Deep Learning (BEV033DLE)
Lecture 5. SGD

Alexander Shekhovtsov

Czech Technical University in Prague

4 Definitions and Main Properties
e Gradient Descent and SGD
e (Convergence properties, step size
4 Important Details
e Dataset sampling with and without replacement
® How to monitor progress, Running averages
¢ Momentum

e Implicit regularization: early stopping, batch size and weight norm

Problem Setup

¢ Formulation with a Fixed Training Set:
e Training set: T = (x;,y;)0—, — i.i.d.
e Predictor: f(x;0), 6 — vector of all parameters 6
o Loss: L=~ 1(y;, f(z:;0)) =2>".1;(0)

e Learning problem: m@inL(H)

¢ Regression in R™:
o f(x;0) € R™ — predicted values
e Squared error loss: I; = ||ly; — f(x:;0)||*
¢ C(Classification with K classes:
e f(x) € R — scores
e Predictive probabilities p(y = k|z) = softmax(f(x;0))x
o NLL loss: 1;(0) = —(logsoftmax(f(z:;0))),,

Batch GD and SGD

¢ Gradient Descent (GD):
e Gradient at current point 6;: g, = VL(0;) = =5".VI;(6:)
e Make a small step in the steepest descent direction of L:
® 0i1="01— g
e Historically called “'batch gradient descent”

o |f the dataset is very large, lots of computation to make a small step

¢ Stochastic Gradient Descent (SGD):
e Pick M data points I = {iy,...75;} at random
e Estimate gradient as gy = 7>, ; V1i(6;)
® 0i1="0;— sy
o {(x;,y;)|2 € I} is called a (mini)-batch

¢ “Noisy” gradient g;:
o Elg:] =g:
e V[g:] =+ V[g;], where ' is stochastic gradient with 1 sample
e Diminishing gain in accuracy with larger batch size M

e |n the beginning a small subset of data suffices for a good direction

Perceptron Algorithm @

4 First Neural Network 1950s: Perceptron :

Press: “the embryo of an electronic
computer that [the Navy| expects

J will be able to walk, talk, see,

write, reproduce itself and be
conscious of its existence” P
Frank Rosenblatt

¢ First SGD: 4+ First GPU:
e Two classes y = =£1 Mark | Perceptron, 1958
e Predictor: f(x) =w'x, decide by sign
o Loss: I(y, f(z)) = max(—yw'z,0)
e Draw a point (x,y) from the training data at random

_ _ ~ —yx, if classified incorrectly
e Stochastic gradient: g; =

0, otherwise
o Make a step: wyyi1 = wi+yx

e No need of step size thanks to scale invariance

SGD for Expectation @

— Data augmentation (Lecture 10) 5

rigid transforms noise and distortions rendering

Original image ElasticTransform

o | | B EF=SN Ep=3y
%’ Jad | 850 ‘“% WooTN Wy
N, = WP\ — BT %ﬁﬁn"‘(‘f‘;
Jae ¥ “53; | & EEuvi

st | sen| TN EEEAE

N

1

>
-

R

¢ Fixed Training Set:
e Training set: T = (x;,y;)0_, — i.i.d.
e Loss: L= %Zil(yi,f(xi;e)) — %ZZZZ(H)
¢ General Expectation:
o Loss: L=Eq ,)p[l(y, f(z;0))] + R(0)
e T[raining set is given as a generator p*

e R(0) is a regularizer, not dependent on the data

e Fixed training set is a special case

¢ SGD:
e Draw a batch of data (z;,%;), i.i.d. from p*

® §=172; Vi(yi, f(2:,0)) + VR(9)

Convergence Rates @

¢ [teration cost: 6
e GD: O(n) — full data
e SGD: O(M) — mini-batch
¢ Convergence rates depend on assumptions. Setup closest to NNs:
e [(0) is bounded from below
e VL (0) is Lipschitz continuous with constant p
o E[||VI;(0)|] < o? for some o and all 6 (“variance” is bounded)

¢ Convergence rates:

10% 1 .
e Error at iteration ¢: best over iterations :EB (111i |
expected gradient norm, GD const
ming_r....—1{|[E[VL(6,)]l]} o
e GD with step size oy = o .
Error: O(3) %100
e SGD with step size a; = a/\/t
Error: O(%) o —14—0.1
e SGD with step size oy = « t

Error: O(3) + O(apo?)

[Mark Smidt CPSC 540 Lecture 11] work

Convergence Rates @

¢ Convergence rates: 102 |

o GD with step size oy =« f D (1”1:
Error: O(3) GD const
e SGD with step size a; = a/\/t
Error: O(W)

Vvt
e SGD with step size oy = «

Error: O(3) + O(apo?)

