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4 L2 regularization (Weight Decay)
4 Dropout
4+ Slightly Beyond

® Other Norms

e Batch Normalization

® |mplicit Regularization of SGD / SMD



Introduction (Overfitting)



Underfitting and Overfitting @

4 Classical view in ML: 3
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4 Control model capacity (prefer simpler models, regularize) to prevent overfitting

® in this example: limit the number of parameters to avoid fitting the noise



Underfitting and Overfitting @

4

¢ Deep Learning

Underfitting — model capacity too low Overfitting — model capacity too high

e Models in practice are chosen to perfectly
fit training data (overparametrized)

® The boundary may be arbitrary complex
as they can fit any labeling




Generalization of Over-Parametrized Models @

4 Right models + SGD generalize better in overparametrized regime
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4 Clearly regularizing by controlling the number of parameters is not the best option

4 Important to regularize by other means:

1. Good model architecture (putting our knowledge of invariances and useful
information processing blocks into the network structure)

2. Everything else counts as implicit regularization matters (optimizer, batch size etc.)

3. Explicit regularization




Symptoms of Overfitting in Classification

Training Loss

Validation Loss
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L> Regularization (Weight Decay)



General Setup

¢ Regularized training objective:

m@inL(H) + AR(0) = m@in > Li(yilxis0) + AR(0)

e R(#) - function not depending on data
e )\ - regularization strength
¢ Recall connection to maximum a posteriori parameter estimation (MAP):
max p(D|0)p(0)
o p(f) xexp(—AR(0)) - prior on the model weights
e p(D|0) - likelihood of the data given parameters

e p(0|D)= p([1)9|(01%;)9(9) - Bayesian posterior over parameters

RPZ lecture 3:(Parameter Estimation: Maximum a Posteriori (MAP))

¢ In practice, more commonly used as:
min S 1i(ila;:0) + AR(O)

e ) is tuned for a given dataset with cross-validation



https://cw.fel.cvut.cz/b191/_media/courses/be5b33rpz/lectures/pr_03_parameter_estimation_2019_10_11.pdf

Background: Linear Models @

¢ Lo-regularization (Iy, weight decay):
R(0) = 0]
¢ In linear regression:
e Known as ridge regression, Tikhonov regularization
e Equivalent to using multiplicative noise N'(1,\%) on the input
e Smoothing effect (reduces the variance of 6)
¢ In linear classification:
e Small 6 « large margin

e Generalization bounds independent of dimensionality

. o 1 r2)E)
of the model (roughly): Risk(h) <O*(5—7—),

where & are slacks

¢ Sigmoid NNs:
e Small & — small activations

— sigmoid outputs are close to linear




Neural Network - 10 Units, No Weight Decay

Example

Neural Network - 10 Units, Weight Decay=0.02

Test Error:
Bayes Error:

Test Error: 0-259555555555555559
BayeSError- 0-210 zi
weights
1

Trevor Hastie
Robert Tibshirani

Statistical Learning . .
Hastie, Tibs

weights

https://web.stanford.edu/~hastie/ElemStatlLearn/

T2

T

nirani and Friedman: The Elements of Statistical Learning
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https://web.stanford.edu/~hastie/ElemStatLearn/




Simple Idea ®
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(a) Standard Neural Net (b) After applying dropout.

[Srivastava et al. (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting]

4 During training:
e Randomly, make some units inactive by setting their outputs to zero

e This results in the associated weights not being used and we obtain a (random)
subnetwork

e The network develops robustness to units being dropped
4 During testing:

e Use all units




Mathematical Model @ o

©® How we can model this:
) 13

1, with probability p,
e |ntroduce random Bernoulli variables Z; = <

0, with probability 1 —p,

\
multiplying outputs of the preceding layer

e Can interpret outputs multiplied with 0 as dropped

e Drop probability g=1—p

e Next layer activations: a =W (x® Z) X1 XZl%“

¢ Prediction is random now? —— NN Fr2— x Z5 —W—>
e Denote the network output as f(x,Z;0) %

: —_ — ~T3— X 43 —

e We have two choices how to make predictions: | |

- Randomized predictor: p(y|z,2) = f(x,Z;0) Z;i ~ Bernoulli(0.3)

- Ensemble: p(y|z) =Ez[f(z,Z;0)] = zZ:p(Z)f(va39)

4 We randomized predictor for training (easier and other reasons)

4+ We will use ensemble (or its approximation) for testing

Note: Gaussian multiplicative N'(1,0°) noises work as well (Gaussian Dropout)



Training

Loss of randomized predictor:

Double expectation in noises and date: E, [E(x,y),\,data {l(y,f(:c,Z;H))H
Same as: IE‘:"ZwBernoulli(q), (z,y)~data {l(yaf(xazﬂg))}

Unbiased loss estimate using a batch of size M:

M
ﬁ;l(yz‘,f@%zi;@))

What it means practically:

Draw a batch of data
For each data point ¢ independently sample noises z
Compute forward and backward pass as usual

Will have increased variance of the stochastic gradient
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Testing
¢ Use approximation (common default): Y
—Tq
o By f(2,2:0)| ~ f(x,E[2];0)
e Since Ez|Z] = p, we have — NN F%2—
a=W(xOE[Z]) = (pW)x
—_ —r3—

