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4 Introduction, CNN for Classification
e (orrelation filters, translation equivariance, convolution and cross-correlation
e Multi-channel, stride, 1x1
e pooling, receptive field
4 More CNNs
e dilation, transposed

4 Hierarchy of Parts, Visual Cortex



Classification CNN
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4+ We'll see what this is
4 Design principles

4 Everything about convolutions in more detail
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Template

Response of the correlation filter
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Image Response of the correlation filter
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Translational equivariance idea: when the input shifts, the output shifts

e Would be hard to achieve if the image was given as a general vector — we are
using 2D grid structure and require that all locations are treated equally
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Basics
¢ Convolution and Correlation (1D)
2
e Convolution Y=w*xT: Y;= >, WiTj_k
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o Cross-correlation y=w=*z: y; = >, WET;ik

[ h=h g

weights

output

kernel

h

k=—h

Input

@

— 2: W—kLjtk

N\
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Easily convertible, more convenient to consider cross-correlation in Deep Learning
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Source pixel

¢ Translation equivariance by design

New pixel value (destination pixel)

Convolution




Examples
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Blur

Motion Blur

Edge detector




4 Cross—Cor}geIation:
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Properties

¢ As matrix-vector product: y; =) wj_x; = W ;x;

e Relation: j=1+k = k=7—1

e Compact representation of certain linear transforms

e Everything that applies to linear transforms applies to

convolution and cross-correlation

¢ Valid range for 1:

0<1<n=0<1—h,t1+h<n=>h<i:<n-—h.

e Optionally may pad input with zeros to obtain same

range as unpadded input
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Properties @

As a binary operation y = wx*x
e Everything that applies to linear operators, eg. associativity: u* (w*x) = (uxw) *x
e Commutativity for convolutions: w*x =  * w:
D WkTi—f = )i TjWi—j
e No commutativity for cross-correlation. But uxw*x =wxu*x
Examples:
e edge_filter(blur(image)) = blur(edge_filter(image)) = blur(edge_filter)(image)
e filter(translation(image)) = translation(filter(image))

equivariance w.r.t. translation

When the image shifts, the output shifts
Great prior knowledge for learning
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(%) Can you show equivariance of convolution to sub-pixel displacements?

4 In fact, linearity + translation-equivariance = convolution



Backprop @

¢ New notation for the gradient:

o dy; = fll—gi (previously denoted with V,, )

¢ Backprop of the cross-correlation y = w*x is convolution:
® Y= Zk WgLit+k = Zj Wj—iLj
Oy _ _ _ _
L dxj e Zz 8—3%3622% = ZZ%(ZJ/ wj/_,b-:vj/) dyz = Zzwj_zdyz — (dy*w)j = (w *dy)J

¢ Backprop of convolution y = w * x is cross-correlation:
® Yi— Zk WELi—k — Zj Wi — 45 5
0y _ _
o dLCCj = ZZ Gszéjdyi — ZZ’IUZ_JdLyZ — (dy*w)]




First Convolutional Layer @

4 Large filters are not very useful: 10

4 think of viewpoint changes, object deformations, variations within a category

4 small filters capture elementary features according to statistics of natural images

closely modeled by _ _
V1 simple cell responses > Gabor Filters (designed)

Visual cortices

o
_— Q
Right visual field ;
CNN first layer filters (learned)

PCA of Image Patches
= (natural image statistics)




Multi-Channel Convolution @

4+ We just had:

® color input images -> convolution kernel needs to have 3 channels

e stack of filters -> channels of the output feature map

/ height height
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©® Multi-channel cross-correlation:
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input channel filter spatial dimensions output channel

e input is 3D tensor, weight is 4D tensor, output is 3D tensor

e Essentially: a cross-correlation on spatial dims and fully connected on channel dims
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Classification CNN

Spatial size of the input image
l / channels feature maps
224 x 224 x 3 224x/

112 x 128

H6(x 56 x 256

28 x 28 X H12 TXTx512
14x14x 512

@ convolution+ReLLU

@ max pooling
fully connected+ReLLU

~ softmax

conv(3x3, 64—64)
Result of conv(K x K, 3—64) followed by RelLU

4 Eventually want to classify -> need to reduce spatial dimensions

12
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Pooling @2

4 Following approaches are used to reduce the spatial resolution: 13

e max pooling
e average pooling

e subsampling -> convolution with stride

max |
3 | 13 |[B178(E1d - 17 8

average 6 13

11 1 47 1 -

subsample

4 Somewhat robust to translations

4 Once spacial resolution has been decreased, we
can afford to increase the number of channels




Convolution with Stnide @

4 Full convolution + subsampling is equivalent to 14

calculating the result at the required locations only, stepping with a stride
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All variants and detail: [Dumoulin, Visin (2018): A guide to convolution arithmetic for deep learning]



