Sequential decisions under uncertainty
Markov Decision Processes (MDP)

Tomag Svoboda

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 28, 2020

Notes

23

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

Unreliable actions in observable grid world

0.8

0.1 0.1

[=1]

START

Notes
Beginning of semester — search — deterministic and (fully) observable environment
Now:

e Observable — we keep for now — agent knows where it is.

e Deterministic — We introduce “imperfect” agent that does not always obey the command — stochastic
action outcomes.
There is a treasure (desired goal/end state) but there is also some danger (unwanted goal/end state).
The danger state: think about a mountainous area with safer but longer and shorter but more dangerous paths
— a dangerous node may represent a chasm.
Notation note: caligraphic letters like S, A will denote the set(s) of all states/actions.

Unreliable actions in observable grid world

[=1]

START

States s € S, actions a € A

Model T(s,a,s’) = p(s'|s,a) = probability that a in s leads to s’

0.1

0.8

0.1

/23

Beginning of semester — search — deterministic and (fully) observable environment

Now:

e Observable — we keep for now — agent knows where it is.

Notes

e Deterministic — We introduce “imperfect” agent that does not always obey the command — stochastic

action outcomes.

There is a treasure (desired goal/end state) but there is also some danger (unwanted goal/end state).

The danger state: think about a mountainous area with safer but longer and shorter but more dangerous paths

— a dangerous node may represent a chasm.

Notation note: caligraphic letters like S, A will denote the set(s) of all states/actions.

Unreliable actions

3/23

Notes

Actions: go over a glacier bridge or around?

Plan? Policy

» In deterministic world: Plan — sequence of
actions from Start to Goal.

Notes
Unlike in deterministic environment (also search problems), with stochastic action outcomes, we can end up in
any state. Thus, in any state, the robot/agent has to know what to do.

What is the best policy? We will come to that in a minute, ...

Plan? Policy

» In deterministic world: Plan — sequence of
actions from Start to Goal.

» MDPs, we need a policy 7: S — A.

» An action for each possible state.

Notes
Unlike in deterministic environment (also search problems), with stochastic action outcomes, we can end up in
any state. Thus, in any state, the robot/agent has to know what to do.

What is the best policy? We will come to that in a minute, ...

Plan? Policy

In deterministic world: Plan — sequence of
actions from Start to Goal.

MDPs, we need a policy 7: S — A.

An action for each possible state.

v

v

v

What is the best policy?

v

Notes
Unlike in deterministic environment (also search problems), with stochastic action outcomes, we can end up in
any state. Thus, in any state, the robot/agent has to know what to do.

What is the best policy? We will come to that in a minute, ...

Rewards

Reward : Robot/Agent takes an action a and it is immediately rewarded.
Reward function r(s) (or r(s, a), r(s,a,s’))

[—0.04 (small penalty) for nonterminal states

N { +1 for terminal states

Notes
What do the rewards express? Reward to an agent to be/dwell in that state? Obviously we want the robot to
go to the goal and do not stay too long in the maze. The negative reward of 0.04 gives the agent an incentive
to reach the goal state quickly, so our environment is a stochastic generalization of the search problems.
Thinking about Reward: Robot/Agent takes an action a and it is immediately rewarded for this. The reward
may depend on

e current state s,
e the action taken a
e the next state s’ - result of the action.

Rewards for terminal states can be understood in a way: there is only one action: a = exit. We will come to
this soon.
The reward function is a property of (is related to) the problem.

Notation remark: lowercase letters will be used for functions like p, r,v,f, ...

Markov Decision Processes (MDPs)

3 0.8
0.1 0.1
2 =]
1 START
1 2 3 4
(a) (b)

6/23
Notes

Markov Decision Processes (MDPs)

3 0.8
0.1 0.1
2 =]
1 START
1 2 3 4
(a) (b)

States s € S, actions a € A
Model T(s,a,s’) = p(s’|s, a) = probability that a in s leads to s’
Reward function r(s) (or r(s,a), r(s,a,s’))

[—0.04 (small penalty) for nonterminal states

N { +1 for terminal states

Notes

/23

Markovian property

» Given the present state, the future and the past are independent.
» MDP: Markov means action depends only on the current state.

» In search: successor function (transition model) depends on the current state only.

