Deep Learning (BEV033DLE)
Lecture 9
Adaptive SGD Methods

Alexander Shekhovtsov

Czech Technical University in Prague

4 Geometry of Neural Network Loss Surfaces
® [ocal Minima and Saddle Points in nD
e Parameter redundancy helps optimization
4 Adaptive Methods
e Change of Coordinates, Preconditioning, Trust Region
e FEquivalent reparameterizations

e Adam

4 Handling simple constraints - Mirror Descent

Local Minima
4 There are several reasons for local minima
e Permutation invariances (symmetries)
- fully connected with n hidden units: n! permutations
- convolutional with ¢ channels: c! permutations
- total number of local minima is the product of these
e But all these are equally good for us - not a problem

e |oss function is a sum of many terms:

L) =Y Uy f(::0))
7\

often convex non-linear

25

Local Minima in High Dimension CAm ¢

1D 2D nD 4

local max N .
. saddle point f(z+Az) ~ f(x) + JAz + AxTHAz

Eigenvalues of H: Aq,... A9

local min Stationary point: gradient is zero

Saddle point: st. point and a fraction «

. . . of eigenvalues is negative
local min in one dimension

. Local min: st. point and all eigenvalues
still can descent P g

are positive (o = 0)

4 Gaussian Random Fields [Ray & Dean 2007]:
¢ |ocal minima are exponentially more rare than saddle points

e they become likely at lower energies (loss values)
Q

DO Qo

E—-E~*
E*

42

aN?)T(‘

fraction of negative
eigenvalues at st. point

/ « ;
6 . 3

B 25 E 1

4 ~- . 2 -
3 5
2 ‘ 1
1
o ©

average energy of st. point

Local Minima in High Dimension @

4 Experiments for neural networks are in a good agreement with the above theory 5
=30 |
e ®
030, . < | MNIST P
o ¢ __ #parameters Y20 d
025 ~ #tsamples g
© 10
0.02] C
0.20 o=23 = "
o =12 E e ®
0.15} ¢ =1/3 0.00 0.12 0.25
e ve Index of critical point a
0.10/ — ¢ =116 —~

0.05¢

0.08_

[Pennington & Bahri 2017]

(1 hidden layer, good agreement for small alpha)

%

£60 CIFAR-10 8
= 55 F 4 ® |
5 50 Xl

€45 ﬂ

= 40 |
0.05 0.10 0.15 0.20
Index of critical point «

[Dauphin et. al. 2017]

High Dimensionality Helps Optimization @

Achieve 0 training error

with sufficiently large networks Hist of SGD trials
07—
—Training
0.6\ —Test (at convergence)
0.5¢ \ nhidden
: 25
5 04 | © -50
W g a 100
0.3 8 250
0.2 500
0.1
O4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units
loss
[Neyshabur (2015)] [Choromanska et al. (2015)]

< Summary:

® | ocal minima are rare and appear to be good enough
(note, we just waved an NP-hard non-convex optimization problem)

e But we need (highly) overparametrized models to have this easy training
(and hope that they will still generalize well)

e Maybe, optimization should worry a bit about efficiency around saddle points

Adaptive Methods

Need for Adaptive Methods @

4 In a deep model we have:
- different kinds of parameters: weights, biases, normalization parameters
- located in different layers

® Some parameters may be more sensitive than other

® Some directions in the parameter space may be more sensitive (e.g. due to high

curvature)

4 Gradient Step Depends on the Choice of Coordinates

® |t is not necessarily the best direction for a step

4 Many adaptive methods have emerged:

RMSProp VAdam Adamax
Adagrad PAdam AmsGrad
AdaDelta Nadam Yogi
Adam AdamW

BAdam AdamX

Common Adaptive Methods @

9
¢ Adagrad: ¢ RMSProp: ¢ Adam:
Gt i Gt i EWAg. \ 91:t,4
9t+177’ — Qt,’l, o \j% gt, 9t+1,z — Ht,’b — & gt’ Ht—l—l,’l, — Ht,’l, — & 61 (gl !)
\/Mea” (321.1) \/EWA (32:.1) \/EWABQ (33.4.0)

e All updates work per coordinate 7 independently
® g1+, denotes the sequence of all past gradients
e They are adaptive because each coordinate is rescaled differently

e Mostly differ by running averages used

< While they do work better for functions with valleys,
explaining them as second order methods (dealing with
curvature) has quite some gaps

