Deep Learning (BEV033DLE) Lecture 10 Regularizers

Alexander Shekhovtsov

Czech Technical University in Prague

- ◆ L2 regularization (Weight Decay)
- → Dropout
- → Slightly Beyond
 - Other Norms
 - Batch Normalization
 - Implicit Regularization of SGD / SMD

Introduction (Overfitting)

Underfitting and Overfitting

→ Classical view in ML:

- ◆ Control model capacity (prefer simpler models, regularize) to prevent overfitting
 - in this example: limit the number of parameters to avoid fitting the noise

Underfitting and Overfitting

◆ Deep Learning

Underfitting — model capacity too low

- Models in practice are chosen to perfectly fit training data (overparametrized)
- The boundary may be arbitrary complex as they can fit any labeling

Overfitting — model capacity too high

Good overfitting?

Generalization of Over-Parametrized Models

Right models + SGD generalize better in overparametrized regime

[Belkin et al. 2019]

- Clearly regularizing by controlling the number of parameters is not the best option
- → Important to regularize by other means:
 - 1. Good model architecture (putting our knowledge of invariances and useful information processing blocks into the network structure)
 - 2. Everything else counts as implicit regularization matters (optimizer, batch size etc.)
 - 3. Explicit regularization

Symptoms of Overfitting in Classification

- Training loss approaches 0
- Train accuracy goes to 100%

50

100

150

- Validation loss starts growing
- Validation accuracy still improves but calibration degrades

200

250

300

L₂ Regularization (Weight Decay)

General Setup

$$\min_{\theta} L(\theta) + \lambda R(\theta) = \min_{\theta} \sum_{i} l_i(y_i|x_i;\theta) + \lambda R(\theta)$$

- ullet R(heta) function not depending on data
- ullet λ regularization strength
- Recall connection to maximum a posteriori parameter estimation (MAP): $\max_{\theta} p(D|\theta)p(\theta)$
 - $p(\theta) \propto \exp(-\lambda R(\theta))$ prior on the model weights
 - ullet $p(D|\theta)$ likelihood of the data given parameters
 - $p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$ Bayesian posterior over parameters

RPZ lecture 3: (Parameter Estimation: Maximum a Posteriori (MAP))

In practice, more commonly used as:

$$\min_{\theta} \frac{1}{n} \sum_{i} l_i(y_i|x_i;\theta) + \lambda R(\theta)$$

ullet λ is tuned for a given dataset with cross-validation

- L_2 -regularization (l_2 , weight decay):
 - $R(\theta) = \|\theta\|^2$
- ♦ In linear regression:
 - Known as ridge regression, Tikhonov regularization
 - ullet Equivalent to using multiplicative noise $\mathcal{N}(1,\lambda^2)$ on the input
 - Smoothing effect (reduces the variance of $\hat{\theta}$)
- In linear classification:
 - ullet Small $heta \leftrightarrow$ large margin
 - Generalization bounds independent of dimensionality of the model (roughly): $\mathrm{Risk}(h) \leq O^* \left(\frac{1}{N} \frac{r^2 + \|\xi\|^2}{m^2}\right)$, where ξ are slacks

♦ Sigmoid NNs:

- Small $\theta \to \text{small activations}$
 - → sigmoid outputs are close to linear

10

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

nts of Learning ce, and Prediction

Hastie, Tibshirani and Friedman: The Elements of Statistical Learning

https://web.stanford.edu/~hastie/ElemStatLearn/

Dropout

[Srivastava et al. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting]

- During training:
 - Randomly, make some units inactive by setting their outputs to zero
 - This results in the associated weights not being used and we obtain a (random) subnetwork
 - The network develops robustness to units being dropped
- During testing:
 - Use all units