Classification CNN

Reduced spatial size can afford more channels

224 x22%¢ x3 224 x224x64

112 x 128

H6(x 56 x 256

28 x 28 X H12 TXTx512
14x14x 512

@ convolution+ReLLU

@ max pooling
fully connected+ReLLU

~ softmax

conv(3x3, 64—128)

4 Combining convolutions and spatial pooling increases units receptive field

15



Classification CNN @

15

Reduced spatial size can afford more channels
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@ convolution+ ReLU

@ max pooling
fully connected+ReLU

~~1 softmax
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conv(3x3, 64—128)

4 Combining convolutions and spatial pooling increases units receptive field



Receptive Field @
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4 Receptive Filed = pixels in the input which contribute to the specific output

Input Image

Conv 3x3 Conv 3x3

. MaxPool 2x2

4 Small convolutions are not sufficient to building up the receptive field. Example:
e \Want to classify images of size 256x256
e Each 3x3 convolution increases the receptive filed by 2 pixels
e \Would take 128 convolutional layers

4 Need pooling / strides / larger filters



Weight Kernel Sizes

¢ With pooling we reduced the size of feature maps. What about filter kernels?
e First layer: (7x 7, 3— 64) ~ 103 — can afford large filter size
e Second layer: (3 x 3, 64 — 64) ~ 3-10* — small filter size preferable
e Layers with more channels: (3 x 3, 256 — 256) = 5-10° — become expensive
® Need further efficient parametrization techniques
e Depth-wise separable convolutions:
conv(K x K,1— 1) composed with (1 x1,C — C)
e More general:
conv(K x K,S — S) composed with (1x1,C —S5), S<C

17



1x1 Convolution @

¢ Kernel size 1x1: 18

Yo,i,j — SJ SJ SJ Wo,c,Ai,Aj Lc,i+Ai,j+Aj

c Ai=0Aj5=0
— E Wo,c,0,0 Le,i,j
C

¢ For all 4,5 a linear transformation on channels with a matrix w, 0.0

channels

Example 3x 3, 256—256,

vector of weights is too expensive, simplify:
per output channel

V
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Input: WxHx256

(7772277277
(772272327
(77777 .

conv(1x1,256 — 64)

conv(3x3,64 — 64)

conv(1x1,64 — 256)

l

Output: W'xH'x256

¢ Useful to perform operations along channels dimension:
e Increase /decrease number of channels

e Normalization operations

e In combination with purely spatial convolution = separable transform



Classification CNN @
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224 x224x3 224 x224x64

112 x 128

56/x 56 X 256

28 X 28 X 512 TXTx512
14 x 14 x 512

@ convolution+ReLU

@ max pooling
fully connected#ReLLU

“~~(] softmax

Could use efficient module here 1x1 convolution for input of size 1x1

is equivalent to fully connected

4 Second last layer has 4096*4096 =16M parameters!






Semantic Segmentation @

21

(Architecture picked to illustrate the task)

Convolutional Encoder-Decoder

Input Output

Pooling Indices

e

RGB Image B Conv + Bstch Normalisation + RelU Segmentation
Bl Pooling Il Upsampling Softmax

There appears “Unpooling"
We will look at up-sampling with “transposed” convolution (“deconvolution™)

Input image Ground-truth DeconvNet EDeconvNet EDeconvNet+CRF

[Noh et al. (2015) Learning Deconvolution Network for Semantic Segmentation]




Transposed Convolution @

4 Deconvolution = Transposed convolution = backprop of convolution 29

Convolution Deconvolution

Stride 1 il et Rl Il Il I
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All variants and detail: [Dumoulin, Visin (2018): A guide to convolution arithmetic for deep learning]



Sparse Convolutions @

4 Want to increase receptive field size 23

e without decreasing spatial resolution and having too many layers
e (Can increase kernel size, but it was also costly

e (Can use a sparse mask for the kernel

Dilated convolutions Can even learn sparse locations —
deformable convolutions
Output
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Many More Examples and Smart Architectures @

.

24

Object Detectionfil
' e L L

Stereo Depth Estimation
B

Monocular Depth Estimation
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Hierarchy of Parts, Visual Cortex



Hierarch of Parts Phenomenon

4 In networks trained for different complex problems

e some intermediate layers activations correspond object parts

.\ .rl';;n

L= -'\o-'
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Hierarch of Parts Phenomenon @

4 In networks trained for different complex problems 27

e some intermediate layers activations correspond object parts

lamps in places net wheels in object net people in video net
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Parallels with Visual Cortex @ 0
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4+ LGN:
no orientation preference ‘
space-time separable

4 V1 packing in 2D problem:

e |ocation in the view (retinotopy)

® orientation

e ocular dominance

® motion

Ocular dominan

4 feedback connections AN 50000 neurons / mm?



