# Deep Learning (BEV033DLE) Lecture 9 Adaptive SGD Methods

Alexander Shekhovtsov

Czech Technical University in Prague

- ✦ Geometry of Neural Network Loss Surfaces
  - Local Minima and Saddle Points in nD
  - Parameter redundancy helps optimization
- ◆ Adaptive Methods
  - Change of Coordinates, Preconditioning, Trust Region
  - Equivalent reparameterizations
  - Adam
- → Handling simple constraints Mirror Descent

## Loss Landscape

- ♦ There are several reasons for local minima
  - Permutation invariances (symmetries)
    - fully connected with n hidden units: n! permutations
    - convolutional with c channels: c! permutations
    - total number of local minima is the product of these
  - But all these are equally good for us not a problem
  - Loss function is a sum of many terms:

$$L(\theta) = \sum_{i} l(y_i, f(x_i; \theta))$$

often convex non-linear





#### **Local Minima in High Dimension**

1D 2D

local max saddle point local min

local min in one dimension still can descent

 $f(x + \Delta x) \approx f(x) + J\Delta x + \Delta x^{\mathsf{T}} H\Delta x$ 

nD

Eigenvalues of H:  $\lambda_1, \ldots \lambda_2$ 

**Stationary point**: gradient is zero

**Saddle point**: st. point and a fraction  $\alpha$ 

of eigenvalues is negative

Local min: st. point and all eigenvalues are positive ( $\alpha = 0$ )

- → Gaussian Random Fields [Ray & Dean 2007]:
  - local minima are exponentially more rare than saddle points
  - they become likely at lower energies (loss values)



fraction of negative eigenvalues at st. point



#### **Local Minima in High Dimension**



♦ Experiments for neural networks are in a good agreement with the above theory

5



(1 hidden layer, good agreement for small alpha)



[Dauphin et. al. 2017]

### **High Dimensionality Helps Optimization**



## Achieve 0 training error with sufficiently large networks



#### Hist of SGD trials



[Choromanska et al. (2015)]

#### ♦ Summary:

- Local minima are rare and appear to be good enough (note, we just waved an NP-hard non-convex optimization problem)
- But we need (highly) overparametrized models to have this easy training (and hope that they will still generalize well)
- Maybe, optimization should worry a bit about efficiency around saddle points

## Adaptive Methods



- ◆ In a deep model we have:
  - different kinds of parameters: weights, biases, normalization parameters
  - located in different layers
  - Some parameters may be more sensitive than other
  - Some directions in the parameter space may be more sensitive (e.g. due to high curvature)
- → Gradient Step Depends on the Choice of Coordinates
  - It is not necessarily the best direction for a step
- → Many adaptive methods have emerged:

| RMSProp  | VAdam | Adamax  |
|----------|-------|---------|
| Adagrad  | PAdam | AmsGrad |
| AdaDelta | Nadam | Yogi    |
| Adam     | AdamW |         |
| BAdam    | AdamX |         |

Adagrad:

#### Adam:

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\varepsilon}{\sqrt{t}} \frac{\tilde{g}_{t,i}}{\sqrt{\operatorname{Mean}\left(\tilde{g}_{1:t,i}^2\right)}}$$

$$\theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\text{EWA}\left(\tilde{g}_{1:t,i}^2\right)}}$$

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\varepsilon}{\sqrt{t}} \frac{\tilde{g}_{t,i}}{\sqrt{\text{Mean}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\text{EWA}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\text{EWA}_{\beta_1}\left(\tilde{g}_{1:t,i}\right)}{\sqrt{\text{EWA}_{\beta_2}\left(\tilde{g}_{1:t,i}^2\right)}}$$

- All updates work per coordinate i independently
- $\tilde{g}_{1:t,i}$  denotes the sequence of all past gradients
- They are adaptive because each coordinate is rescaled differently
- Mostly differ by running averages used
- While they do work better for functions with valleys, explaining them as second order methods (dealing with curvature) has quite some gaps
- This lecture:
  - consider some general useful optimization ideas
  - that (hopefully) will provide insights for this design as well



### **Proximal Problem and Trust Region**



10

How did we find the steepest descent direction?