Notes

23

Optimal(?) policies

On-line demos.
» r(s) ={-0.04,1, -1}

Notes

23

We run mdp_agents.py changing reward functions.
o r(s)={-0.04,1,-1}
e r(s)={—2,1,—1} - environment very hostile -
heading for nearest exit even if it's with negative reward

e r(s) ={-0.01,1,—1} - environment very mildly unpleasant -
conservative policy (banging head against the wall to avoid negative terminal state at all cost)

Optimal(?) policies

On-line demos.
» r(s) ={-0.04,1, -1}
» r(s) ={-2,1,—-1}

Notes

23

We run mdp_agents.py changing reward functions.
o r(s)={-0.04,1,-1}
e r(s)={—2,1,—1} - environment very hostile -
heading for nearest exit even if it's with negative reward

e r(s) ={-0.01,1,—1} - environment very mildly unpleasant -
conservative policy (banging head against the wall to avoid negative terminal state at all cost)

Optimal(?) policies

On-line demos.
» r(s) ={-0.04,1, -1}
» r(s) ={-2,1,—-1}
» r(s) ={-0.01,1,-1}

23

Notes

We run mdp_agents.py changing reward functions.
o r(s)={-0.04,1,-1}
e r(s)={—2,1,—1} - environment very hostile -
heading for nearest exit even if it's with negative reward
e r(s) ={-0.01,1,—1} - environment very mildly unpleasant -
conservative policy (banging head against the wall to avoid negative terminal state at all cost)

Optimal(?) policies

On-line demos.
» r(s) ={-0.04,1, -1}
» r(s) ={-2,1,—-1}
» r(s) ={-0.01,1,-1}

How to measure quality of a policy?

Notes

23

We run mdp_agents.py changing reward functions.
o r(s)={-0.04,1,-1}
e r(s)={—2,1,—1} - environment very hostile -
heading for nearest exit even if it's with negative reward

e r(s) ={-0.01,1,—1} - environment very mildly unpleasant -
conservative policy (banging head against the wall to avoid negative terminal state at all cost)

Utilities of sequences

» State reward at time/step t, Ry.
» State at time t, S;. State sequence [So, S1, S, ...,]

Notes
We consider discrete time t. S;, Ry notation emphasises the time sequence - not a sequence of particular states.

The reward is for an action (transition)

Utilities of sequences

» State reward at time/step t, Ry.
» State at time t, S;. State sequence [So, S1, S, ...,]

Typically, consider stationary preferences on reward sequences:

[R, Ri, Ry, R3,...] - [R, R{, Ré, Ré,] = [Rl, Ry, Rs, ..] - [R{,Ré, Ré,..]

Notes

We consider discrete time t. S;, Ry notation emphasises the time sequence - not a sequence of particular states.

The reward is for an action (transition)

Utilities of sequences

» State reward at time/step t, Ry.
» State at time t, S;. State sequence [So, S1, S, ...,]

Typically, consider stationary preferences on reward sequences:

[R, Ri, Ry, R3,...] - [R, R{, Ré, Ré,] = [Rl, Ry, Rs, ..] - [R{,Ré, Ré,..]

If stationary preferences:
Utility (h-history)
Uh([50,51,52,...,]) =Ri+R+R3+---

Notes
We consider discrete time t. S;, Ry notation emphasises the time sequence - not a sequence of particular states.

The reward is for an action (transition)

Returns and Episodes

» Executing policy - sequence of states and rewards.

» Episode starts at t, ends at T (ending in a terminal state).

» Return (Utility) of the episode (policy execution)

Gt:Rt+1+Rt+2+Rt+3+-~—|—RT

Notes _
R,=+1 R,=+1 Ry=+1 Ry=0
. () () Rs=0
) Soli

square — absorbing state — end of an episode.
(transitions only to itself and generates only rewards of zero)
Allows to unify two formulations of return (G;) as a finite and infinite sum of rewards.

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.

11/23

Notes
Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight,
studying (for the far future reward of getting A in the course)?

R/ =+1 R,=+1 Ry=+1
. () () Rs=0

.
Returns are successive steps related to each other

G = Ryi+vRo+ ’Yth+3 + ’73Rt+4 + -
= R +’Y(Rt+2+’YlRt+3+72Rt+4+"')
= Ry +7Ge

Solid square — absorbing state — end of an episode.
(transitions only to itself and generates only rewards of zero)

Allows to unify two formulations of return (G;) as a finite and infinite sum of rewards.

