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� Neural networks are universal approximators

� Loss functions for classification and regression

� Generalisation bounds and generalisation errors for neural classifiers

� Generalisation bounds for regression models
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Neural networks as universal approximators

Question: Can we approximate every function/mapping by a neural network?

Boolean functions: Every boolean function f : {±1}n→{±1} can be represented by a
binary neuron network with two layers. Write f in conjunctive normal form and
� for every w ∈ {±1}n s.t. f(w) = 1 introduce a neuron sign[wTx−n+1] in the first
layer,

� output layer – one neuron with conjunction of all neurons in the first layer.

Notice: the number of neurons grows exponentially with n. Some function classes can be
represented in a more efficient way.
Theorem 1. Let T : N→ N be a growing function and for every n let Fn be the set of
boolean functions implementable by a Turing machine with run time at most T (n). Then
there exist constants a,b > 0 such that for every n there is a graph (V,E) of size at most
aT 2(n)+ b such that HV,E,sign contains Fn.

Illustrating example: the parity function on {±1}n can be implemented by a network with
n logn neurons and logn layers.

Notation: Let (V,E) be a directed acyclic graph and let f be a nonlinear activation
function. HV,E,f denotes the class of feed forward networks with architecture (V,E) and
activation function f .

http://cmp.felk.cvut.cz
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Neural networks as universal approximators

Real valued functions: consider real valued functions f : [−1,1]n→ [−1,1] that are
Lipshitz continuous

|f(x)−f(x′)|6 ρ‖x−x′‖ ∀x,x′ ∈ [−1,1]n.

For every approximation bound ε > 0 and every Lipshitz function f : [−1,1]n→ [−1,1], it is
possible to construct a network with sigmoid units such that for every input x ∈ [−1,1]n it
outputs a number between f(x)− ε and f + ε. To prove this
� Partition : [−1,1]n in sufficiently small boxes.
� Approximate f by a function that is piece-wise constant in the boxes
� Design a network that first decides which box the input vector belongs to and then
predict the average value of f at this box.

Theorem 2. (Cybenko, 1989) Every smooth function on [−1,1]n can be approximated
arbitrarily well by a network with sigmoid units and two layers. In other words, given a
smooth function f : [−1,1]n→ [−1,1] and an ε > 0, there is a sum

G(x) =

N∑
j=1

αj S(w
T
j x+ bj)

s.t. |f(x)−G(x)|6 ε for all x ∈ [−1,1]n.
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Loss functions for Classification

Hinge loss (multiclass) Denote the network outputs (class scores) by zk, k = 1, . . . .K. The
hinge loss for a training example (x,y) is given by

`(y,h(x)) =
∑
k 6=y

max(0,zk−zy +1)

Conditional log-likelihood If the last layer is softmax with outputs representing class
probabilities pw(y = k | x), the objective function for the training set
T m = {(xj,yj) | j = 1, . . . ,m} is given by

L(w) =
1

m

m∑
j=1

logpw(y
j | x)→max

w
.

Log-likelihood maximisation can be seen as minimisation of the Kullback-Leibler divergence
between distributions q(y) and p(y)

DKL(q ‖ p) =
∑

y

q(y) log
q(y)

p(y)

here: q - data distribution and p - distribution by modelled by the network

http://cmp.felk.cvut.cz
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Loss functions for Regression

The regression function y = f(x,w)is modelled by a network with parameters w.

MSE: 1
m

∑m
j=1(y

j−f(xj,w))2→minw

MAE: 1
m

∑m
j=1|yj−f(xj,w)| →minw

logch: 1
m

∑m
j=1 logcosh(y

j−f(xj,w))→minw
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Empirical risk minimisation on predictor classes H represented by neural networks is, as a
rule, hard.
Theorem 3. Let HV,E,sign be the set of feed forward networks with n inputs, k > 3 neurons
in the first layer and one neuron in the second (output) layer. ERM for this class HV,E,sign is
NP-hard.

Methods like back-propagation with stochastic gradient descent (SGD) solve ERM
approximately.

http://cmp.felk.cvut.cz
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Generalisation bounds for classification

Estimating the VC dimension of classifier networks
Theorem 4.HV,E,sign has VC-dimension bounded by O(|E| log|E|).
Theorem 5.HV,E,S has VC -dimension d bounded by

O(|E|2)< d <O(|V |2|E|2).

The proofs of these and similar theorems rely on the concept of growth function τ(m) for a
class H of binary predictors

τ(m) = max
C⊂Rn : |C|=m

|HC|

and the bound |HC|6 |{B ⊂ C | H shatters B}| provided by Sauer’s lemma.

In practice: we consider networks with weights represented by O(1) bits (floating point
numbers). Hence, their VC-dimension is O(|E|).

http://cmp.felk.cvut.cz
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Generalisation errors

Question: are these worst case generalisation bounds useful in deep learning?

We would expect

R
is
k

Training risk

Test risk

Capacity of H

sweet spot

under-fitting over-fitting

For large networks with |E|> 106 parameters the generalisation bound

P
(
sup
h∈H
|R(h)−RT m(h)|> ε

)
< 4
(2em

d

)d

e
−mε2

8

would require billions of training examples.

These bounds become “vacuous” for realistic training data sizes. The operating point is far
to the right in the plot.
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Generalisation errors

Moreover, often deep networks are so large that they can shatter the training set!

Typical examples:
� image classification on CIFAR (10 classes, ∼ 5 ·104 training examples, tackled by
networks with ∼ 105 parameters. Networks learned by SGD and additional regularisers
(e.g. data augmentation, droupout, etc.) Achieved accuracy > 95%, generalisation
error < 5%.

� image classification on ImageNet (1000 classes, ∼ 106 training examples, tackled by
networks with > 106 parameters. Networks learned by SGD and additional regularisers.
Achieved accuracy ∼ 90%, generalisation error < 10%.

Training sets can be shattered! Learning with random labels:

(a) learning curves (b) convergence slowdown (c) generalization error growth

Zhang et al., 2018

http://cmp.felk.cvut.cz
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Generalisation errors

Current ongoing research seems to indicate that SGD, when used for training over
parametrised networks, is choosing smooth predictors with small norm. For some networks
this leads to the following unexpected behaviour.

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”

interpolating regime

interpolation threshold

over-parameterized

“classical”

regime

Belkin et al., 2019 right display: network with with a single hidden layer learned on MNIST
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Generalisation bounds for regression

Concepts of shattering, growth function and VC-dimension must be generalised for
regressions

� given a finite set C = {x1, . . . ,xm)⊂X of inputs, consider all tuples
{(f(x1), . . . ,f(xm)) | f ∈H}. Measure complexity of this set by minimal number of
ε-balls needed to cover it.

� bound the generalisation error in terms of this “covering function“

� bound the covering function itself by fat shattering dimension

chine Learning

x1 x2

t2

t1

Functions in H shatter the two points (x1, t1) and (x2, t2)
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