 $Z_i \sim \mathsf{Bernoulli}(0.3)$

13

- How we can model this:
 - $\bullet \ \ \text{Introduce random Bernoulli variables} \ Z_i = \begin{cases} 1, & \text{with probability} \ p, \\ 0, & \text{with probability} \ 1-p, \\ & \text{multiplying outputs of the preceding layer} \end{cases}$
 - Can interpret outputs multiplied with 0 as dropped
 - Drop probability q = 1 p
 - Next layer activations: $a = W(x \odot Z)$
- Prediction is random now?
 - Denote the network output as $f(x, Z; \theta)$
 - We have two choices how to make predictions:
 - Randomized predictor: $p(y|x,Z) = f(x,Z;\theta)$
 - Ensemble: $p(y|x) = \mathbb{E}_Z[f(x,Z;\theta)] = \sum_Z p(z)f(x,Z;\theta)$
- → We randomized predictor for training (easier and other reasons)
- ♦ We will use ensemble (or its approximation) for testing

Note: Gaussian multiplicative $\mathcal{N}(1,\sigma^2)$ noises work as well (Gaussian Dropout)

- Loss of randomized predictor:
 - Double expectation in noises and date: $\mathbb{E}_Z\Big[\mathbb{E}_{(x,y)\sim\mathsf{data}}\Big[l(y,f(x,Z;\theta))\Big]\Big]$
 - ullet Same as: $\mathbb{E}_{Z\sim \mathsf{Bernoulli}(q),\ (x,y)\sim \mathsf{data}}\Big[l(y,f(x,Z;\theta))\Big]$
 - \bullet Unbiased loss estimate using a batch of size M:

$$\frac{1}{M} \sum_{i=1}^{M} l(y_i, f(x_i, z_i; \theta))$$

- What it means practically:
 - Draw a batch of data
 - ullet For each data point i independently sample noises z
 - Compute forward and backward pass as usual
 - Will have increased variance of the stochastic gradient

Testing

- Use approximation (common default):
 - $\mathbb{E}_{Z}[f(x,Z;\theta)] \approx f(x,\mathbb{E}_{Z}[Z];\theta)$
 - Since $\mathbb{E}_Z[Z] = p$, we have $a = W(x \odot \mathbb{E}[Z]) = (pW)x$
 - i.e. need to scale down the weights
- Use sampling:

•
$$\mathbb{E}_Z[f(x,Z;\theta)] \approx \frac{1}{M} \sum_{i=1}^M f(x_i,z_i;\theta)$$

- Generalizes slightly better than the above
- Can be used to also estimate model uncertainty
- Both variants achieve a "comity" or "ensembling" effect

averaging of many well fitting models:

More accurate analytic approximations than the first option are possible

 $Z_i \sim \mathsf{Bernoulli}(0.3)$

$$E[Z] = p$$

Example: Applying Dropout

→ Here it looks like it did not help with the validation accuracy, but see next slide

Validation Loss

- ♦ Change the learning setup:
 - train longer with a slower learning rate decay
- Now it works!
 - There are (advanced) techniques to approximate it analytically: Fast Dropout, Analytic Dropout

- **♦** Experiment:
 - MNIST auto encoder with 1 fully-connected hidden layer of 256 units

(a) Without dropout

(b) Dropout with p = 0.5.

[Srivastava et al. (2014)]

- Hypothehis: dropout prevents co-adaptation of features and instead learns simpler features
- → More interesting studies in the paper: effect on activation sparsity, connection to ridge regression, etc.

[Louizos and Welling 2017]

Beyond L_2 and Dropout

L₂ Regularization and Batch Normalization

- Consider BN-normalized layer:
 - $a = \frac{Wx + b \mu}{\sigma} \gamma + \beta$
 - $\mu = \frac{1}{M} \sum_{i} (Wx_i + b)$ $\sigma^2 = \frac{1}{M} \sum_{i} (Wx_i + b \mu)^2$
 - \bullet Exercise: the value of a does not depend depend on the bias b and the scale of the weights $W \to sW$
- What will happen if we try to solve $\min_W L(a(W)) + \|W\|^2$, where L(a(W)) is invariant w.r.t. $\|W\|$?