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.

» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the

time left.

11/23

Notes

Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight,

studying (for the far future reward of getting A in the course)?

Returns are successive steps related to each other

G = RH»I+’YRt+2+’YZRt+3—|—’73Rt+4+...
= Rt+1+’Y(Rt+2+’let+3+'yth+4+...)

= Ry +7Ge

Solid square — absorbing state — end of an episode.
(transitions only to itself and generates only rewards of zero)

Allows to unify two formulations of return (G;) as a finite and infinite sum of rewards.

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.
» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.
» Discounted return , v < 1, Ry < Rmax

Rmax
1—v

o0
Gt =Rej1+YRe2 + VRess + - = Z’Yth+k+1 <
k=0

11/23

Notes
Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight,
studying (for the far future reward of getting A in the course)?

R/ =+1 R,=+1 Ry=+1
. () () Rs=0

.
Returns are successive steps related to each other

G = Ryi+vRo+ ’Yth+3 + ’73Rt+4 + -
= R +’Y(Rt+2+’YlRt+3+72Rt+4+"')
= Ry +7Ge

Solid square — absorbing state — end of an episode.
(transitions only to itself and generates only rewards of zero)

Allows to unify two formulations of return (G;) as a finite and infinite sum of rewards.

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.
» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.
» Discounted return , v < 1, Ry < Rmax

Rmax
1—v

o0
Gt =Rej1+YRe2 + VRess + - = Z’Yth+k+1 <
k=0

» Absorbing (terminal) state.

11/23

Notes
Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight,
studying (for the far future reward of getting A in the course)?

R/ =+1 R,=+1 Ry=+1
. () () Rs=0

.
Returns are successive steps related to each other

G = Ryi+vRo+ ’Yth+3 + ’73Rt+4 + -
= R +’Y(Rt+2+’YlRt+3+72Rt+4+"')
= Ry +7Ge

Solid square — absorbing state — end of an episode.
(transitions only to itself and generates only rewards of zero)

Allows to unify two formulations of return (G;) as a finite and infinite sum of rewards.

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.
» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.
» Discounted return , v < 1, Ry < Rmax

Rmax
1—v

o0
Gt =Rej1+YRe2 + VRess + - = Z’Yth+k+1 <
k=0

» Absorbing (terminal) state.

Returns are successive steps related to each other

Gt = Repi+7Re2+ ’Y2Rt+3 + ’Y3Rt+4 + -

11/23

Notes
Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight,
studying (for the far future reward of getting A in the course)?

R/ =+1 R,=+1 Ry=+1
. () () Rs=0

.
Returns are successive steps related to each other

G = Ryi+vRo+ ’Yth+3 + ’73Rt+4 + -
= R +’Y(Rt+2+’YlRt+3+72Rt+4+"')
= Ry +7Ge

Solid square — absorbing state — end of an episode.
(transitions only to itself and generates only rewards of zero)

Allows to unify two formulations of return (G;) as a finite and infinite sum of rewards.

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.
» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.
» Discounted return , v < 1, Ry < Rmax

Rmax
1—v

o0
Gt =Rej1+YRe2 + VRess + - = Z’Yth+k+1 <
k=0

» Absorbing (terminal) state.

Returns are successive steps related to each other

Gt = Repi+7Re2+ ’Y2Rt+3 + ’Y3Rt+4 + -
= Rep1+¥(Res2 + 7' Reps + 7P Rega +)

11/23

Notes
Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight,
studying (for the far future reward of getting A in the course)?

R/ =+1 R,=+1 Ry=+1
. () () Rs=0

Returns are successive steps related to each other

G; Riy1 + YRes2 + ’yth+3 + 73Rt+4 4o
Rey1 + Y(Reg2 + ’let+3 + 72Rt+4 +--)

= Ry +7Ge

Solid square — absorbing state — end of an episode.
(transitions only to itself and generates only rewards of zero)

Allows to unify two formulations of return (G;) as a finite and infinite sum of rewards.