4 Insights:

¢ SGD wins when there is a lot of data | ot
10° ! ! ' '
e (Convergence with a constant step size is fast work

but to within a “region” around optimum

4 Remarks:

e To have guarantees need to use conservative estimates with very small step sizes, etc.
e Different other setups possible: convex / strongly convex, smooth/non-smooth

e The rate is often faster in practice, but the general picture stays

Convergence Rates @

¢ Convergence rates: 102 |

SGD 1/vE
SGD const 1
GD const '

e GD with step size oy = «
Error: O(3)
e SGD with step size a; = a/\/t
. () (los(t)
Error: O(T)
e SGD with step size a; = «

Error: O(3) + O(apo?)

work

Learning Rate Schedule @

¢ Common practice: decrease learning rate in steps

e Example: start with @ = 0.1 then decrease by factor of 10 at epochs 100 and 150

4 Comments

e (Consistent with the idea of fast convergence to a
region

o After the sep size decrease, “1/n" rate replays

e Many other empirically proposed schedules

Courtesy: [Chen et al. “Closing the Generalization Gap of
Adaptive Gradient Methods in Training Deep Neural Networks']

Train Loss

Test Error

1.0
- SGD-Momentum
08 — =+ Adam
' —-- Amsgrad
—=- AdamW
0.6—_ —-- Yogi
\ AdaBound
0.4 A :
0.2 1
0.0 T T T T T T IL— - 1 a
0 200 40 60 80 100 120 140 160 180 200
Epochs
(a) Train Loss for VGGNet
0.20 -
1| —— SGD-Momentum
0-137 & —=- Adam
0.164 It — - Amsgrad
==+ AdamW
0.144 ¥ | — - Yogi
1 VM AdaBound
W -l} . T A/ —— Padam
0.10 - MY Py FATH O Y AR
' yl‘{ ’.\ . bt “i
0.08 A i\ sv MY
NN e o BT
0.06 -
0.04

0 20 40 60 80 100 120 140 160 180 200
Epochs

(d) Test Error for VGGNet

How to Draw Data Points? @
4 How should we draw data points for SGD: 10

® every time select randomly with replacement
e shuffle the data once

e shuffle at each epoch but draw without replacement

4 Empirical evidence:

Bottou (2009): “Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms”
logistic regression d = 47,152, n = 781,256

0.01

0.001 0.001 ¢

- ~o()
Random selection: Cycling the same random Random shuffle at each
slope=—1.0003 shuffle: slope=—1.8393 epoch: slope=—2.0103

¢ A simple consideration:

Drawing n times with replacement from the dataset of size n some points may not be
selected. On average each point is selected with probability ~ 0.63 for large n. Takes
long time to even out (x) — associated exercise

How to Measure the Progress?

4 Batch Estimate
e Batch mean: L = et

¢ Not good idea, too high variance

4 Training data mean

L=2%".1

e Accurate, good if the dataset not too large

4 Average using all last known loss values
* L:= %(Zzell?eerzzgllOld)
e [ow variance, hysteresis 1 epochs

® need to remember losses for full dataset

4 Running Exponentially Weighted Average (EWA)
e L:=(1—¢q)L+qL
e Higher variance/ larger hysteresis

e remember only the running average loss

11

Same Applied to Gradient — Variance Reduction @

+ SGD
e Batch mean: g=+:>..; VI

¢ need a small step size

+ GD
* Full gradient: g =+3".VI,

4 Stochastic Average Gradient (SAG) — ' | |
) g p— %(ZiEI(VZ’i)neW_FZi%[(vzi)dd)

e Improved convergence rates (convex analysis)

e need to remember gradients

4+ SGD with momentum
e g:=(1—q)g+qg

e practical variance reduction

e remember only the running average gradient

12

Running Averages @ 0

¢ General setup: 13
e X, k=1,...,t —independent random variables
e g < (0,1]
e Running mean: u; = (1 —q¢)pe—1+ @ Xy

¢ Exponentially Weighted Average (EWA):

EWA weights

e Constant ¢; = ¢

o p1=(1—q)uo+qXi
o 2= (1—¢q) o+ (1—q)gX1+¢X,

o e (1 ||
® [t (1 Q) MO+1§zk:§t(1 Q) q Xk ._---III.III

t =20

= Wolo T+ wr Xy, - :
1§Zk:§t Running mean weights

¢ Running mean: __ANEEEEEEEEEEEEEEEEEE
® 41— %
o (i1 =0po+ X,
o =" 1+1X;

o [it11 = poyfhet H%Xtﬂ = fg;—%#t—l + H%(Xt +Xi11)

(%) Smooth transition from running mean to EWA

% Running Averages: How Much Smoothing?

¢ General setup

e X; — independent random variables

o q. < (0,1]

e Running mean: p; = (1 —q¢)ps—1+q:Xe is a r.v.
¢ Expectation:

o Elu:] =(1—q)E|us—1] 4+ ¢:E[X:] — running average of expectations
t

o B[] = wolE[po] +) wiE[X]
k=1
e When iterations stabilize (# does not change much) an unbiased estimate

¢ Variance:
o Vi) =(1—q)*V]p—1]+¢V[X,]

t
o V] = wiVo+ 3 wV[Xy
k=1

. . . ¢ /
e Variance reduction of running mean: >, _ w3 = Zk:u% :%

2
e Variance reduction of EWA: Z};lei = 1—(?—(1)2 — independent of ¢

(%) Equivalent window size of EWA: n = % —1. Eg ¢g=01<<n=19

4 Can use EWA or a decreasing q series for a progressive smoothing

4 Can estimate confidence intervals on the running means

14

SGD with Momentum

¢ Algorithm
e Stochastic gradient: §= ;> .., VI
e EWA gradient: g; = (1 —¢q)g:1 —|—qg
o Step: 0; =0;_1 — ag;