4 This lecture: T |

e consider some general useful optimization ideas

e that (hopefully) will provide insights for this design as well

Proximal Problem and Trust Region @ 0

¢ How did we find the steepest descent direction? 10
Recall from backprop lecture:
o Linearize: f(xo+ Ax) =~ f(xg)+JAx Tyt

e Find the best improvement per length ||Az]||

¢ Solve the step proximal problem:

o ”in}lri (f(zo)+ JAz) for given e

Equivalent to:

mamin (/A2 +A(| A <)
ANAxT =—J \ p |
Step direction: Ax = _%Vf(a:) ,

[AT|? =€ = A= 5[V f(2)] |

Trust region step: Az = —e—2\2) !

IV @ !

. § / i

4 Generates two kinds of algorithms: SATA g

1 C L n

® using only step direction

® using the normalized trust region step 4 We can choose trust regions differently

Differences of Convex vs. Non-Convex @ 0

Step size proportional to the gradient? 11

Convex Non-Convex

accelerate here

\\./ be careful here

¢ No other stationary points (saddle points,

local minima) than the global minimum ¢ Gradient carries no global information

¢ The further we are from the optimum, the e Need bigger steps where both gradient
larger is the gradient: and curvature are low
o |[Vf(2)|?>>u(f(z)—f*) e Need smaller steps when both gradient
o |[Vf(x)| > plr—ax*| and curvature are high
e Makes sense so step proportional to ® Makes sense to use trust region steps:

gradient! o Az = —5&%%

¢ Minus gradient points towards the optimum: e |f the trust region is ok, should guarantee

o (—Vf(x),z*—x)> f— f*+jillz—z*|? a steady progress

e Optimization need not be monotone in f

Box Trust Regions

¢ This time solve for step as:

min (f(zo) + JAz)

|Az;||<e Vi
In overparametrized models expect many

parameters to have independent effect

Equivalent to:

: , 112 <2
m&xn&;n(JAx%—Zi)\z(HAxZH 5))

Step direction: Ax; = —2;&,(Vf(x))7;

Trust region step: Az; = ﬂgll%?‘tg;;zll

xz A

/]

12

=—__""

Trust region ||z||cc <€

L1

Non-Convex Stochastic @

® Trust region steps: Ax = —”g%g“ 13

® Problem: breaks in the stochastic setting

¢ Example
f(x) = (—3x)+ () 4+ (x+1), chose 1 summand at a time with equal probability
AN

will move in the wrong direction! Slope -3 >lope 1
\Ax =1

If we normalize stochastic gradients,

4 Want the steps to follow the descent direction on average

e (annot change the stochastic gradient “too much nonlinearly”

Non-Convex Stochastic @

¢ Solution: use running averages to approximate the expectation form: 14
_ _ . E[V/J]
AT = —EER]

Also note that [[E[Vf]|| = /(EIV/I? < v/(E[(VF)2]) may be

interpreted as a more robust setting

¢ Adagrad: ¢ RMSProp: ¢ Adam:

gt gt,i EWAg \ 91:¢,i
Ot1,i=0ti— 7 - Ori1,i =01 —¢ : Ori1,;=0r;—¢ (9104)
\/Mean g1 4 Z) \/EVVA (91 -+ Z) \/EWABQ (g%:t,i)

e In Adagrad:

\/L% guarantees convergence
e Other methods would also need this in theory but are typically presented and used

with constant ¢
For sparse gradients, tMean(git,i) could grow much slower than ¢ and achieve a

speed-up compared to SGD

e In Adam:
EWA with £8; = 0.9 works as common momentum (20 batches averaging)
EWA with 8, = 0.999 (2000 batches averaging) makes the non-linear effect smooth

enough

Change of Coordinates

¢ Consider the simple gradient descent for a function f: R"” — R:

Gradient Depends on the Choice of Coordinates

e min f(x)

rERM

® Ti 1 =x— aJ}(x)

¢ Make a substitution: z = Ay (change of coordinate) and write GD in y:

e min f(Ay)

yeR™

® Yt+1 =Yt — OKATJJI(A?/t)
¢ Substitute back y = A2

Az = A ey — &ATJ}_(ZCt)