15

e i.e. need to scale down the weights \ )

¢ Use sampling:
o K7 {f(%Z;H)} ~ ﬁsz\il f(zi,2:;0)

e Generalizes slightly better than the above

e Can be used to also estimate model uncertainty

¢ Both variants achieve a "comity"

or "ensembling” effect

><Zg

Z; ~ Bernoulli(0.3)
ElZ]=p

averaging of many well fitting models:

® More accurate analytic approximations than the first option are possible



Example: Applying Dropout @

» o 16
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4 Here it looks like it did not help with the validation accuracy, but see next slide



Example: Applying Dropout @

Training Loss
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4 Change the learning setup:

e train longer with a slower learning rate

decay

4+ Now it works!

® There are (advanced) techniques to

approximate it analytically:

Fast Dropout, Analytic Dropout

Validation Loss
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Effect on Features @

4 Experiment:

e MNIST auto encoder with 1 fully-connected hidden layer of 256 units
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(a) Without dropout (b) Dropout with p = 0.5.
[Srivastava et al. (2014)]

4 Hypothehis: dropout prevents co-adaptation of features and instead learns simpler
features

4 More interesting studies in the paper: effect on activation sparsity, connection to
ridge regression, etc.
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Model Uncertainty with Dropout @

19
, Output y = f(x,7;0)
100
— True function Mean of the ensemble
- Mean function
® Observations
50
Scatter of the ensemble
0
-50
-100
6 -4 -2 0 2 4

Input z
[Louizos and Welling 2017]



Beyond L2 and Dropout



L, Regularization and Batch Normalization

¢ Consider BN-normalized layer:

q — WCC—Fb—,lLA}/_'_ﬁ

o =S (Waith) 0¥ = LY (Wit b p)

e Exercise: the value of a does not depend depend on the bias b and the scale of the

weights W — sW

¢ What will happen if we try to solve mV[i/nL(a(W)) + W%,

where L(a(W)) is invariant w.r.t. |W||?



L, Regularization and Batch Normalization

¢ Consider BN-normalized layer:

q — WCC—Fb—,LLA}/_'_ﬁ

o =S (Waith) 0¥ = LY (Wit b p)

e Exercise: the value of a does not depend depend on the bias b and the scale of the

weights W — sW

¢ What will happen if we try to solve mV[i/nL(a(W)) + W%,

where L(a(W)) is invariant w.r.t. |W||?

e Make no sense, optimum value is approached with |[W| — 0



L, Regularization and Batch Normalization

¢ Consider BN-normalized layer:

q — WCC—Fb—,LLA}/_'_ﬁ

o =S (Waith) 0¥ = LY (Wit b p)

e Exercise: the value of a does not depend depend on the bias b and the scale of the

weights W — sW

¢ What will happen if we try to solve mV[i/nL(a(W)) + W%,

where L(a(W)) is invariant w.r.t. |W||?

e Make no sense, optimum value is approached with |[W| — 0

—VWL(CL(W)? —Vw|[W|?

¢ GD iterates may still behave well

o Actually, depending on A, the norm ||W/|| will either |W || = const
grow or shrink during GD iterates

e Possible to fiddle on this balance, but a bad practice



4 BN has rather strong regularization properties on
(it depends on a randomly formed batch)

Batch Normalization Regularizes

Training Loss
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Other Norms @
¢ L, regularization: R(W) = |[|[W|1=>_

W] 23

"

e Promotes sparsity
e For better generalization we typically do not want sparsity (= less parameters)
¢ Constrained optimization form instead of penalty:

miny L(W) s.t. R(W) <s

e Does not makes weights small, but prevents them from growing high

e Can use projected SGD to solve

e In particular Ly norm on each column: R(W) = max;, |W;]|3
called max-norm appears useful

¢ Generalizations:

1

e Flat L, norm: R(W) = (Z” W,g.)p

e Group-norm: R(W) = (Z] (ZZWZ@)%)%

e Above variants are special cases

e Different generalization bounds derived measuring complexity with group norm



Implicit Regularization by SGD / SMD

100000

¢ Consider step proximal problem: min(V f (o), — xo) + Al|z — 0|} 24
T
e i.e., p-norm stochastic mirror descent
¢ Using different p leads to solutions with different properties
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[Azizan et al. (2019) Stochastic Mirror Descent on Overparameterized
Nonlinear Models: Convergence, Implicit Regularization, and Generalization]

0.05

e Different sparsity and generalization

10
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Conclusion @

4 The most powerful regularization might be the network structure (inductive bias)
4 In the overparametrized mode need to regularize

e norms of the weights

e data augmentation

® activation augmentation / norm

4 Some practical hints:

® |n convolutional layers BN is preferred to dropout. It also does something random
that makes it generalize better and training is much faster

¢ Do not combine BN with Weight Decay in same layers

¢ Do not combine BN with Dropout in same layers

4 We touched neural networks with noises

e Deep topic: ensembles, Bayesian neural networks, expectation problems, stochastic
and analytic approximations

25