Recall from backprop lecture:

- Linearize:  $f(x_0 + \Delta x) \approx f(x_0) + J\Delta x$
- ullet Find the best improvement per length  $\|\Delta x\|$
- Solve the step proximal problem:
  - $\min_{\|\Delta x\| \le \varepsilon} \left( f(x_0) + J \Delta x \right)$  for given  $\varepsilon$  Equivalent to:

$$\begin{aligned} & \max_{\lambda} \min_{\Delta x} \left( J \Delta x + \lambda (\|\Delta x\|^2 - \varepsilon^2) \right) \\ & 2\lambda \Delta x^\mathsf{T} = -J \end{aligned}$$

**Step direction**:  $\Delta x = -\frac{1}{2\lambda} \nabla f(x)$ 

$$\|\Delta x^{\mathsf{T}}\|^2 = \varepsilon^2 \to \lambda = \frac{1}{2\varepsilon} \|\nabla f(x)\|$$

Trust region step:  $\Delta x = -\varepsilon \frac{\nabla f(x)}{\|\nabla f(x)\|}$ 

- → Generates two kinds of algorithms:
  - using only step direction
  - using the normalized trust region step





→ We can choose trust regions differently

#### 11

Step size proportional to the gradient?



- No other stationary points (saddle points, local minima) than the global minimum
- The further we are from the optimum, the larger is the gradient:
  - $\|\nabla f(x)\|^2 \ge \mu(f(x) f^*)$
  - $\bullet \|\nabla f(x)\| \ge \mu |x x^*|$
  - Makes sense so step proportional to gradient!
- Minus gradient points towards the optimum:
  - $\bullet \ \langle -\nabla f(x), x^* x \rangle \ge f f^* + \tilde{\mu} \|x x^*\|^2$
  - ullet Optimization need not be monotone in f



- Gradient carries no global information
  - Need bigger steps where both gradient and curvature are low
  - Need smaller steps when both gradient and curvature are high
- Makes sense to use trust region steps:
  - $\Delta x = -\varepsilon \frac{\nabla f(x)}{\|\nabla f(x)\|}$
  - If the trust region is ok, should guarantee a steady progress

12

- This time solve for step as:
  - $\bullet \min_{\|\Delta x_i\| \le \varepsilon \ \forall i} \left( f(x_0) + J\Delta x \right)$
  - In overparametrized models expect many parameters to have independent effect Equivalent to:

$$\max_{\lambda} \min_{\Delta x} \left( J \Delta x + \sum_{i} \lambda_{i} (\|\Delta x_{i}\|^{2} - \varepsilon^{2}) \right)$$
$$2\lambda_{i} \Delta x_{i} = -J_{i}$$

Step direction:  $\Delta x_i = -\frac{1}{2\lambda_i}(\nabla f(x))_i$ 

Trust region step:  $\Delta x_i = -\varepsilon \frac{(\nabla f(x))_i}{\|(\nabla f(x))_i\|}$ 



- Trust region steps:  $\Delta x = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$
- Problem: breaks in the stochastic setting
- Example

f(x) = (-3x) + (x) + (x+1), chose 1 summand at a time with equal probability

If we normalize stochastic gradients, will move in the wrong direction!



