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Czech Technical University in Prague

� Predictors, Risk, Empirical risk

� Learning predictors

� Generalisation bounds
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Organisational Matters

Teachers: Alexander Shekhovtsov, Boris Flach

Format: 1 lecture & 1 lab per week (6 credits), labs of two types (alternating)

� practical labs: implementation of selected methods (Python)

� theoretical labs: solving theoretical assignments

Grading: 40% practical labs + 60% written exam = 100% (+ bonus points)

Prerequisites:

� calculus, linear algebra and optimisation

� basics of graph theory and related algorithms

� pattern recognition and machine learning (AE4B33RPZ)

More details: https://cw.fel.cvut.cz/b192/courses/bev033dle/start

http://cmp.felk.cvut.cz
https://cw.fel.cvut.cz/b192/courses/bev033dle/start
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Predictors, Risk, Empirical risk

� object features x ∈ X , can be categorical, numerical, vectors, etc.

� state of the object y ∈ Y is usually hidden

� prediction strategy h : X →Y predicts the hidden state y = h(x) given the features x.

Example 1. Consider the following predictors

a) x=
h

=⇒ y = apple Y = {apple, pear, . . .} - classes

b) x=
h

=⇒ y = 45 Y = {0,1, . . . ,150} ⊂ N - age

c) x=
h

=⇒ y = (y1, . . . ,yT ) y ∈ Z2T - trajectory

Q: How to measure the quality of a predictor?

http://cmp.felk.cvut.cz
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Predictors, Risk, Empirical risk

� loss function ` : Y ×Y → R+ penalises wrong predictions,
i.e. `(y,h(x)) is the loss for predicting y′ = h(x) when y is the true state

Example 1. cont’d

a) `(y,y′) = 1{y 6= y′}, i.e. simple 0/1 loss

b) `(y,y′) = (y−y′)2, i.e. squared error

c) `(y,y′) =
∑
t‖yt−y′t‖2, i.e. squared trajectory distance

Main assumption: x and y are random variables, related by a joint but unknown
probability distribution p(x,y).

Measuring the quality of a predictor: draw independent pairs x,y ∼ p(x,y) infinitely
often and compute the expected loss ⇒ Risk of the predictor

R(h) = Ex,y∼p(x,y)

[
`
(
y,h(x)

)]
=
∑
x∈X

∑
y∈Y

p(x,y)`
(
y,h(x)

)
But we don’t know p(x,y) and don’t have infinite time!

http://cmp.felk.cvut.cz
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Predictors, Risk, Empirical risk

Practical approach: Empirical risk for an i.i.d. test sample T m =
{

(xj,yj)
∣∣ j = 1, . . . ,m

}
RT m(h) =

1

m

m∑
j=1

`
(
yj,h(xj)

)
Generalisation error: How strong can RT m(h) deviate from R(h)?

T m ∼ p(x,y) ⇒ P
(
|R(h)−RT m(h)|> ε

)
<??

� Chebyshev inequality ⇒ P
(
|R(h)−RT m(h)|> ε

)
< V[`(y,h(x))]

mε2 ,
loose bound, requires to know V[`(y,h(x))], converges slowly for m→∞.

� Hoeffding inequality ⇒ P
(
|R(h)−RT m(h)|> ε

)
< 2e

− 2mε2

(4`)2 ,
where 4`= `max− `min.

Example 2. Consider a classifier with 0/1 loss. What test set size m ensures that
RT m(h)−0.01<R(h)<RT m(h) + 0.01 with probability 95%?

Answer: m≈ 2 ·104.

http://cmp.felk.cvut.cz
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Learning predictors

Generative learning: Specify a class of distributions pθ(x,y), θ ∈Θ, collect an
i.i.d. training set T m, estimate θ∗ e.g. by maximal likelihood estimator and then predict by

h(x) = argmin
y∈Y

∑
y′∈Y

pθ∗(x,y
′)`(y′,y)

Discriminative learning: Specify a hypothesis class H of predictors, collect an i.i.d. training
set T m, select the predictor hm ∈H that minimises the empirical risk

hm = argmin
h∈H

1

m

m∑
j=1

`
(
yj,h(xj)

)
Question: Can we bound the estimation error R(hm)−R(hH), where

hH = argmin
h∈H

R(h)

denotes the best predictor from H?

http://cmp.felk.cvut.cz
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Learning predictors

Example 3. (Linear classifier)
Consider a binary classifier, i.e. |Y|= 2 and 0/1 loss

� Encode the two classes by y =±1

� Define a mapping φ : X → Rn. If X = Rn, this mapping can be the identity mapping I.

