Deep Learning (BEV033DLE) Lecture 1.

Czech Technical University in Prague

Predictors, Risk, Empirical risk

Learning predictors

Generalisation bounds

Organisational Matters

Teachers: Alexander Shekhovtsov, Boris Flach

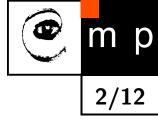
Format: 1 lecture & 1 lab per week (6 credits), labs of two types (alternating)

- practical labs: implementation of selected methods (Python)
- theoretical labs: solving theoretical assignments

Grading: 40% practical labs + 60% written exam = 100% (+ bonus points) **Prerequisites:**

- calculus, linear algebra and optimisation
- basics of graph theory and related algorithms
- pattern recognition and machine learning (AE4B33RPZ)

More details: https://cw.fel.cvut.cz/b192/courses/bev033dle/start



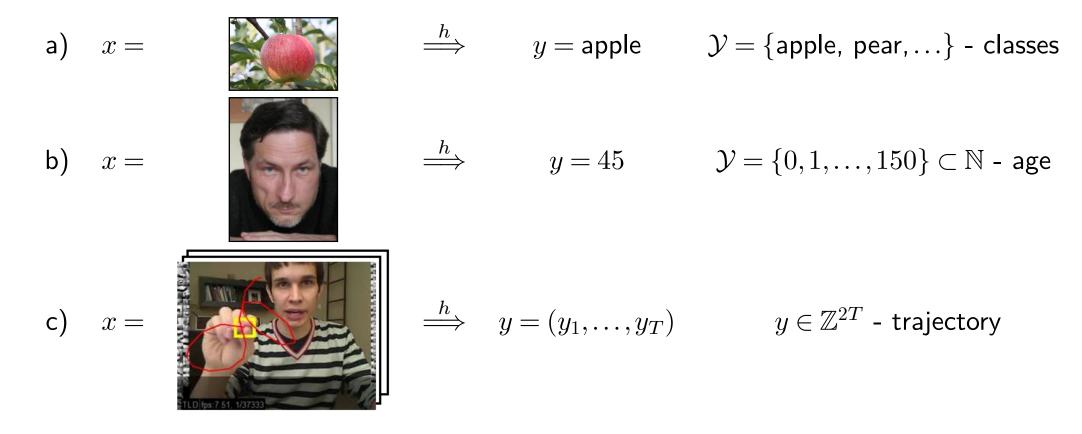
Predictors, Risk, Empirical risk

• object features $x \in \mathcal{X}$, can be categorical, numerical, vectors, etc.

• state of the object $y \in \mathcal{Y}$ is usually hidden

• prediction strategy $h: \mathcal{X} \to \mathcal{Y}$ predicts the hidden state y = h(x) given the features x.

Example 1. Consider the following predictors



Q: How to measure the quality of a predictor?

Predictors, Risk, Empirical risk

4/12

• loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ penalises wrong predictions, i.e. $\ell(y, h(x))$ is the loss for predicting y' = h(x) when y is the true state Example 1. cont'd

- a) $\ell(y,y') = \mathbbm{1}\{y \neq y'\},$ i.e. simple 0/1 loss
- b) $\ell(y,y') = (y-y')^2$, i.e. squared error
- c) $\ell(y,y') = \sum_t ||y_t y'_t||^2$, i.e. squared trajectory distance

Main assumption: x and y are random variables, related by a joint but *unknown* probability distribution p(x,y).

Measuring the quality of a predictor: draw independent pairs $x, y \sim p(x, y)$ infinitely often and compute the expected loss \Rightarrow Risk of the predictor

$$R(h) = \mathbb{E}_{x,y \sim p(x,y)} \left[\ell \left(y, h(x) \right) \right] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \ell \left(y, h(x) \right)$$

But we don't know p(x,y) and don't have infinite time!

Predictors, Risk, Empirical risk

Practical approach: Empirical risk for an i.i.d. test sample $\mathcal{T}^m = \{(x^j, y^j) \mid j = 1, ..., m\}$

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{j=1}^m \ell\left(y^j, h(x^j)\right)$$

Generalisation error: How strong can $R_{\mathcal{T}^m}(h)$ deviate from R(h)?

$$\mathcal{T}^m \sim p(x, y) \Rightarrow \mathbb{P}\Big(|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\Big) < ??$$

• Chebyshev inequality $\Rightarrow \mathbb{P}\Big(|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\Big) < \frac{\mathbb{V}[\ell(y,h(x))]}{m\varepsilon^2}$, loose bound, requires to know $\mathbb{V}[\ell(y,h(x))]$, converges slowly for $m \to \infty$.