- ♦ Want the steps to follow the descent direction on average
  - Cannot change the stochastic gradient "too much nonlinearly"

Solution: use running averages to approximate the expectation form:

$$\Delta x = -\varepsilon \frac{\mathbb{E}[\nabla f]}{\|\mathbb{E}[\nabla f]\|}$$

Also note that  $\|\mathbb{E}[\nabla f]\| = \sqrt{(E[\nabla f])^2} \leq \sqrt{(E[(\nabla f)^2])}$  may be interpreted as a more robust setting

- Adagrad:

RMSProp:

$$\theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\text{EWA}\left(\tilde{g}_{1:t,i}^2\right)}}$$

Adam:

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\varepsilon}{\sqrt{t}} \frac{\tilde{g}_{t,i}}{\sqrt{\text{Mean}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\tilde{g}_{t,i}}{\sqrt{\text{EWA}\left(\tilde{g}_{1:t,i}^2\right)}} \qquad \theta_{t+1,i} = \theta_{t,i} - \varepsilon \frac{\text{EWA}_{\beta_1}\left(\tilde{g}_{1:t,i}\right)}{\sqrt{\text{EWA}_{\beta_2}\left(\tilde{g}_{1:t,i}^2\right)}}$$

- In Adagrad:
  - $\frac{1}{\sqrt{t}}$  guarantees convergence
- Other methods would also need this in theory but are typically presented and used with constant  $\varepsilon$

For sparse gradients,  $t \operatorname{Mean}(\tilde{g}_{1:t,i}^2)$  could grow much slower than t and achieve a speed-up compared to SGD

• In Adam:

EWA with  $\beta_1 = 0.9$  works as common momentum ( 20 batches averaging) EWA with  $\beta_2 = 0.999$  ( 2000 batches averaging) makes the non-linear effect smooth enough

## Change of Coordinates

### Gradient Depends on the Choice of Coordinates



16

- Consider the simple gradient descent for a function  $f: \mathbb{R}^n \to \mathbb{R}$ :
  - $\bullet \ \min_{x \in \mathbb{R}^n} f(x)$
  - $\bullet \ x_{t+1} = x_t \alpha J_f^{\mathsf{T}}(x)$
- Make a substitution: x = Ay (change of coordinate) and write GD in y:
  - $\bullet \ \min_{y \in \mathbb{R}^n} f(Ay)$
  - $y_{t+1} = y_t \alpha A^\mathsf{T} J_f^\mathsf{T}(Ay_t)$
- Substitute back  $y = A^{-1}x$ :
  - $A^{-1}x_{t+1} = A^{-1}x_t \alpha A^{\mathsf{T}}J_f^{\mathsf{T}}(x_t)$
  - Obtained preconditioned GD:  $x_{t+1} = x_t \alpha(AA^T)J_f^T(x_t)$
  - $P = AA^{\mathsf{T}}$  positive semidefinite
  - $P\nabla f(x)$  is a descent direction



lacktriangle Similar for non-linear change of coordinates, e.g. normalization  $(\star)$ 



#### **Proximal Problem View**



- Adjust the trust region for sensitivity in different parameters:
  - $\min_{\|\Delta x\|_{M} \le \varepsilon} (f(x_0) + J\Delta x)$  for given  $\varepsilon$
  - $\|\Delta x\|_{M} = (\Delta x^{\mathsf{T}} M \Delta x)^{\frac{1}{2}}$  Mahalanobis distance

Equivalent to:

$$\max_{\lambda} \min_{\Delta x} \left( J \Delta x + \lambda (\|\Delta x\|_{M}^{2} - \varepsilon^{2}) \right)$$

Step direction:  $\Delta x = -\frac{1}{2\lambda} M^{-1} \nabla f(x)$ 



- ◆ Intuitive way to understand preconditioners
  - Can associate sensitivity with curvature → Second Order (Newton) Methods
  - Can associate sensitivity with some statistics of gradient oscillations, e.g. Adagrad:  $M = \mathrm{Diag}\Big(\sqrt{\mathrm{Mean}(g_{1:t}^2)}\Big)$
  - Can use other metrics → Path SGD, Mirror Descent

18

♦ In ReLU networks can rescale the weights without affecting the output:

ı+·

- ReLU units are 1-homogenous: for s > 0: ReLU $(sx) = \max(0, sx) = s\max(0, x)$
- Can rescale inputs and outputs of each unit (channels in conv networks)



