Deep Learning (BEV033DLE) Lecture 6 Convolutional Neural Networks

Alexander Shekhovtsov

Czech Technical University in Prague

- ◆ Introduction, CNN for Classification
 - Correlation filters, translation equivariance, convolution and cross-correlation
 - Multi-channel, stride, 1x1
 - pooling, receptive field
- ♦ More CNNs
 - dilation, transposed
- ✦ Hierarchy of Parts, Visual Cortex

Classification CNN

- ♦ We'll see what this is
- Design principles
- Everything about convolutions in more detail

Classification CNN

- ♦ We'll see what this is
- Design principles
- Everything about convolutions in more detail

Introduction

Template

Image

Response of the correlation filter

4

Template

Image

Response of the correlation filter

- → Translational equivariance idea: when the input shifts, the output shifts
 - Would be hard to achieve if the image was given as a general vector we are
 using 2D grid structure and require that all locations are treated equally

weights

kernel

input

Convolution and Correlation (1D)

- Convolution y=w*x: $y_j=\sum\limits_{k=-h}^h w_k x_{j-k}$ $=\sum\limits_{k=-h}^h w_{-k} x_{j+k}$ Cross-correlation y=w*x: $y_j=\sum\limits_{k=-h}^h w_k x_{j+k}$ flip of the weight matrix

output

Easily convertible, more convenient to consider cross-correlation in Deep Learning

Motion Blur

Edge detector

Properties

m

- Cross-Correlation:
 - $\bullet \ y_i = \sum_{k=-h}^h w_k x_{i+k}$
- As matrix-vector product: $y_i = \sum_j w_{j-i} x_j = \sum_j W_{i,j} x_j$
 - Relation: $j = i + k \Rightarrow k = j i$
 - Compact representation of certain linear transforms
 - Everything that applies to linear transforms applies to convolution and cross-correlation
- **♦ Valid** range for *i*:

$$0 \le j \le n \Rightarrow 0 \le i - h, i + h \le n \Rightarrow h \le i \le n - h.$$

 Optionally may pad input with zeros to obtain same range as unpadded input

known rule for backprop:

=convolution (with padding)

- i Topei
- As a binary operation y = w * x
 - Everything that applies to linear operators, eg. associativity: u*(w*x) = (u*w)*x
 - Commutativity for convolutions: w*x = x*w: $\sum_{k} w_k x_{i-k} = \sum_{j} x_j w_{i-j}$
 - No commutativity for cross-correlation. But $\mathbf{u} \star \mathbf{w} \star \mathbf{x} = \mathbf{w} \star \mathbf{u} \star \mathbf{x}$
- Examples:
 - edge_filter(blur(image)) = blur(edge_filter(image)) = blur(edge_filter)(image)
 - filter(translation(image)) = translation(filter(image))
 equivariance w.r.t. translation

When the image shifts, the output shifts Great prior knowledge for learning

- (\star) Can you show equivariance of convolution to sub-pixel displacements?
- ★ In fact, linearity + translation-equivariance = convolution

Backprop

m

9

- New notation for the gradient:
 - $dy_i \equiv \frac{dL}{dy_i}$ (previously denoted with ∇_{y_i})
- lacktriangle Backprop of the cross-correlation $y = w \star x$ is convolution:
 - $y_i = \sum_k w_k x_{i+k} = \sum_j w_{j-i} x_j$
 - $dx_j := \sum_i \frac{\partial y_i}{\partial x_j} dy_i = \sum_i \frac{\partial}{\partial x_j} \left(\sum_{j'} w_{j'-i} x_{j'} \right) dy_i = \sum_i w_{j-i} dy_i = (dy * w)_j = (w * dy)_j$
- Backprop of convolution y = w * x is cross-correlation:
 - $y_i = \sum_k w_k x_{i-k} = \sum_j w_{i-j} x_j$
 - $dx_j := \sum_i \frac{\partial y_i}{\partial x_j} dy_i = \sum_i w_{i-j} dy_i = (dy \star w)_j$

- Large filters are not very useful:
 - think of viewpoint changes, object deformations, variations within a category
 - → small filters capture elementary features according to statistics of natural images

V1 simple cell responses

Gabor Filters (designed)

PCA of Image Patches (natural image statistics)

CNN first layer filters (learned)

- → We just had:
 - color input images -> convolution kernel needs to have 3 channels
 - stack of filters -> channels of the output

Multi-channel cross-correlation:

- input is 3D tensor, weight is 4D tensor, output is 3D tensor
- Essentially: a cross-correlation on spatial dims and fully connected on channel dims

