
DEEP LEARNING (SS2020)
SEMINAR 2

Assignment 1. Let us consider a fully connected recurrent network with n binary neu-
rons. Denoting their outputs by xi = ±1, the corresponding dynamic system reads

xi(t+ 1) = sign
(∑
j 6=i

wijxj(t)
)
,

We will assume sequential updates in some fixed order over the neurons. Let us further
assume that matrix of weights is symmetric, i.e. wij = wji.

Prove that the function

H(x) = −1

2

∑
i,j

xiwijxj = −
1

2
xTWx

is a Ljapunov function for this dynamical system, i.e. it can decrease only:

H(x(t+ 1)) ≤ H(x(t)).

Conclude that the network will eventually reach a fixpoint configuration.
Hint: express the change ofH(x) for an update of a single neuron xi.

Assignment 2 (Softmax). Show the following properties of the function

softmax: Rn → Rn
+ : x 7→

exi∑
j e

xj

(a) softmax is invariant to adding the same number to all scores x
(b) argmaxi softmax(x)i = argmaxi log softmax(x)i = argmaxi(xi)
(c) When all scores x are scaled by a big positive number, softmax(x) approaches

the argmax indicator:

Ii(x) =

{
1, if xi > xj ∀j 6= i;

0, otherwise.
(1)

(So it would be more appropriate to call it “soft argmax”).

Assignment 3. Let us consider the logistic regression model

p(k | x;w) = log S(kwTx),

where k = ±1 is the class, x ∈ Rn is the feature vector, w ∈ Rn is a parameter vector
and S denotes the logistic sigmoid function. Given training data T m = {(xi, ki) | i =
1 . . .m}, we want to estimate w by maximising the (conditional) log-likelihood.
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(a) Let us assume that the training data are linearly separable. Show that in this case
the logistic regression problem has no finite optimal solution. To approach the
optimal value in this case, the weight vector becomes infinitely large.
Hint: show that for any w that achieves a correct classification taking w′ = sw
with s > 1 achieve a higher likelihood.

(b) Show that adding a regularizer on the weight norm λ‖w‖2 fixes this problem.

Assignment 4 (ML with noisy labels). Suppose that the class label k = ±1 given an
observation x follows the logistic model with conditional distribution q(k|x;w) as in
the previous assignment. Suppose you have training pairs (xi, ti) where ti might have
been incorrectly labelled by the person who annotated the data, which happens with
probability ε. That is, ti = −ki with probability ε and ti = ki with probability 1 − ε,
where ki is the true label which is not available.

(a) Formulate conditional maximum likelihood learning of parameters w.
Hint: the conditional likelihood of the training data sample (xi, ti) is given by
marginalizing over the unknown true label:
p(ti|xi) =

∑
k∈{−1,1} p(ti|k)q(k|xi;w), where p(t|k) is the labeling noise model.

(b) How is the maximum likelihood related to minimizing the cross-entropy∑
i

∑
k

pi(k) log q(k | xi;w)

where pi(k) are the "softened 1-hot labels": pi(k) = 1 − ε for k = ti and ε
otherwise?
Hint: show that cross-entropy is an upper bound on the negative log likelihood
using Jensen’s inequality for log.

Assignment 5 (Backprop of scan). The inclusive cumulative sum or for brevity scan
operation is defined as follows: Given the input vector x ∈ Rn the output y ∈ Rn has
components:

yi =
∑
j≤i

xj.

Compute the backprop of scan, i.e. given∇yL compute∇xL.


