Lab: PyTorch intro

Deep Learning (SS2020)
3. computer lab (10p)

Announcement

Plan for the next 4 labs:

3
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pytorch Intro, train and test MNIST / FashionMNIST
Take a pretrained “big” model, finetune it for recognizing a couple of objects

Variant a) Deploy Lab4 to your mobile phone
Variant b) Work with data augmentation / dropout / normalization techniques

Adversarial patterns and activation visualization on the network form Lab4

Introduction

In this lab we setup a training/testing pipeline in PyTorch for a simple handwritten digit classification problem,
which is lightweight and easy to work with. The outline is as follows:

Get acquainted with PyTorch classes and infrastructure

Define the training / validation / test split

Define a neural network model

Train it

Evaluate training and test metrics

Learn how to use tensorboard (somewhat interactive visualization)

See calibration of the model and performance in recognition with rejection

Experiment with architecture / other datasets (FashionMNIST / notMNIST)

Getting started

What is PyTorch? Python front end, C++ libraries (A10), Target devices libraries (cuDNN). These will be useful
resources for this lab:

Installing PyTorch: https://pytorch.org/get-started/locally/
Develop and debug locally with CPU/GPU on any system. Choose a CUDA version, important to be able
to write generic code.

PyTorch docs: https://pytorch.org/docs/stable/index.html

Can run large training remotely on servers with GPUs



e Two GPU servers for students at the department:
https://cyber.felk.cvut.cz/study/gpu-servers/.
In order to use pytorch load the respective module:

ml PyTorch/1.4.0-fosscuda-2019b-Python-3.7.4

e Google Research Colaboratory (also meant for education): https://research.google.com/colabora
fag.html
IPython notebook environment, GPUs available (something like 12h running time limits).

e Tensorboard tools for visualization
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

e Pycharm Remote deployment and debugging
https://www. jetbrains.com/help/pycharm/remote-debugging-with-product.html

Assignments

Assignment 1 (Initial Template). (1p)
We suggest following these steps to learn pytorch:

1. Get acquainted with torch.Tensor. It is much alike numpy . array, with the possibility to track the
computation graph we discussed

2. Prepare the training and testing data. We will use the MNIST dataset, for which a convenient access is
available. The following code snippet downloads the training and testing parts of the dataset. Accessing
the data as tensors is done with the Dataset class. Shuffling, and batching is done with the help of
torch.utils.data.DataLoader. We will get two for the training and test part. Later on we will
split the training data into train and validation subsets.

import matplotlib.pyplot as plt
import numpy as np

import torch
import torchvision
import torchvision.transforms as transforms

import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# transforms
transform = transforms.Compose ([transforms.ToTensor (), transforms.Normalize((0.5,), (0.5,))1)

# datasets

trainset = torchvision.datasets.MNIST(’./data’, download=True, train=True,
transform=transform)
testset = torchvision.datasets.MNIST(’./data’, download=True, train=False,

transform=transform)

# dataloaders

train_loader = torch.utils.data.Dataloader (trainset, batch_size=128, shuffle=True,
num_workers=0)

test_loader = torch.utils.data.DatalLoader (testset, batch_size=128, shuffle=False,
num_workers=0)

# lets verify how the loader packs the data

(data, target) = next (iter (train_loader))
# probably get [batch_size x 1 x 28 x 28]
print (! Input size:’, data.size())

# probably get [batch_size]
print (' Labels size:’, target.size())

# see number of trainig data:
n_train_data = len(trainset)
print (' Train data size:’, n_train_data)




3. Define a neural network model using the higher level building blocks: nn.Sequential, nn.Linear,
nn.Conv2d, nn.ReLU. Start with a simple model for ease of debugging. Chose an optimizer, for example
optim. SGD. Create the training loop. The basic variant, together with a simple network loss and optimizer
may look as follows

# network, expect input images 28x% 28 and 10 classes
net = nn.Sequential (nn.Linear (28 * 28, 10))

# loss function
loss = nn.CrossEntropyLoss (reduction='none’)

# optimizer
optimizer = optim.SGD (net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(10):
# will accumulate total loss over the dataset
L =20
# loop fetching a mini-batch of data at each iteration
for i, (data, target) in enumerate (train_loader):
# flatten the data size to [batch_size x 784]
data_vectors = data.flatten(start_dim=1)
apply the network
= net.forward(data_vectors)
calculate mini-batch losses
= loss(y, target)
accumulate the total loss as a regular float number (important to sop graph tracking)
+= 1l.sum() .item()
the gradient usually accumulates, need to clear explicitly
optimizer.zero_grad()
# compute the gradient from the mini-batch loss
l.mean () .backward()
# make the optimization step
optimizer.step()
print (f’Epoch: {epoch} mean loss: {L / n_train_data}’)
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4. Inspect the code and look up the used classes in pytorch docs. Why the network is so simple, where is
softmax?

