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1. INTRODUCTION

This is the first of two home works aiming at an experimental comparison of gener-
alisation bounds for generative and discriminative learning. We will consider a simple
Gaussian classification problem and two learning approaches – generative learning by
maximum likelihood estimate and discriminative learning by logistic regression.

2. MODEL & NOTATIONS

We consider a Gaussian classification problem with featuresX ∈ Rd and two classes
Y ∈ {0, 1}. The joint distribution over features and classes is defined by the prior class
probabilities and the distributions for the features conditioned on the classes, which are
assumed as multivariate normal distributions.

X | Y ∼ N (µY ,CY ) (1)

P(Y = 0) = π0 , P(Y = 1) = π1.

Here, we will assume that the covariance matrices of the two distributions are identical,
i.e. C0 = C1 = C. A linear classifier with parameters w ∈ Rd, b ∈ R is defined as
h(x) = H(wTx+ b) where H denotes the Heaviside function. Using standard 0/1-loss,
its risk is given by

R(h) = 1− π1Φ
(wTµ1 + b√

wTCw

)
− π0Φ

(
−w

Tµ0 + b√
wTCw

)
, (2)

where Φ denotes the cdf of the standard univariate normal distribution. The optimal
classifier is the Bayes classifier h∗(x) = H

(π1N (µ1,C)
π0N (µ0,C)

− 1
)
, which is a linear classifier

h∗(x) = H
[
(µ1 − µ0)

TC−1x+
1

2

(
µT0C

−1µ0 − µT1C−1µ1

)
+ log

π1
π0

]
. (3)

A classifier is trained using i.i.d training sets T m = {(xj, yj) | j = 1, . . . ,m}

3. GENERATIVE LEARNING

Generative learning is straightforward here. Given training data T m, we estimate the
model parameters µ0, µ1, the covariance matrixC and the prior class probabilities π0/1.
Given the estimate, the predictor hm is obtained from (3).
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4. DISCRIMINATIVE LEARNING

We will use the logistic regression approach. Using the ±1 encoding of the two
classes obtained by y → 2y − 1, it can be shown that the conditional class probabilities
of model (1) have the form

p(y | x) =
ey(w

Tx+b)

2 cosh(wTx+ b)
= S
(
y(wTx+ b)

)
, (4)

where S is the sigmoid function. The parameters (w, b) can be computed form the
model parameters of (1).

The conditional log-likelihood of the training data T m is

1

m

m∑
j=1

log S
(
yj(wTxj + b)

)
. (5)

We will simplify this expression in two steps. First, by extending x and w by an addi-
tional dimension, and second, redefining xj → −yjxj and, finally, switching to min-
imisation of the negative conditional log-likelihood, we get the task

L(w) =
1

m

m∑
j=1

log(1 + ew
Txj

)→ min
w

. (6)

Its objective function is convex and differentiable inw and can be minimised by gradient
descent.

5. ASSIGNMENTS

Assignment 1. (1p)
Give formulas for maximum likelihood estimates of the model parameters µ0, µ1, C
and π0/1 from training data T m = {(xj, yj) | j = 1, . . . ,m}.
Assignment 2. (2p)
Deduce the risk formula (2) for a linear classifier parametrised by (w, b). Hints:

(1) Start from the following fact. If the random vector X has multivariate normal
distributionX ∼ N (µ,C), then the scalar random variable Z = wTX + b has
normal distribution. Find its mean and variance.

(2) Use the fact that the cdf of a normal distribution with mean µ and variance σ2

is given by Φ(x−µ
σ

), where Φ denotes the cdf of the standard normal distribution
with zero mean and unit variance.

Assignment 3. (2p)
Prove that the posterior class probabilities of model (1) have the form (4).

Assignment 4. (3p)
Implement the gradient descent optimisation for the logistic regression (6). Notice that
the objective function has Lipschitz continuous gradient

‖∇L(w)−∇L(w′)‖ < G‖w −w′‖,
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where G = 1
m

∑
j‖xj‖2. It is therefore “safe” to use a constant step width α < 1

G
and

the stopping criterion ‖∇L(w)‖ < 0.5αε with ε = ‖w −w∗‖ representing the desired
distance from the optimiser w∗. Propose a reasonable initialisation of w.

Assignment 5. (2p)
Fix a model (1). You may use the four-dimensional model provided at the course web
page. The npz-archive contains all model parameters. The corresponding keys of the
dictionary are [’clps’, ’mues’, ’cov’, ’dim’]. Report the risk RB of the
Bayes optimal predictor.

Estimate the generalisation errors for the two learning approaches for training set
sizes m = 50, 100, 500, 1000, 10000. For each m repeat the following experiment 500
times. Generate an i.i.d. training set from the true model. Learn the predictors hm by
the two considered approaches. Compute the average excess risk R(hm) − RB and its
standard deviation over the repetitions.

Report (graphically!) the dependence of the average excess risk and its standard
deviation on the training set size. Compare it for the two methods.


