[Zhang et al. (2017) "Understanding Deep Learning Requires ReThinking Generalization"]

- ♦ Early stopping could potentially improve generalization when other regularizers are absent
- Need a validation set

★ Implicit Regularization: Min. Norm

- The model is linear: $f(x) = w^{\mathsf{T}} x$
- Training loss: $L = \sum_{i=1}^{n} l(w^{\mathsf{T}}x_i, y_i)$
- Loss has a unique finite root: $l(y,y_i) \ge 0$ with equality iff $y = y_i$

Theorem (a Gunasekar et al. 2018) If iterates of SGD start with w_0 and converge to a solution w_{∞} that is a global minimizer of L, then

$$w_{\infty} = \arg\min_{w \in \mathcal{W}} \|w - w_0\|^2,$$

where \mathcal{W} is the solution space: $\mathcal{W} = \{w | (\forall i) w^{\mathsf{T}} x_i = y_i\}.$

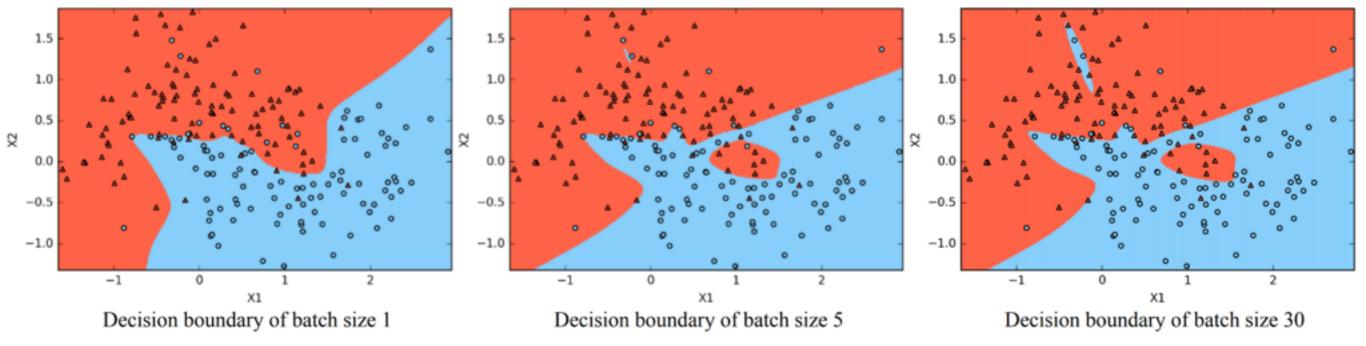
♦ Remarks:

- We do observe convergence to global minima in practice (overparameterized models)
- Some recent theoretical and experimental results indicating this extends to deep networks
- So even without explicit I2 norm regularization SGD does some of that implicitly

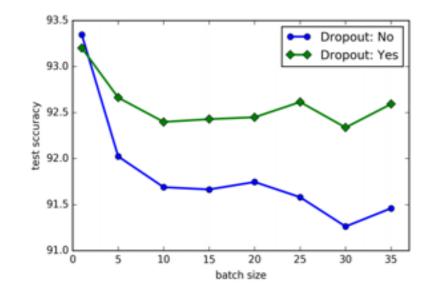
★ Implicit Regularization: Batch Size

- → Typically choose batch size to fully utilize parallel throughput (in GPUs means ~10^4 independent arithmetic computations in parallel)
- ◆ Limited by memory
- ♦ Smaller batch -> noisier gradient -> implicit regularization

Synthetic data



NLP data



Lei et al. (2018) "Implicit Regularization of Stochastic Gradient Descent in Natural Language Processing:

Observations and Implications"

More in Lecture 9

- 22

- ♦ Loss Landscape of NNs
 - Permutation invariance and overcomplete parameterizations
 - Local minima and saddle points in high dimensions
 - Empirical evidence of many good local minima
 - Redundancy helps optimization
- SGD sensitivity to change of variables
- Adaptive methods
- Handling simple constraints Mirror Descend