Assignment 2 (Monitoring). (3p)
Extend the blank above with the following:

1. After completing training with the next 10% of the data in each epoch:

e Print the stochastic estimate of the training loss from the last batch
e Print the exponentially weighted average of the batch training losses (lecture 5, slide 13)
e Compute EWA of the training accuracy

2. After completing full epoch estimate and print the test loss and test accuracy using a similar loop with
test_loader

3. Stream the metrics above to tensorboard (see tutorial link). Inspect in tensorboard the network graph,
training and test metrics.

4. After each epoch also save you trained model using
torch.save (net.state_dict (), PATH)

Assignment 3 (Refinements). (3p)

1. Split the training set into training and validation sets by creating two loaders that use different disjoint
portions of the initial training set. This can be done using SubsetRandomSampler and passing that to
the loader constructor. Use 10% of the initial training set for validation.

2. (Optional) To estimate the noise level of the losses monitored with EWA, do the following. Compute the
variance V[X;] of the loss in batch ¢ as a sample variance of the losses for this batch. From these variances
compute the variance of the EWA loss V|| (lecture 5 slide 14). Print in the loss estimate in the format

(EWA loss)E+/ V.



3. Refine the net architecture, using convolutions, max-pooling and a fully connected layer in the end.

4. Train to some reasonable validation accuracy (>95%), by monitoring the training and validation metrics
and adjusting hyper-parameters as necessary (architecture, batch size, learning rate, etc.). This dataset is
really easy, shouldn’t take you long.

5. Report plots of training and validation metrics progress (using tensorboard or matplotlib). Given that the
batch size or the dataset size may change, it is always a good idea to chose the scale of the axis to represent
epochs for the plot. More specifically, rescale the iterations by batch size over the training data size to get
(fractional) epochs.

6. Modify the code to automatically run on GPU if it is available. Follow https://pytorch.org/
docs/stable/notes/cuda.html#best-practices. In the provided template notice the lines:

dev = torch.device(’cuda’) if torch.cuda.is_available () else torch.device(’'cpu’)
net.to (dev)

data = data.to (dev)

Note the different synatx of moving to device a Tensor and a Model.

Assignment 4 (Analysis). (3p)
For a well-trained model that you have saved, analyze its performance and predictive probabilities on the test set.

1. Compute the test classification error.

2. How well does the classifier rank?
For calculations in this assignment use numpy. Pytorch tensors can be converted to numpy arrays using
x.cpu () .numpy ()
Consider that we are allowed to use "reject from recognition” option. If the classifier picks the class ¢; =
arg max, p(y|x; ) on test point 4, let us call ¢; = p(y|z;0) its confidence. We will want to reject from
recognition when we are not confident, i.e. when ¢; < «a, where « is a confidence threshold. We will not
decide this threshold, but plot the performance for all possible thresholds.

a) Plot the number of errors as a function of the threshold value . Since we work with a finite sample of
test data, the test error rate will only change when « crosses one of the c¢; values we have. So instead of
doing very small steps on the threshold and recomputing the error rate each time anew, here’s a better way
to do it. Sort all the confidences ¢; in ascending order. Let e; = 1 if ; # y/, i.e. we make an error and
e, =0ify, =y . If c(i) is the sorted sequence of confidences with error indicators e(;) then we can compute
the number of errors with o = ¢;as as the sum of values (1), . . . €(;). The later sum can be computed with
cumsum () . Set the range of thresholds from minimum to maximum c;.

b) Plot the number of points rejected from recognition as a function of the threshold value «. For this we
need to just plot values 1 to n versus the sorted array c(;).

c) Plot the error rate of accepted points (number of errors versus number of points accepted for recognition).
This just combines the data from a) and b). If the relative error declines, the classifier is ranking well (we
are rejecting erroneous points and keeping correct ones).

3. Is our classifier not overconfident?
To investigate this, we can plot the probability calibration curve (also known as reliability diagram)
e.g https://confluence.ecmwf.int/display/FUG/12.B+Statistical+Concepts+—+
Probabilistic+Data for a simple intro.
Since we are dealing with rather accurate classifiers, creating uniform bins will not work. In the Plot 1.a)
zoom-in the range of confidences from 0.9 to 1. Normalize the number of errors by the total number of
points. Add a diagonal line from (0,0.1) to (1,0). If the error rate curve is above this line, it means we
make lots of errors with high confidence, i.e. the classifier is overconfident.



