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Assignment 1 (Weight initialisation for ReLU networks)
In this assignment we derive a proper weight initialisation for ReLU networks using the
same approximation as in Lecture 8, where we derived the initialisation proposed by
Glorot et al. (2010) for networks with sigmoid like activations.

Consider a network with randomly initialized weights. Let xk denote the output
vector for the layer k of the ReLU network. Because of the ReLU activations we can not
require xk to have zero mean. We will therefore consider the statistic of the activations
ak = W kxk−1.

a) Prove that variance of the activations ak = Wxk−1 in layer k is

V[ak] = nk−1V[W k]E[(xk−1)2]

if the weights have zero mean.

b) Prove that the distribution of ak is symmetric with zero mean, provided the same
holds for the distribution of W k.

c) Conclude that passing the ak-s through the ReLU-function will lead to E[(xk)2] =
1
2
V[ak].

Collecting the steps, we get

V[ak] =
1

2
nk−1V[W k]V[ak−1]

and obtain the initialisation proposed by He et al. (2015): initialising the weights with
zero mean and variance

1

2
nk−1V[W k] = 1.
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Assignment 2 (Batch Norm)
Batch normalization after a linear layer with a weight matrix W and bias b takes the
form:

Wx+ b− µ
σ

β + γ. (1)

Let xi, i = 1 . . .m inputs to the linear layer in a batch and let ai = Wxi + b. Then µ is
the sample mean of ai and σ2 is the sample variance of ai.

a. Show that the output of batch normalization (1) does not depend on the value of
bias b and also does not change when the weight matrix W is scaled by a positive
constant.

b. What changes if BN is applied after ReLU?

c. Consider a network without BN. Let µ and σ be statistics of neuron activations a
in a particular layer. How to introduce a BN layer at this place so that it does not
change the network predictions? I.e. how to initialize β and γ?

Assignment 3 (Prox Problems)
Using the technique of Lagrange multipliers solve the following problems:

a. Optimal step with box trust region: min
‖∆xi‖≤ε ∀i

〈∇f(x0),∆x〉.

Hint: Square the constraints to allow solving via stationary point, e.g. ∆x2
i ≤ ε2.

Lagrange multipliers to inequality constraints ∆x2
i−ε2 ≤ 0 must be non-negative.

b. Optimal step with Mahalanobis trust region: min
‖∆x‖M≤ε

〈∇f(x0),∆x〉,

where ‖∆x‖2
M = 〈∆x,M∆x〉.

Assignment 4 (Mirror Descent)
Solve the MD step proximal problem:

min
x
〈∇f(x0), x− x0〉+ λD(x, x0),

where x0 ∈ (0, 1) and D(x, x0) = x log x
x0

+ (1− x) log 1−x
1−x0

.
Hint: The problem is convex and can be solved by stationary point conditions.
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