¢ Can rewrite in different forms, e.g. in pytorch:
e Velocity: vy = uvi_1+4g
o Step (975 (975 1 — EVt

(%) Equivalent by setting: vs =¢:/q, p=(1—q), € =qa
e When changing momentum p often need to adjust the learning rate as well

15

SGD with Momentum @

¢ With variance sufficiently low — GD with momentum, i.e. consider g is noise-free
e Velocity: vy := pvi_1+g
o Step: 0, =0;,_1—¢cvy

4 Even exact gradient may not be a good direction

4 Cancels “noise” in the incorrect prediction of the function change

Gradient descent

o

Gradient descent with momentum
¢ The "heavy ball"' method
e Friction (1 < 1) and slope forces build up velocity
e Recall the hysteresis effect from using estimates from the past
e The inertia may lead to oscillatory behavior (not good)

e Sometimes helpful to overcome plateaus

16

“Nesterov" Momentum @

¢ Common Momentum 17
e Velocity: v = pvr + g(xy)

L141
o Step: Ty = Ty — V41

The step consists of momentum and current gradient
The momentum part of the step is known in advance

Can make it before computing the gradient:

¢ Nesterov Momentum
e leading sequence: y; = Ty — ey —eg(yt)
e Velocity: v = pve + g(ye)

o Step: Tyr1 = Yt —€9(Yr)

Lt4+1

Takes advantage of the known part of the step

Less overshooting

¢ Can express as steps on the leading sequence alone (*):
e Velocity: vii1 = pve+ g(ye)
° Step: Y11 =Y — 5(§(yt) + /wt+1)

The two sequences eventually converge

Implicit Regularization

MNIST CIFAR-10
—y T A ———
0.06f —Training | —Training
—Test (at convergence) 0.6 —Test (at convergence)
0.05¢]
0.5_ _
0.04-
§ § 0.4/ -
L 0.03f LL] 0.3l
0-02_ 0.2
0.01¢ 0.1
O4 & 16 32 64 128 256 512 1K 2K 4K O4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

4 We increase the network capacity but generalization improves, why?
e There exist global minima that do not generalize

e SGD somehow finds a good global minimum

% Implicit Regularization: Early Stopping @

19

4 We expect the learning to overfit, often it does not

4 Example when it does:

1.0 3 OO OO0 00000009
6 QGUO(JG,OO(
o—2°

M\

explicit regularization

no overfitting

9
© 00 Test accuracy decreases
8 e=o test(w/aug, wd, dropout)
O 0.4 oo train(w/ aug, wd, dropout) with more iterations
&=¢ test(w/o aug, dropout)
&9 train(w/o aug, dropout)
0.2 test(w/o aug, wd, dropout)
train(w/o aug, wd, dropout)
0.0>

0 2000 4000 6000 8000 10000
thousand training steps

(a) Inception on ImageNet

[Zhang et al. (2017) “Understanding Deep Learning Requires ReThinking Generalization]

4 Early stopping could potentially improve generalization when other regularizers are absent

4 Need a validation set

% Implicit Regularization: Min. Norm @

¢ Linear models: 20
e The model is linear: f(z)=w'z
e Training loss: L=>" l(w'x;,y;)
e Loss has a unique finite root: I(y,y;) > 0 with equality iff y = y;

Theorem (a Gunasekar et al. 2018) If iterates of SGD start with wy and converge to a
solution w4, that is a global minimizer of L, then

Woo = arg min fw —wy|*,

where W is the solution space: W = {w|(Vi)w'z; = y;}.

4+ Remarks:

® We do observe convergence to global minima in practice (overparameterized models)
® Some recent theoretical and experimental results indicating this extends to deep networks

® So even without explicit 2 norm regularization SGD does some of that implicitly

* Implicit Regularization: Batch Size @ s

4+ Typically choose batch size to fully utilize parallel throughput (in GPUs 21
means ~10"4 independent arithmetic computations in parallel)

4 Limited by memory

4 Smaller batch -> noisier gradient -> implicit regularization

Synthetic data

-1 0 1 2 -1 0 1 2 -1 0 1 2
X1 X1 X1

Decision boundary of batch size | Decision boundary of batch size 5 Decision boundary of batch size 30

NLP data

935

o—e Dropout: No
4—¢ Dropout: Yes

Lei et al. (2018) “Implicit Regularization of Stochastic
Gradient Descent in Natural Language Processing:
Observations and Implications”

test sccuracy

0 5 10 15 20 25 30 35
batch sze

More in Lecture 9
4 Loss Landscape of NNs
e Permutation invariance and overcomplete parameterizations
e | ocal minima and saddle points in high dimensions
e Empirical evidence of many good local minima
e Redundancy helps optimization
4 SGD sensitivity to change of variables
4 Adaptive methods

4 Handling simple constraints - Mirror Descend

22

