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Assignment 1 (Dropout, Bernoulli)

a. Let us see how to design dropout noises more conveniently for implementation.
Consider the following Bernoulli noises:

Z =

{
a, with probability p
0, with probability 1− p

(1)

What should be the value of a so that E[Z] = 1? This will allow us to avoid
rescaling of the weights at the test time and just apply this noise at the training
time.

b. Sometimes randomized procedures are used to quantize the gradients (for faster
communication in a distributed system). Let gi ∈ R be components of the gradient
computed in the worker, i = 1 . . . n. Suppose we want to encode the gradient us-
ing 1 bit per component and possibly a few real numbers for the whole sequence.
Let g̃i be the binary encoding. How to chose this encoding in a randomized way
so that E[g̃] = g and hence we preserve the guarantee of an unbiased (but more
noisy) gradient estimate?

Assignment 2 (Ridge Regression)
Consider linear regression model with

yi = wTxi + εi, (2)

where i is a data point, xi ∈ Rn, yi ∈ R, w ∈ Rn is the weight vector and εi ∼ N (0, σ2)
are independent measurement errors.
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a. Formulate the maximum likelihood learning for this problem and express the log
likelihood. You should get the quadratic loss function.
Hint: Since εi = yi − wTxi is normally distributed, we have p(yi|xi) = pN (yi −
wTxi, σ

2).

b. Consider now also the augmentation with noises in the inputs:

yi = A(xi + ξi) + εi, (3)

where ξi ∼ N (0, λ2In) are independent. Compute the expected value in ξ of
the quadratic loss function derived above. You should obtain a variant of weight
decay regularization term.

(?) Formulate the maximum likelihood learning and write the log likelihood for the
problem (3). What regularization we get in this case?
Hint: write the likelihood of the observed data point (xi, yi) integrating out the
unobserved noises ξi, εi.

Assignment 3 Compute the KL-divergence of two univariate normal distributions. Try
to generalise your result to multivariate normal distributions.

Assignment 4 Let X ∈ R be a normally distributed random variable, i.e.

p(x) =
1√
2πσ

e
(x−µ)2

2σ2 .

Prove the equality
∂

∂µ
EN (µ,σ)f(x) = EN (µ,σ)f

′(x),

where f ′(x) denotes the derivative of f . Hint: use the substitution x̃ = (x−µ)/σ in the
integral for the expectation.
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