• Hoeffding inequality
$$\Rightarrow \mathbb{P}\Big(|R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\Big) < 2e^{-\frac{2m\varepsilon^2}{(\bigtriangleup\ell)^2}},$$

where $\bigtriangleup \ell = \ell_{max} - \ell_{min}.$

Example 2. Consider a classifier with 0/1 loss. What test set size m ensures that $R_{\mathcal{T}^m}(h) - 0.01 < R(h) < R_{\mathcal{T}^m}(h) + 0.01$ with probability 95%?

Answer: $m \approx 2 \cdot 10^4$.

Generative learning: Specify a class of distributions $p_{\theta}(x, y)$, $\theta \in \Theta$, collect an i.i.d. training set \mathcal{T}^m , estimate θ_* e.g. by maximal likelihood estimator and then predict by

$$h(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg\,min}} \sum_{y' \in \mathcal{Y}} p_{\theta_*}(x, y') \ell(y', y)$$

Discriminative learning: Specify a hypothesis class \mathcal{H} of predictors, collect an i.i.d. training set \mathcal{T}^m , select the predictor $h_m \in \mathcal{H}$ that minimises the empirical risk

$$h_m = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \frac{1}{m} \sum_{j=1}^m \ell(y^j, h(x^j))$$

Question: Can we bound the estimation error $R(h_m) - R(h_H)$, where

$$h_{\mathcal{H}} = \operatorname*{arg\,min}_{h \in \mathcal{H}} R(h)$$

denotes the best predictor from \mathcal{H} ?

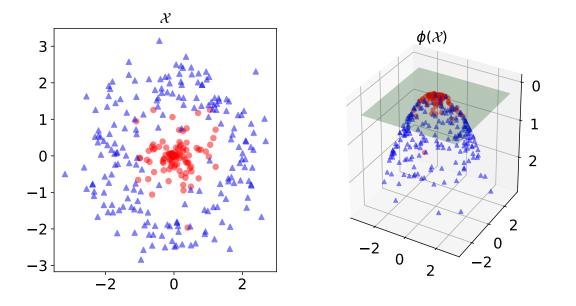
Example 3. (Linear classifier) Consider a binary classifier, i.e. $|\mathcal{Y}| = 2$ and 0/1 loss

- Encode the two classes by $y = \pm 1$
- Define a mapping $\phi: \mathcal{X} \to \mathbb{R}^n$. If $\mathcal{X} = \mathbb{R}^n$, this mapping can be the identity mapping I.

• Define the hypothesis class by ${\cal H}$

$$y = \operatorname{sign} \left[\langle w, \phi(x) \rangle + b \right]$$

where $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$ are parameters. We can get rid of b by defining $\phi' \colon \mathcal{X} \to \mathbb{R}^{n+1}$ by $\phi'(x) = (\phi(x), 1)$.



Example 3. (cont'd)

Given i.i.d. training data $\mathcal{T}^m = \{(x^j, y^j) \mid j = 1, ..., m\}$, we want to learn the classifier by empirical risk minimisation. This amounts to solve

$$R_{\mathcal{T}^m}(h_w) = \frac{1}{m} \sum_{j=1}^m \ell\left(y^j, \operatorname{sign}\left\langle w, \phi(x^j)\right\rangle\right) = \frac{1}{m} \sum_{j=1}^m \operatorname{H}\left(-y^j \left\langle w, \phi(x^j)\right\rangle\right) \to \min_w,$$

where H denotes the Heaviside function. **Objection:** But this task is not tractable! Ways out:

- Redefine the loss in terms of $\gamma = y \langle w, \phi(x) \rangle$, i.e. $H(-\gamma)$ and replace it by *hinge loss*. Combined with L_2 regularisation, this leads to SVMs and a convex optimisation task.
- A second approach has an interpretation in terms of a statistical model known as "logistic regression". We assume

