
GENERALISATION BOUNDS FOR GENERATIVE/DISCRIMINATIVE
LEARNING II

DEEP LEARNING (SS2020)
2. COMPUTER LAB (10P)

1. INTRODUCTION

This is the second of two home works aiming at an experimental comparison of gen-
eralisation bounds for generative and discriminative learning. We will consider a simple
Gaussian classification problem and two learning approaches – generative learning by
maximum likelihood estimate and discriminative learning by a feed forward network.

2. MODEL & NOTATIONS

As before, we consider a Gaussian classification problem with features X ∈ Rd and
two classes Y ∈ {0, 1}. The joint distribution over features and classes is defined by the
prior class probabilities and the distributions for the features conditioned on the classes,
which are assumed as multivariate normal distributions.

X | Y ∼ N (µY ,CY) (1)

P(Y = 0) = π0 , P(Y = 1) = π1.

In contrast to the first homework, we will assume that the covariance matrices of the two
distributions are different, i.e. C0 6= C1. The optimal classifier is the Bayes classifier
h∗(x) = H

(π1N (µ1,C1)
π0N (µ0,C0)

− 1
)
, which is a quadratic classifier

h∗(x) = H
[
d1(x)− d0(x) + a1 − a0

]
(2)

with di(x) and ai defined by

d1(x) = −(x− µ1)
TC−11 (x− µ1) a1 = − log detC1 + 2 log π1 (3)

d0(x) = −(x− µ0)
TC−10 (x− µ0) a0 = − log detC0 + 2 log π0 (4)

We will use standard 0/1 loss. There is no closed form expression for the risk of this
classifier. We will estimate it empirically on a sufficiently large test set. A classifier is
trained using i.i.d training sets T m = {(xj, yj) | j = 1, . . . ,m} generated from the
model.

1

2

3. GENERATIVE LEARNING

Generative learning is straightforward here. Given training data T m, we estimate the
model parameters µ0, µ1, the covariance matrices C0, C1 and the prior class probabil-
ities π0/1. Given the estimate, the predictor hm is obtained from (2).

4. DISCRIMINATIVE LEARNING

We will use a neural network with one hidden layer with ReLU activations and one
output neuron with sigmoid activation interpreted as (conditional) probability for class
1. The network will be learned by vanilla gradient descent with constant step width
using the negative log class probability as loss.

5. ASSIGNMENTS

Use the provided model and source templates for your experiments. The package
contains:

• tools.py — tools for working with the ground truth model: loading, gener-
ating, plotting the decision boundary of a classifier versus the optimal classifier.
• model.pkl — python “pickle” file with the dict defining the true model

with keys [’clps’, ’mues’, ’covs’, ’dim’]. The mues are stored
as an array 2×dim and the covariance matrices are stored as an array 2×dim×
dim. Since dim=2 in the provided data, this may be confusing.
• template.py — An example that loads the model, defines and trains some

simple network. This is to provide you an implementation template and to illus-
trate the tools, in particular visualization of a classifier. You are free to follow
the pattern or to propose you own.

Assignment 1. (4p)
Implement a neural network with input_size inputs, one hidden layer with hidden_size
units and ReLU activations and, finally, the logistic regression model in the last layer,
i.e. a linear transform and sigmoid. For training, the network should compute the aver-
age loss (negative log likelihood) for the whole training set (no mini-batches). Initialize
all network parameters randomly, e.g. uniformly in [−1, 1].

When using log conditional likelihood as the learning objective, it is numerically
more stable to combine the logarithm of the sigmoid function into one function. If
a ∈ R denotes the score, i.e. the output of the last linear layer, we get

log p(y = 1 | a) = log S(a) = log(1 + e−a) (5)

log p(y = 0 | a) = log(1− S(a)) = log S(−a) = log(1 + ea). (6)

Implement the computation of the gradient of the loss in all parameters by backprop-
agation. Test correctness of your implementation by the following procedure. Consider
varying a parameter vector w ∈ Rn (the model has several parameter vectors, con-
sidering one at a time will help to isolate errors). Keeping all other parameters fixed,

3

compute

δ =
L(w + ε)− L(w − ε)

2
(7)

for some small random ε ∈ Rn. This should match the scalar product 〈∇wL, ε〉. More
precisely, if L is differentiable in w in some neighbourhood of w, we expect

δ − 〈∇wL, ε〉 = o(‖ε‖). (8)

Assignment 2. (3p)
Implement gradient descent with constant step size to train the network. Verify that the
loss improves during the training. Note that the expected loss of a predictor that outputs
equal predictive probabilities (e.g. at a random initialization) is around log 2 ≈ 1.4. So
the training should start from around that value and decrease it to about 0.1 or lower.
Monitor also the training error of the classifier. In should be decreasing during the train-
ing progress. Plot the resulting classifier with the help of G2Model.plot_predictor
to see that it has fitted the data well. Hint: lr = 0.005 and epochs = 5000 (the number
of GD iterations on complete data) work well.

Assignment 3. (3p)
Fix a test set size n sufficiently large to guarantee a confidence interval |R(h)−RT n(h)| <
0.01 with probability 95%. Generate a test set of this size n and use it for all subsequent
experiments. Report the estimated risk RB of the optimal Bayesian classifier.

Estimate and compare test risks of the generative model and the neural network with
hidden_size = 5, 10, 100 (i.e. 4 models in total). Repeat the training for each of the
four models T = 100 times (trials). Sample a new training set for each trial and use
it for learning all 4 models. Compute the average excess risk. Our goal is to compare
which learning method achieves a better excess risk in the expectation over the training
set. Let the risk in the trial i be denoted by Xi, then the sample mean

X =
1

T

∑
i

Xi, (9)

is a random estimate of the expected risk. Find the 95% confidence interval on this
average using the following steps. Note that Xi is a bounded random variable in [0, 1].
Let δ = 0.05, then we know from Hoeffding’s inequality that if

δ = 2e−2Tε
2

, (10)

thenX is within ε of the true expected value E[X] with probability at last 1−δ. For given
values of T and δ we can find ε. The confidence interval is then given by [X−ε,X+ε].

Optionally, observe that the Chebyshev inequality also applies. Estimate the variance
v of Xi over the trials and find ε by solving

δ =
v

Tε2
. (11)

Since both approaches imply guaranteed confidence intervals, we can pick the one
which is tighter.

4

Compute the above estimates of the mean values and respective confidence intervals
for the four models and training set sizes m = 50, 100, 200. For each model plot its
estimated excess risk with confidence intervals versus the training set size. Display
these results in the same axis. For a pair of models, if their confidence intervals do not
overlap, we can claim with high probability that one is giving a better expected excess
risk than the other. If they do overlap significantly, we cannot say which model is better
without making more trials.

Discussion. We encourage you to think about and discuss with us in your report the
following questions. This is informal and not scored.

(1) What are your observations about generative versus discriminative learning ap-
proaches?

(2) Why do the networks not overfit despite they have large capacity? Why they
generalize even better when the capacity is increased?

(3) Why the classification boundary stays smooth for bigger hidden layer size?
(4) Would the networks start to overfit if we solved the empirical risk minimization

problem better, e.g. used a better optimizer?
(5) How the random initialization helps training and generalization? What other

factors may influence it?