Comparing policies; Finite vs infinite horizon
Problem: Infinite lifetime = additive utilities are infinite.
» Finite horizon: termination at a fixed time = nonstationary policy, 7(s) depends on the
time left.
» Discounted return , v < 1, Ry < Rmax

Rmax
1—v

o0
Gt =Rej1+YRe2 + VRess + - = Z’Yth+k+1 <
k=0

» Absorbing (terminal) state.
Returns are successive steps related to each other
Gt = Repi+7Re2+ ’Y2Rt+3 + ’Y3Rt+4 + -

= Rey1 +Y(Rer2 + 7 Reys + Y Rega + -+ +)
= Rit1+7G1

11/23

Notes
Discounting is quite natural choice. Think about your preferences/rewards. Go to pub with friends tonight,
studying (for the far future reward of getting A in the course)?

R/ =+1 R,=+1 Ry=+1
. () () Rs=0

Returns are successive steps related to each other

G; Riy1 + YRes2 + ’yth+3 + 73Rt+4 4o
Rey1 + Y(Reg2 + ’let+3 + 72Rt+4 +--)

= Ry +7Ge

Solid square — absorbing state — end of an episode.
(transitions only to itself and generates only rewards of zero)

Allows to unify two formulations of return (G;) as a finite and infinite sum of rewards.

MDPs recap

Markov decition processes (MDPs):
> Set of states S
» Set of actions A
» Transitions p(s’|s,a) or T(s,a,s’)

» Reward function r(s, a, s’); and discount ~

12 /23
Notes

MDPs recap

Markov decition processes (MDPs):

> Set of states S

» Set of actions A

» Transitions p(s’|s,a) or T(s,a,s’)

» Reward function r(s, a, s’); and discount ~
MDP quantities:

> (deterministic) Policy 7(s) — choice of action for each state

» Return (Utility) of an episode (sequence) — sum of (discounted) rewards.

Notes

12 /23

Value functions

» Executing policy 7 - sequence of states (and rewards).
» Utility of a state sequence.

13/23

Notes

R/ =+1 Ry=+1 Ry=+1
. () () Rs=0

Contrast return of a particlar episode vs. value — expected utility of a state sequence in general — expected return
Expected value can be also computed by running (executing) the policy many times and then computing average

- Monte Carlo simulation methods.

Value functions

» Executing policy 7 - sequence of states (and rewards).
» Utility of a state sequence.
» But actions are unreliable - environment is stochastic.

13/23

Notes

R/ =+1 Ry=+1 Ry=+1
. () () Rs=0

Contrast return of a particlar episode vs. value — expected utility of a state sequence in general — expected return
Expected value can be also computed by running (executing) the policy many times and then computing average

- Monte Carlo simulation methods.

Value functions

» Executing policy 7 - sequence of states (and rewards).
» Utility of a state sequence.

» But actions are unreliable - environment is stochastic.
» Expected return of a policy .

Starting at time t, i.e. S,
o0
UT(Se) = E™ | > 7Y Revk
k=0
Value function

VW(S) =E" [Gt ’ St = S] =E" Z’Yth+k+1 St =S
k=0
Action-value function (g-function)
q"(s,a) =E"[G; | St =s,Ar = a]| =E" Z“Yth+k+1 St=s5,Ar=a
k=0 13/23
Notes

R/ =+1 Ry=+1 Ry=+1
. () () Rs=0

Contrast return of a particlar episode vs. value — expected utility of a state sequence in general — expected return
Expected value can be also computed by running (executing) the policy many times and then computing average

- Monte Carlo simulation methods.

Optimal policy *, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

14 /23

Notes
Showing cases for

o r(s)={-0.04,1, -1}, v = 0.999999, ¢ = 0.03
o r(s)={-0.01,1,~1}, v = 0.999999, ¢ = 0.03

What is the difference in the optimal policy? Try to explain why it happened.
We still do not know how to compute the optimality, ... right?

Optimal policy *, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

r(s) = {—0.04,1, -1}, v = 0.999999, ¢ = 0.03

14 /23

Notes
Showing cases for

o r(s)={-0.04,1, -1}, v = 0.999999, ¢ = 0.03
o r(s)={-0.01,1,~1}, v = 0.999999, ¢ = 0.03

What is the difference in the optimal policy? Try to explain why it happened.
We still do not know how to compute the optimality, ... right?

Optimal policy *, and optimal value v*(s)

v*(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions.

r(s) = {—0.01,1,—1}, v = 0.999999, ¢ = 0.03

14 /23

Notes
Showing cases for

o r(s)={-0.04,1, -1}, v = 0.999999, ¢ = 0.03
o r(s)={-0.01,1,~1}, v = 0.999999, ¢ = 0.03

What is the difference in the optimal policy? Try to explain why it happened.
We still do not know how to compute the optimality, ... right?