Obtained preconditioned GD: z;,1 = x; — oz(AAT)JJI(:Et)

P = AA" - positive semidefinite
PV f(x) — is a descent direction

L1 = Y1
i o

¢ Similar for non-linear change of coordinates, e.g. normalization (%)

7331

Y2

=y1

16

Proximal Problem View @

17

¢ Adjust the trust region for sensitivity in different parameters:

e min (f(zo)+ JAz) for given ¢
Az ar<e

1
o |Az|y = (Az"MAz)2 — Mahalanobis distance

Equivalent to:

mganlin (JA:U + A(||Az|5, — 82))

Step direction: Az = — 5V 'V f(x) /’ >

L
Adjusted trust region

ZE2 A

|zl < e

4 Intuitive way to understand preconditioners

e (an associate sensitivity with curvature — Second Order (Newton) Methods

e (Can associate sensitivity with some statistics of gradient oscillations,
e.g. Adagrad: M:Diag(\/Mean(g%t))
e (Can use other metrics = Path SGD, Mirror Descent

Equivalent Reparametrizations @

4 In ReLU networks can rescale the weights without affecting the output:
e RelU units are 1-homogenous:
for s > 0: ReLU(sx) = max(0, sz) = smax(0,x) @ 1

e Can rescale inputs and outputs of each unit E‘
(channels in conv networks) Q é X

4 IEquivalent points but not equivalent SGD updates:

Rescaling

UL

[Neyshabur et al. (2015) Path-SGD: Path-Normalized Optimization in Deep Neural Networks]

e Normally SGD works ok thanks to random initialization

e Path SGD uses metric not sensitive to such transformations

18

How to Handle Simple Constraints?

@

¢ Example: Need a parameter that models variance o of some distribution inside NN

e Must be 0? >0
e But do not know the scale, e.g. o € [107%,10"]
Option 1: projected GD
Parametrize as 0 =y
Projecting to y = 0 results in invalid variance
Cannot recover small 0? more accurately than the step size
May never make enough steps to find big o
Option 2: Parametrize as 02 =¢¥, y € R
May overflow for large vy
Gradients grow unbounded
If stepped to small values of y accidentally, gradients vanish
Option 3: Parametrize as 0” =log(1+¢Y), y e R
Gradients bounded
May vanish if we step to y < 0
May never get to high range values

(All options work to some extend, in particular Option 3 is often used in literature with variational

Bayesian methods)

20

Mirror Descent

Let us use a proximal problem with an appropriate trust region

Mirror Descent (MD)

e Use step proximal problem: mén{Vf(:Co),:c—x()) + AD(x,x0)
with a suitable divergence D
(recall previous choices D = ||z — xo||?, D = ||x — z0||5,)

e Very elegant solutions in simple cases

Example: constrained parameter x >= 10 |
D(x,x0) = zlog - —x +xo (Generalized KL divergence)
Update: logzsi1 = logay — +V, f ()

Note: gradient in x is added to logx

Can implement as:

Yer1 = Yt — 5 Vo f (1)

:'Ct—|—1 — eyt—l-l

21

Mirror Descent

4 Let us use a proximal problem with an appropriate trust region

¢ Mirror Descent (MD)
e Use step proximal problem: mén{Vf(:Co),:c—x()) + AD(x,x0)
with a suitable divergence D
(recall previous choices D = ||z — xo||?, D = ||x — z0||5,)

e Very elegant solutions in simple cases

¢ Constraint x € (0,1)

D(z,x0) = zlog =+ (1 —x) log 1=
Yt+1 = 1V:cf(33t)

L1 = 5(yt+1) = Heiym

1_

22

Mirror Descent @

¢ Constraint z; >0, > .x; =1 — simplex 23
D(z,2") =, x;log— (KL divergence)
Yer1 = Y — 5y Vaf (1)
Ty = softmax(y; + 1)

e Can substitute and get update of x directly — exponentiated GD (x)

0

Quadratic fidelity A

\ , v
N A 506 "2

06 /
0.8
1

0 0.2 04

KL fidelity 0

4 Convergence in stochastic non-convex setting?

4 At least we clearly see it averages gradients in the "mirror” space. Works in practice.

