DEEP LEARNING (SS2020)
SEMINAR 1

Assignment 1. Let X be a real valued random variable with expectation EX and finite
variance V.X. The Chebyshev inequality asserts

VX
P(|X —EX|>¢) < —
Let X;, ¢« = 1,...,m be independent, identically distributed random variables with

expectation EX and finite variance VX and let Y = % >, X; be their empirical
mean. Prove the inequality

VX
P(lY —EY| >¢) < —.
(v —BY|><) <
Assignment 2. Let X;,7 = 1,...,m be independent random variables bounded by the

interval [a,b], ie.a < X; < b. Let X = % >, X; be their empirical mean. The
Hoeffding inequality asserts that

2me?
Let us now consider a predictor h: X — ), and aloss ¢(y, y'). The risk of the predictor
is denoted by R(h) and its empirical risk on a test set 7™ = {(a7,y7) | j =1,...,m}
is denoted by Rrm (h).
a) Prove that the generalisation error of /» can be bounded in probability by

QmE2

P(|R(h) — Ryn(h)| > 5) < 2”@, (1)

where A = 4100 — Conin.

b) Verify the value m given in Example 2. of Lecture 1. for the special case of a binary
classifier and the 0/1-loss.

¢) Consider an age predictor as described in Example 1. of Lecture 1. but with ) =
{0,1,...,100} and with the loss ¢(y,y’) = |y — ¢'|. What is the minimal number of test
examples m needed to guarantee that R(h) is in the interval (Rym (h) — 1, Rym(h) +1)
with probability at least 95%?

Assignment 3. We want to utilise the Hoeffding inequality for choosing the best pre-
dictor from a finite set of predictors 7. Denoting the r.h.s. of (1) by §, we interpret it
as follows. Among all possible test sets 7™ of size m there are at most ¢ * 100 percent
“bad” test sets for a given predictor h. We call a test set 7™ bad for the predictor A if
IR(h) — Ryw(B)| > =.

1



2

a) Conclude that the percentage of test sets, which are bad for at least one h € H can
be bounded by

P(max|R(k) — Ryn(h)| > <) < 2[H|e” &7

b) Suppose, we want to apply this for choosing the best predictor from a set of 10
predictors based on 0/1 loss. What is the minimal size m of a test set 7™, which ensures
that in 95% of cases our choice h,, = argmin, 4, Ry~ (h) will fulfill

| R(hm) — R(ha)| <,
where hy is the best predictor from H?

Assignment 4. Suppose that the decision boundary of a binary classifier for points
x € R™ is given by a convex polyhedron. Show that the classifier can be implemented
by a two layer network with binary output neurons.

Show that decision boundaries given by arbitrary polyhedra can be implemented by
three layer networks with binary output neurons.

Assignment 5. Consider a neural network with K outputs y; representing posterior
class probabilities. The last layer of this network is a softmax layer with output

etk

yk:W>

where xj;, are the outputs of the penultimate layer and represent class scores. When
learning such a network by maximising the log conditional likelihood, we have to con-
sider log-probabilities

zr = logyr = xp — logZe“
‘

We will analyse the nonlinear part of the r.h.s

f(z) =log ¥ e
A

a) Prove that its gradient is given by V f(x) = v, i.e. by the vector of class probabilities.
Conclude that the norm of the gradient is bounded by 1.

b) Compute the second derivative of f and show that it can be expressed as

V?f(x) = Diag(y) —yy.
Prove that this matrix is positive semi-definite and conclude that f(x) is a convex func-
tion.



