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� Adversarial examples

� Adversarial attacks

� Robust learning
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Adversarial examples

A purely discriminatively learned predictor has by itself no notion of the underlying data
distribution.

� Consider a linear classifier shown to the right. The outlier
point is classified in the same way as inlier points.

� Consider an age predictor trained on face images. What
happens if it is presented an image of an amoeba? outlier

However, we expect that a deep network predictor trained to classify images with high
accuracy, will predict correct classes for distorted images, provided that the distortions are
visually imperceptible.

Unfortunately, this is not true!

http://cmp.felk.cvut.cz
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Adversarial examples

� Adding targeted but imperceptible distortions fools networks completely.
� Unfortunately, this holds across network architectures, training sets and tasks.

http://cmp.felk.cvut.cz
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Adversarial examples

What are adversarial examples? Simplified illustration:

blue: adversarial example

http://cmp.felk.cvut.cz
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Adversarial attacks

(Szegedy et al. 2013) Consider the context of classification networks and denote by `(x,y)
the network loss for predicting class y for the input x. E.g.

`(x,y) =− logp(y | x) =−ay(x)+ log
∑
k

eak(x),

where a(x) denotes the activations of the last linear layer of the network.

Fast gradient sign attack: (FGSM)

Compute the gradient of the loss for the true class ytrue and distort the input by

x̃= x+εsign
(
∇x`(x,ytrue)

)
with some small ε. Iterative variant of FGSM

x′t = xt−1+αsign
(
∇x`(xt−1,ytrue)

)
xt = P (x′t),

where P projects x into a specified domain, e.g. [0,1]n.

http://cmp.felk.cvut.cz


6/11
Adversarial attacks

Targeted attack:

Given x and the true class ytrue, choose a target class, e.g. ytarg = argminy p(y|x) and set

x̃= x−εsign
(
∇x`(x,ytarg)

)
Iterative variant

x′t = xt−1−αsign
(
∇x`(xt−1,ytarg)

)
xt = P (x′t)

http://cmp.felk.cvut.cz
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Adversarial attacks

Meanwhile there exists an array of different adversarial attacks with “dimensions”:

� targeted, untargeted

� white box: architecture + weights, grey box: architecture, black box: oracle

� gradient based, score based, decision based

Adversarial attacks can take quite creative and strange forms: Query a database without
revealing your query image:

http://cmp.felk.cvut.cz


8/11
Adversarially robust learning

(Kurakin, et al. 2017) Regularise loss by adversarial terms.

L(B̂) =
1

(m−k)+λk

[∑
i∈Bc

`(xi,yi)+λ
∑
j∈Ba

`(xadvi ,yi)
]

(1) read a minibatch Bc =
{
(x1,y1), . . . ,(xm,ym)

}
,

(2) generate k adversarial examples Ba =
{
(xadv1 ,y1), . . . ,(x

adv
k ,yk)

}
from k randomly

chosen clean examples,

(3) compose a new mini-batch B̂ =Ba∪Bc and do one training step

� improves robustness against one-step attacks,

� less successful w.r.t. iterative attacks,

� “label leaking effect”: accuracy on adversarial examples can become higher than
accuracy on clean examples.

http://cmp.felk.cvut.cz
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Adversarially robust learning

(Madry et al. ICLR 2018) A more principled approach: augment ERM in an universal way.

Let Bε denote the l∞ ball with radius ε centered at 0. Consider the following learning task

R(w) = Ex,y∼D
[
max
δ∈Bε

`(w,x+ δ,y)
]
→min

w

This is a minimax task.

Analyse the inner maximisation task:

� has many equally good maxima,

� can be solved by projected gradient ascent w.r.t. δ

� maximum reached after moderate number of iterations.

http://cmp.felk.cvut.cz
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Adversarially robust learning

R(w) = Ex,y∼D
[
max
δ∈Bε

`(w,x+ δ,y)
]
→min

w

How to minimise w.r.t. the model parameters w?

Convex analysis: What are descent directions for a function f(w) defined by

f(w) = max
i
gi(w)

in a point w0? If g-s are convex and differentiable:

(1) denote by I(w0) the set of functions gi that are “active” in w0, i.e. gi(w0) = f(w0).

(2) Any of the negative gradients −∇gi(w0), i ∈ I(w0) is a descent direction of f(w) in w0,
provided that the point 0 is not in their convex hull.

All together a training step reads

� read a minibatch B =
{
(x1,y1), . . . ,(xm,ym)

}
� solve the inner maximisation task for each example xi and replace it by xadvi = xi+ δi

� do a subgradient step for the modified minibatch Ba =
{
(xadv1 ,y1), . . . ,(x

adv
m ,ym)

}

http://cmp.felk.cvut.cz
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Adversarially robust learning

Adversarially robust learning is an ongoing research area. Interesting directions to follow:

� Maximum margin learning approaches e.g. Elsayed et al., NeurIPS 2018), Ding et al.,
ICLR 2020 try to generalise max-margin approaches from SVM to Deep networks,

� Stochastic neural networks with entropy regularisers or variants of Bayesian inference,

� ...

(Wu et al., 2019):

This stylish pullover is a great way to stay warm this winter, whether in the office or
on-the-go. It features a stay-dry microfleece lining, a modern fit, and adversarial patterns
the evade most common object detectors

http://cmp.felk.cvut.cz
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