� Define the hypothesis class by H

y = sign
[
〈w,φ(x)〉+ b

]
where w ∈ Rn and b ∈ R are parameters.
We can get rid of b by defining φ′ : X → Rn+1 by φ′(x) = (φ(x),1).
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Learning predictors

Example 3. (cont’d)
Given i.i.d. training data T m =

{
(xj,yj)

∣∣ j = 1, . . . ,m
}
, we want to learn the classifier by

empirical risk minimisation. This amounts to solve

RT m(hw) =
1

m

m∑
j=1

`
(
yj,sign

〈
w,φ(xj)

〉)
=

1

m

m∑
j=1

H
(
−yj

〈
w,φ(xj)

〉)
→min

w
,

where H denotes the Heaviside function. Objection: But this task is not tractable!

Ways out:

� Redefine the loss in terms of γ = y〈w,φ(x)〉, i.e. H(−γ) and replace it by hinge loss.
Combined with L2 regularisation, this leads to SVMs and a convex optimisation task.

� A second approach has an interpretation in terms of a statistical model known as
“logistic regression”. We assume

pw(y | x) =
ey〈w,φ(x)〉

e〈w,φ(x)〉+e−〈w,φ(x)〉 =
1

1 +e−2y〈w,φ(x)〉

http://cmp.felk.cvut.cz
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Learning predictors

Example 3. (cont’d)

and maximise the expected conditional log-likelihood of the training data T m

1

m

m∑
j=1

logpw(yj | xj) =− 1

m

m∑
j=1

log
[
1 +e−2yj〈w,φ(xj)〉

]
→max

w

This is a concave optimisation task. Notice, we do not model a joint distribution
p(x,y), but conditional distributions p(y | x) only.
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http://cmp.felk.cvut.cz


10/12
Generalisation bounds

Generalisation bounds: If we learn a predictor hm ∈H by (surrogate) empirical risk
minimisation on training data T m =

{
(xj,yj)

∣∣ j = 1, . . . ,m
}
, how probable is it that the

obtained predictor will be close to the optimal one? I.e.

P
(
|R(hH)−R(hm)|> ε

)
<??

For binary classifiers, i.e. |Y|= 2 and 0/1-loss, this question is answered as follows.
Definition 1. Let M = {xj ∈ X | j = 1, . . . ,m} be a set of input observations and H be a set
of binary classifiers. The set M is said to be shattered by H, if there exists a predictor
h ∈H for each possible classification y ∈ {−1,+1}m of M , s.t. yj = h(xj), ∀j = 1 . . . ,m.
The Vapnik-Chervonenkis dimension of H is the cardinality of the largest subset of X
shattered by H.
Theorem 1. Let H be a set of binary classifiers with VC-dimension d and T m be an
i.i.d training set drawn from p(x,y). Then

P
(

sup
h∈H
|R(h)−RT m(h)|> ε

)
< 4
(2em

d

)d
e
−mε2

8

holds for any ε > 0.

http://cmp.felk.cvut.cz
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Generalisation bounds

It follows that empirical risk minimisation is statistically consistent for binary valued
predictor sets H with finite VC-dimensions.
Corollary 1. A set H of binary predictors with finite VC-dimension satisfies

lim
m→∞

P
(

sup
h∈H
|R(h)−RT m(h)|> ε

)
= 0.

Corollary 2. If a set H of binary predictors has finite VC-dimension, then empirical risk
minimisation is consistent in H, i.e.

lim
m→∞

P
(
R(hm)−R(hH)> ε

)
= 0

for any ε > 0.

All this covers ERM for binary valued predictors only.

What about non-binary classifiers, regression etc?

http://cmp.felk.cvut.cz
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Take home messages

� predictors, loss function, risk,

� risk vs. empirical risk, Hoeffding inequality,

� two approaches for learning: generative learning and empirical risk minimisation,

� empirical risk minimisation for linear classifiers is hard; ways out: SVMs, logistic
regression,

� finite VC dimension of a class of predictors ensures consistency of learning and provides
worst case generalisation bounds.

http://cmp.felk.cvut.cz
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