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� Generative models in machine learning

� Generative adversarial networks (GAN)

� Variational autoencoders (VAE)
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Generative models in machine learning

Machine learning Observable variables x ∈ X , object state y ∈ Y.

� a generative model is a statistical model of the joint distribution p(x,y),

� a discriminative model is a model of the conditional distribution p(y|x) or, even a
predictor h : X →Y only.

� generative learning: given a class of distributions pθ(x,y) ∈ P(Θ) and training data
T m, estimate the unknown parameters θ

a) supervised learning: T m = {(xj,yj) | j = 1, . . . ,m}

b) unsupervised learning: - T m = {xj | j = 1, . . . ,m}

A generative model can be used to generate random instances of pairs (x,y) or an
observation x conditioned on the state y.

It is usually assumed, that the model is given in a form that allows to compute p(x,y) for a
given pair (x,y) by an algorithm or a formula.

http://cmp.felk.cvut.cz
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Generative models in machine learning

Deep generative models

Given training data T m = {xj | j = 1, . . . ,m} drawn i.i.d. from an unknown distribution
p∗(x), the goal is to learn a DNN model that allows to generate random instances of x
similar to x∼ p∗(x).

Approach:

� fix a latent noise space Z and a distribution p0(z)
on it,

� design a parametrised mapping (neural network) gw
from the noise space Z to the feature space X ,

� given a training set T m = {xj | j = 1, . . . ,m} learn
the parameters w so that the distribution pw(x)
defined by x = fw(z) and z ∼ p0(z) “reproduces”
the data distribution.

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

http://cmp.felk.cvut.cz


4/12
Generative models in machine learning

Q: How to measure the distance (divergence) between a discrete distribution x∼ T m and a
continuous or discrete distribution pw(x) defined by x= fw(z) and z ∼ p0(z)?

1.0 0.5 0.0 0.5 1.01.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

� data log-likelihood requires to compute logpw(xj), xj ∈ T m, but we can not compute
pw(x) since we have no inverse mapping from X to Z.

� other measures?

Many distances for distributions are problematic when
� one distribution is discrete and the other is absolutely continuous (has a density),
� the distributions have disjoint support.

http://cmp.felk.cvut.cz
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Generative adversarial networks

(Goodfellow et al., 2014):

Measure the distance implicitly in terms of an adversarial (network) that aims at learning to
distinguish patterns from the training set T m and patterns sampled from the distribution
pw(x). The model consists of a pair of networks

� a generator network gw(z) with parameters w and a distribution p0(z), which is easy to
sample from.

� a binary adversarial classifier network dv(x) with parameters v that discriminates
natural patterns x∼ T m from patterns generated by pw(x). Its output encodes
p(y = 1 | x) = dv(x), i.e. the probability of the class “natural”.

Define the loss for the the pair of networks as

L(w,v) = Ex∼T m
[
logdv(x)

]
+Ez∼p(z)

[
log
(
1−dv ◦gw(z)

)]
and solve the minimax optimisation task

min
w

max
v
L(v,w).

http://cmp.felk.cvut.cz
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Generative adversarial networks

Let us analyse this saddle point task under the assumptions

� infinite training set T m, m→∞, denote by p∗(x)

� the generator model has infinite(!) capacity

The maximum w.r.t. the discriminator is achieved at d∗(x) = p∗(x)
p∗(x)+pg(x) because

L(g,d) =

∫
p∗(x) logd(x)dx+

∫
p(z) log

(
1−d◦g(z)

)
dz =∫

p∗(x) log
(
d(x)

)
+pg(x) log

(
1−d(x)

)
dx

Then the minimum w.r.t. the generator is achieved at pg = p∗ because

C(g) = max
d
L(g,d) = Ex∼p∗

[
log

p∗(x)

p∗(x) +pg(x)

]
+Ex∼pg

[
log

pg(x)

p∗(x) +pg(x)

]

http://cmp.felk.cvut.cz
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Generative adversarial networks

Quite impressive results achieved by deep convolutional GANs, but there are technical
problems
� what happens with log

(
1−d(g(z))

)
early in learning, when g is poor?