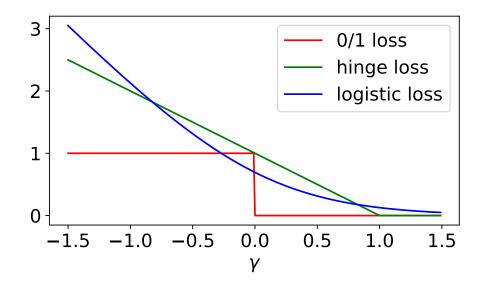
$$p_w(y \mid x) = \frac{e^{y \langle w, \phi(x) \rangle}}{e^{\langle w, \phi(x) \rangle} + e^{-\langle w, \phi(x) \rangle}} = \frac{1}{1 + e^{-2y \langle w, \phi(x) \rangle}}$$

Example 3. (cont'd)

and maximise the expected conditional log-likelihood of the training data \mathcal{T}^m

$$\frac{1}{m} \sum_{j=1}^{m} \log p_w(y^j \mid x^j) = -\frac{1}{m} \sum_{j=1}^{m} \log \left[1 + e^{-2y^j \left\langle w, \phi(x^j) \right\rangle} \right] \to \max_w w^{j} = -\frac{1}{m} \sum_{j=1}^{m} \log \left[1 + e^{-2y^j \left\langle w, \phi(x^j) \right\rangle} \right]$$

This is a concave optimisation task. Notice, we do not model a joint distribution p(x,y), but conditional distributions $p(y \mid x)$ only.



Generalisation bounds

Generalisation bounds: If we learn a predictor $h_m \in \mathcal{H}$ by (surrogate) empirical risk minimisation on training data $\mathcal{T}^m = \{(x^j, y^j) \mid j = 1, ..., m\}$, how probable is it that the obtained predictor will be close to the optimal one? I.e.

$$\mathbb{P}\Big(|R(h_{\mathcal{H}}) - R(h_m)| > \varepsilon\Big) < ??$$

For **binary classifiers**, i.e. $|\mathcal{Y}| = 2$ and 0/1-loss, this question is answered as follows.

Definition 1. Let $M = \{x^j \in \mathcal{X} \mid j = 1, ..., m\}$ be a set of input observations and \mathcal{H} be a set of binary classifiers. The set M is said to be *shattered* by \mathcal{H} , if there exists a predictor $h \in \mathcal{H}$ for each possible classification $\mathbf{y} \in \{-1, +1\}^m$ of M, s.t. $y^j = h(x^j)$, $\forall j = 1..., m$. The Vapnik-Chervonenkis dimension of \mathcal{H} is the cardinality of the largest subset of \mathcal{X} shattered by \mathcal{H} .

Theorem 1. Let \mathcal{H} be a set of binary classifiers with VC-dimension d and \mathcal{T}^m be an *i.i.d* training set drawn from p(x,y). Then

$$\mathbb{P}\Big(\sup_{h\in\mathcal{H}}|R(h)-R_{\mathcal{T}^m}(h)|>\varepsilon\Big)<4\Big(\frac{2em}{d}\Big)^d e^{\frac{-m\varepsilon^2}{8}}$$

holds for any $\varepsilon > 0$.

Generalisation bounds

It follows that empirical risk minimisation is statistically consistent for binary valued predictor sets \mathcal{H} with finite VC-dimensions.

Corollary 1. A set \mathcal{H} of binary predictors with finite VC-dimension satisfies

$$\lim_{m \to \infty} \mathbb{P}\left(\sup_{h \in \mathcal{H}} |R(h) - R_{\mathcal{T}^m}(h)| > \varepsilon\right) = 0.$$

Corollary 2. If a set \mathcal{H} of binary predictors has finite VC-dimension, then empirical risk minimisation is consistent in \mathcal{H} , i.e.

$$\lim_{m \to \infty} \mathbb{P}\Big(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\Big) = 0$$

for any $\varepsilon > 0$.

All this covers ERM for binary valued predictors only.

What about non-binary classifiers, regression etc?

Take home messages

m p
12/12

- predictors, loss function, risk,
- risk vs. empirical risk, Hoeffding inequality,
- two approaches for learning: generative learning and empirical risk minimisation,
- empirical risk minimisation for linear classifiers is hard; ways out: SVMs, logistic regression,
- finite VC dimension of a class of predictors ensures consistency of learning and provides worst case generalisation bounds.