
DEEP LEARNING (SS2020)
SEMINAR 1

Assignment 1. Let X be a real valued random variable with expectation EX and finite
variance VX . The Chebyshev inequality asserts

P
(
|X − EX| > ε

)
6

VX
ε2

.

Let Xi, i = 1, . . . ,m be independent, identically distributed random variables with
expectation EX and finite variance VX and let Y = 1

m

∑m
i=1Xi be their empirical

mean. Prove the inequality

P
(
|Y − EY | > ε

)
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mε2

.

Assignment 2. Let Xi, i = 1, . . . ,m be independent random variables bounded by the
interval [a, b], i.e. a 6 Xi 6 b. Let X = 1

m

∑m
i=1Xi be their empirical mean. The

Hoeffding inequality asserts that

P
(
|X − EX| > ε

)
6 2 exp

(
− 2mε2

(b− a)2

)
.

Let us now consider a predictor h : X → Y , and a loss `(y, y′). The risk of the predictor
is denoted by R(h) and its empirical risk on a test set T m =

{
(xj, yj)

∣∣ j = 1, . . . ,m
}

is denoted by RT m(h).
a) Prove that the generalisation error of h can be bounded in probability by

P
(
|R(h)−RT m(h)| > ε

)
< 2e

− 2mε2

(4`)2 , (1)

where4` = `max − `min.
b) Verify the value m given in Example 2. of Lecture 1. for the special case of a binary
classifier and the 0/1-loss.
c) Consider an age predictor as described in Example 1. of Lecture 1. but with Y =
{0, 1, . . . , 100} and with the loss `(y, y′) = |y−y′|. What is the minimal number of test
examples m needed to guarantee that R(h) is in the interval

(
RT m(h)−1, RT m(h)+1

)
with probability at least 95%?

Assignment 3. We want to utilise the Hoeffding inequality for choosing the best pre-
dictor from a finite set of predictors H. Denoting the r.h.s. of (1) by δ, we interpret it
as follows. Among all possible test sets T m of size m there are at most δ ∗ 100 percent
“bad” test sets for a given predictor h. We call a test set T m bad for the predictor h if
|R(h)−RT m(h)| > ε.
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a) Conclude that the percentage of test sets, which are bad for at least one h ∈ H can
be bounded by

P
(
max
h∈H
|R(h)−RT m(h)| > ε

)
< 2|H|e−

2mε2

(4`)2

b) Suppose, we want to apply this for choosing the best predictor from a set of 10
predictors based on 0/1 loss. What is the minimal sizem of a test set T m, which ensures
that in 95% of cases our choice hm = argminh∈HRT m(h) will fulfill

|R(hm)−R(hH)| < ε,

where hH is the best predictor fromH?

Assignment 4. Suppose that the decision boundary of a binary classifier for points
x ∈ Rn is given by a convex polyhedron. Show that the classifier can be implemented
by a two layer network with binary output neurons.

Show that decision boundaries given by arbitrary polyhedra can be implemented by
three layer networks with binary output neurons.

Assignment 5. Consider a neural network with K outputs yk representing posterior
class probabilities. The last layer of this network is a softmax layer with output

yk =
exk∑
` e

x`
,

where xk are the outputs of the penultimate layer and represent class scores. When
learning such a network by maximising the log conditional likelihood, we have to con-
sider log-probabilities

zk = log yk = xk − log
∑
`

ex`

We will analyse the nonlinear part of the r.h.s

f(x) = log
∑
`

ex`

a) Prove that its gradient is given by∇f(x) = y, i.e. by the vector of class probabilities.
Conclude that the norm of the gradient is bounded by 1.
b) Compute the second derivative of f and show that it can be expressed as

∇2f(x) = Diag(y)− yyT .
Prove that this matrix is positive semi-definite and conclude that f(x) is a convex func-
tion.