12

Spatial size of the input image

Result of $conv(K \times K, 3 \rightarrow 64)$ followed by ReLU

★ Eventually want to classify -> need to reduce spatial dimensions

12

Spatial size of the input image

Result of $conv(K \times K, 3 \rightarrow 64)$ followed by ReLU

♦ Eventually want to classify -> need to reduce spatial dimensions

Pooling

- → Following approaches are used to reduce the spatial resolution:
 - max pooling
 - average pooling
 - subsampling -> convolution with stride

3	13	17	11
5	3	1	23
7	1	2	3
11	17	1	4

subsample

◆ Once spacial resolution has been decreased, we can afford to increase the number of channels

14

→ Full convolution + subsampling is equivalent to calculating the result at the required locations only, stepping with a stride

All variants and detail: [Dumoulin, Visin (2018): A guide to convolution arithmetic for deep learning]

Classification CNN

Reduced spatial size can afford more channels

Combining convolutions and spatial pooling increases units receptive field

Classification CNN

Reduced spatial size can afford more channels

Combining convolutions and spatial pooling increases units receptive field

Receptive Field

◆ Receptive Filed = pixels in the input which contribute to the specific output

- → Small convolutions are not sufficient to building up the receptive field. Example:
 - Want to classify images of size 256x256
 - Each 3x3 convolution increases the receptive filed by 2 pixels
 - Would take 128 convolutional layers
- ♦ Need pooling / strides / larger filters

Weight Kernel Sizes

- With pooling we reduced the size of feature maps. What about filter kernels?
 - First layer: $(7 \times 7, 3 \rightarrow 64) \approx 10^3$ can afford large filter size
 - Second layer: $(3 \times 3, 64 \rightarrow 64) \approx 3 \cdot 10^4$ small filter size preferable
 - Layers with more channels: $(3 \times 3, 256 \rightarrow 256) \approx 5 \cdot 10^5$ become expensive
- Need further efficient parametrization techniques
 - Depth-wise separable convolutions: $\operatorname{conv}(K \times K, 1 \to 1)$ composed with $(1 \times 1, C \to C)$
 - More general: $\mathrm{conv}(K\times K,S\to S) \text{ composed with } (1\times 1,C\to S) \text{, } S< C$

 \bullet Kernel size 1×1 :

$$y_{o,i,j} = \sum_{c} \sum_{\Delta i=0}^{c} \sum_{\Delta j=0}^{c} w_{o,c,\Delta i,\Delta j} x_{c,i+\Delta i,j+\Delta j}$$
$$= \sum_{c} w_{o,c,0,0} x_{c,i,j}$$

• For all i,j a linear transformation on channels with a matrix $w_{o,c,0,0}$

- Useful to perform operations along channels dimension:
 - Increase /decrease number of channels
 - Normalization operations
 - In combination with purely spatial convolution = separable transform

Example 3×3 , $256\rightarrow256$, is too expensive, simplify:

19

Could use efficient module here

 1×1 convolution for input of size 1×1 is equivalent to fully connected

♦ Second last layer has 4096*4096 =16M parameters!

More Convolutions

(Architecture picked to illustrate the task)

There appears "Unpooling"

We will look at up-sampling with "transposed" convolution ("deconvolution")

[Noh et al. (2015) Learning Deconvolution Network for Semantic Segmentation]

Transposed Convolution

Deconvolution = Transposed convolution = backprop of convolution

All variants and detail: [Dumoulin, Visin (2018): A guide to convolution arithmetic for deep learning]

Sparse Convolutions

- → Want to increase receptive field size
 - without decreasing spatial resolution and having too many layers
 - Can increase kernel size, but it was also costly
 - Can use a sparse mask for the kernel

Dilated convolutions

Output

Input

Can even learn sparse locations —

deformable convolutions

Many More Examples and Smart Architectures

Hierarchy of Parts, Visual Cortex

Hierarch of Parts Phenomenon

- ◆ In networks trained for different complex problems
 - some intermediate layers activations correspond object parts

Hierarch of Parts Phenomenon

- ◆ In networks trained for different complex problems
 - some intermediate layers activations correspond object parts

lamps in places net

wheels in object net

people in video net

Parallels with Visual Cortex

m p

28

Extrastriate

cortex

Occipital Striate Cortex

→ LGN:no orientation preferencespace-time separable

- ♦ V1 packing in 2D problem:
 - location in the view (retinotopy)
 - orientation
 - ocular dominance
 - motion
- feedback connections

 $50000 \text{ neurons } / \text{ mm}^3$