!Equivalent points but not equivalent SGD updates:



[Neyshabur et al. (2015) Path-SGD: Path-Normalized Optimization in Deep Neural Networks]

- Normally SGD works ok thanks to random initialization
- Path SGD uses metric not sensitive to such transformations

## Mirror Descent

- ullet **Example**: Need a parameter that models variance  $\sigma^2$  of some distribution inside NN
  - Must be  $\sigma^2 > 0$
  - But do not know the scale, e.g.  $\sigma^2 \in [10^{-4}, 10^4]$

**Option 1**: projected GD

Parametrize as  $\sigma^2 = y$ 

Projecting to y = 0 results in invalid variance

Cannot recover small  $\sigma^2$  more accurately than the step size

May never make enough steps to find big  $\sigma^2$ 

**Option 2**: Parametrize as  $\sigma^2 = e^y$ ,  $y \in \mathbb{R}$ 

May overflow for large y

Gradients grow unbounded

If stepped to small values of y accidentally, gradients vanish

**Option 3**: Parametrize as  $\sigma^2 = \log(1 + e^y)$ ,  $y \in \mathbb{R}$ 

Gradients bounded

May vanish if we step to  $y \ll 0$ 

May never get to high range values





(All options work to some extend, in particular Option 3 is often used in literature with variational Bayesian methods)

#### **Mirror Descent**



- ◆ Let us use a proximal problem with an appropriate trust region
- Mirror Descent (MD)
  - Use step proximal problem:  $\min_x \langle \nabla f(x_0), x x_0 \rangle + \lambda D(x, x_0)$  with a suitable divergence D (recall previous choices  $D = ||x x_0||^2$ ,  $D = ||x x_0||_M^2$ )
  - Very elegant solutions in simple cases
- $\bullet$  Example: constrained parameter x >= 0

$$D(x,x_0) = x \log \frac{x}{x_0} - x + x_0$$
 (Generalized KL divergence)

Update: 
$$\log x_{t+1} = \log x_t - \frac{1}{\lambda} \nabla_x f(x_t)$$

Note: gradient in x is added to  $\log x$ 

Can implement as:

$$y_{t+1} = y_t - \frac{1}{\lambda} \nabla_x f(x_t)$$

$$x_{t+1} = e^{y_{t+1}}$$



#### **Mirror Descent**

- ♦ Let us use a proximal problem with an appropriate trust region
- Mirror Descent (MD)
  - Use step proximal problem:  $\min_x \langle \nabla f(x_0), x x_0 \rangle + \lambda D(x, x_0)$  with a suitable divergence D (recall previous choices  $D = ||x x_0||^2$ ,  $D = ||x x_0||_M^2$ )
  - Very elegant solutions in simple cases
- Constraint  $x \in (0,1)$

$$D(x, x_0) = x \log \frac{x}{x_0} + (1 - x) \log \frac{1 - x}{1 - x_0}$$
 (KL divergence) 
$$y_{t+1} = y_t - \frac{1}{\lambda} \nabla_x f(x_t)$$
 
$$x_{t+1} = \mathcal{S}(y_{t+1}) = \frac{1}{1 + e^{-y_{t+1}}}$$



Constraint  $x_i \ge 0$ ,  $\sum_i x_i = 1$  – simplex

$$\begin{split} D(x,x^0) &= \sum_i x_i \log \frac{x_i}{x_i^0} \text{ (KL divergence)} \\ y_{t+1} &= y_t - \frac{1}{\lambda} \nabla_x f(x_t) \\ x_{t+1} &= \operatorname{softmax}(y_t+1) \end{split}$$

ullet Can substitute and get update of x directly o **exponentiated GD**  $(\star)$ 



- Convergence in stochastic non-convex setting?
- ◆ At least we clearly see it averages gradients in the "mirror" space. Works in practice.