� mode collapse: what happens if g maps all z ∈ Z on one x?
� searching saddle points of functions is complicated

Learning GANs is difficult and sensitive to hyper-parameter and architecture setup.

(Zhu et al., 2017) Cycle GANs

http://cmp.felk.cvut.cz
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Wasserstein GANs (for additional reading)

Wasserstein GANs: (Arjovsky et al., 2017)

Recall: P∗ is the fixed data distribution on X given by T m, Z is a random variable on Z and
gw : Z →X is a parametrised family of mappings.

Denoting the distribution of gw(Z) by Pw, we want a distribution distance D(P∗,Pw) that
behaves nicely as a function of w.
Definition 1. The Wasserstein distance of distributions P1 and P2 is defined by

DW (P1,P2) = inf
γ∈Π(P1,P2)

E(x,y)∼γ‖x−y‖,

where Π(P1,P2) is the set of all joint distributions γ(x,y) with marginals P1 and P2

Remarks:
� This distance is sometimes called earth-mover distance.
� γ(x,y) is interpreted as a transport plan and W is the cost of the optimal plan.
� the dual task reads

DW (P∗,Pw) = sup
‖f‖L≤1

Ex∼P∗
[
f(x)]−Ex∼Pw

[
f(x)],

where the supremum is over all 1-Lipschitz functions f : X → R (critic network).

http://cmp.felk.cvut.cz
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Variational autoencoders

As before X denotes the feature space and Z denotes a noise space. We may assume
e.g. Z = Rn and fix a simple distribution Z ∼N (0,I) on it.

� Consider a deterministic (convolutional) neural network, whose outputs are interpreted
as parameters of a distribution on X . E.g. X | Z ∼N (µw(z),diag(σw(z))).

� This defines a parametrised family of conditional distributions pw(x | z).

� Given a sample T m = {xj ∈ X | j = 1, . . . ,m}, we want to learn the parametrised
conditional distribution pw(x | z) such that the likelihood of T m w.r.t. to the joint
model pw(x,z) is maximised.

The task reads as

1

m

m∑
j=1

logpw(xj) =
1

m

m∑
j=1

log

∫
pw(xj,z)dz→max

w
(1)

http://cmp.felk.cvut.cz
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Variational autoencoders

Let us now consider a summand in this objective

logpw(x) = log

∫
pw(x,z)dz

We can not compute this integral ⇒ lower bound it in the same way as in the expectation
maximisation algorithm

log

∫
pw(x,z)dz = log

∫
qv(z | x)

qv(z | x)
pw(x,z)dz >

∫
qv(z | x) log

pw(x,z)

qv(z | x)
dz

This bound is tight if qv(z | x) = pw(z | x), which is however hard to compute.

Main assumption of VAEs: the distributions qv(z | x) are modelled by a single neural network
in the way discussed above for p(x|z).

Notice that the lower bound may be not tight, if the requirement

∀w∃v(w) s.t. qv(w)(z | x) = pw(z | x)

is not met.

http://cmp.felk.cvut.cz
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Variational Autoencoders

With the assumptions made, the lower bound of the learning objective (1) reads

1

m

m∑
j=1

[∫
qv(z | xj) logpw(xj | z)−DKL(qv(z | xj) ‖ p(z))

]
→max

w,v

� The KL-divergence can be computed in closed form if qv(z | x) is modelled as
multivariate Gaussian distribution,

� the expectation Ez∼qv logpw(x | z) is approximated by a sample,

� notice however that the first term must be differentiated w.r.t. w and v,

How to differentiate a z ∼ qv(z | x) w.r.t. v? By the reparametrisation trick

z ∼N (µ,σ) ⇔ z = σε+µ with ε∼N (0,1)

This results in
Ez∼N (µ,σ) logpw(x | z) = Eε∼N (0,1) logpw(x | σε+µ)

http://cmp.felk.cvut.cz
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Variational Autoencoders

Sophisticated versions of deep convolutional variational autoencoders achieve quite
impressive results

Open problems:

When using deep belief networks both for the “decoder” and the “encoder”, we may observe
“latent variable collapse”. This means that the last layers of the encoder model have the
tendency to collapse into the decoder’s prior, i.e.

qv(zt | zt−1)∼N (0,I).

http://cmp.felk.cvut.cz
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