L₂ Regularization and Batch Normalization

- Consider BN-normalized layer:
 - $a = \frac{Wx + b \mu}{\sigma} \gamma + \beta$
 - $\mu = \frac{1}{M} \sum_{i} (Wx_i + b)$ $\sigma^2 = \frac{1}{M} \sum_{i} (Wx_i + b \mu)^2$
 - \bullet Exercise: the value of a does not depend depend on the bias b and the scale of the weights $W \to sW$
- What will happen if we try to solve $\min_W L(a(W)) + \|W\|^2$, where L(a(W)) is invariant w.r.t. $\|W\|$?
 - ullet Make no sense, optimum value is approached with $\|W\| o 0$

L₂ Regularization and Batch Normalization

- Consider BN-normalized layer:
 - $a = \frac{Wx + b \mu}{\sigma} \gamma + \beta$
 - $\mu = \frac{1}{M} \sum_{i} (Wx_i + b)$ $\sigma^2 = \frac{1}{M} \sum_{i} (Wx_i + b \mu)^2$
 - \bullet Exercise: the value of a does not depend depend on the bias b and the scale of the weights $W \to sW$
- What will happen if we try to solve $\min_W L(a(W)) + \|W\|^2$, where L(a(W)) is invariant w.r.t. $\|W\|$?
 - Make no sense, optimum value is approached with $\|W\| \to 0$

- GD iterates may still behave well
 - ullet Actually, depending on λ , the norm $\|W\|$ will either grow or shrink during GD iterates
 - Possible to fiddle on this balance, but a bad practice

Batch Normalization Regularizes

BN has rather strong regularization properties on its own (it depends on a randomly formed batch)

- \mathbf{L}_1 regularization: $R(W) = \|W\|_1 = \sum_{ij} |W_{ij}|$
 - Promotes sparsity
 - ullet For better generalization we typically do not want sparsity (= less parameters)
- ◆ Constrained optimization form instead of penalty:

$$\min_{W} L(W)$$
 s.t. $R(W) \leq s$

- Does not makes weights small, but prevents them from growing high
- Can use projected SGD to solve
- In particular L_2 norm on each column: $R(W) = \max_j \|W_j\|_2^2$ called **max-norm** appears useful

- Flat L_p norm: $R(W) = \left(\sum_{ij} W_{ij}^p\right)^{\frac{1}{p}}$
- Group-norm: $R(W) = \left(\sum_{j} \left(\sum_{i} W_{ij}^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}$
- Above variants are special cases
- Different generalization bounds derived measuring complexity with group norm

Implicit Regularization by SGD / SMD

- Consider step proximal problem: $\min_{x} \langle \nabla f(x_0), x x_0 \rangle + \lambda \|x x_0\|_p^p$
 - i.e., p-norm stochastic mirror descent
- lacktriangle Using different p leads to solutions with different properties

	SMD 1-norm	SMD 2-norm (SGD)	SMD 3-norm	SMD 10-norm
1-norm BD	141	9.19×10^{3}	4.1×10^{4}	2.34×10^{5}
2-norm BD	3.15×10^{3}	562	1.24×10^{3}	6.89×10^{3}
3-norm BD	4.31×10^{4}	107	53.5	1.85×10^{2}
10-norm BD	6.83×10^{13}	972	7.91×10^{-5}	2.72×10^{-8}

[Azizan et al. (2019) Stochastic Mirror Descent on Overparameterized Nonlinear Models: Convergence, Implicit Regularization, and Generalization]

Different sparsity and generalization

- The most powerful regularization might be the network structure (inductive bias)
- 25

- → In the overparametrized mode need to regularize
 - norms of the weights
 - data augmentation
 - activation augmentation / norm
- ♦ Some practical hints:
 - In convolutional layers BN is preferred to dropout. It also does something random that makes it generalize better and training is much faster
 - Do not combine BN with Weight Decay in same layers
 - Do not combine BN with Dropout in same layers
- We touched neural networks with noises
 - Deep topic: ensembles, Bayesian neural networks, expectation problems, stochastic and analytic approximations