MDP search tree

The value of a g-state (s, a):

q*(s,a) = > _p(s'|a,s) [r(s,a,s") + 7 v*(s))] a
S/ // \\ \\
g Q g-state
2 p(s'|s,a) >«

15/23

Notes

<
E}
—

1))
N—r

Eﬂ' [Gt | St = S]
= E” [Rex1 + vGey1 | St = 5]

= Zp(s/|a, s) [r(s, a,s") +7E" [Ges1 | Ser1 =]]
s/
Recall Expectimax algorithm from the last lecture.

How to compute V/(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as

the price for leaving the state s just anyhow.

MDP search tree

The value of a g-state (s, a):

g°(s,3) = 3" p(s']a,5) [r(s,2,5') + 7 V()] A
s’ L,/ \\ AN
x Y
Q q*(s,a)
The value of a state s:
. p(s'|s,a) .

v*(s) = maxq*(s, a) e
a » * /
[\ V6

15/23

Notes

<
E}
—

1))
N—r

Eﬂ' [Gt | St = S]
= E” [Rex1 + vGey1 | St = 5]

= Zp(s/|a, s) [r(s, a,s") +7E" [Ges1 | Ser1 =]]
s/
Recall Expectimax algorithm from the last lecture.

How to compute V/(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as

the price for leaving the state s just anyhow.

MDP search tree

The value of a g-state (s, a): v¥(s)
g°(s,3) = 3" p(s']a,5) [r(s,2,5') + 7 V()] A
s’ it \\ AN
e
The value of a state s:
. p(s'|s,a) .

v*(s) = maxq*(s, a) e
a » * /
[\ V6

15/23

Notes

<
E}
—

1))
N—r

Eﬂ' [Gt | St = S]
= E” [Rex1 + vGey1 | St = 5]

= Zp(s/|a, s) [r(s, a,s") +7E" [Ges1 | Ser1 =]]
s/
Recall Expectimax algorithm from the last lecture.

How to compute V/(s)? Well, we could solve the expectimax search - but it grows quickly. We can see R(s) as

the price for leaving the state s just anyhow.

Bellman (optimality) equation

Ko\ ’ ’ s’)
vi(s) = arenfé);p(s |2,5) [r(s,a,8") + 7v*(5)]

0

-]

2| sTART

0 1 2 3

16/23

Notes

v computation on the table - one row for each action. We got n equations for n unknown - n states. But max is

a non-linear operator!

Value iteration

» Start with arbitrary Vo(s) (except for terminals)

17/23
Notes
What is the complexity of each iteration? O(S?A)

Value iteration

» Start with arbitrary Vo(s) (except for terminals)
» Compute Bellman update (one ply of expectimax from each state)

V, « R(s)V
+1(s) +var€n§>§)zp s'ls, a) Vi(s')

17/23
Notes
What is the complexity of each iteration? O(S?A)

Value iteration

» Start with arbitrary Vo(s) (except for terminals)

» Compute Bellman update (one ply of expectimax from each state)

Visi(s) « R Wil
kr1(s) < R(s) +vag1§§)zp s'|s, a) Vi(s)

» Repeat until convergence

17/23
Notes
What is the complexity of each iteration? O(S?A)

Value iteration

» Start with arbitrary Vo(s) (except for terminals)

» Compute Bellman update (one ply of expectimax from each state)

Visi(s) « R Wil
kr1(s) < R(s) +vag1§§)zp s'|s, a) Vi(s)

» Repeat until convergence

The idea: Bellman update makes local consistency with the Bellmann equation. Everywhere
locally consistent = globally optimal.

17/23
Notes
What is the complexity of each iteration? O(S?A)

Convergence

Vit1(s) <= R(s) +~ ma, > " P(s'ls, a) Vi(s')
acA(s
S/

v<1
_Rmax S R(S) S Rmax

18 /23
Notes

Convergence

Vir1(s) < R(s) +~ mAa(x) g P(s'|s, a) Vi(s)
acAl(s
5/

v<1
_Rmax < R(S) < Rmax

Max norm:
VIl = max|V(s)|
U([s0, 51,52, - - -5 S0]) = thR(St) < Bmax
t=0 S 1= v

18 /23
Notes

Convergence cont'd

Vi1 < BV

|BVi — BV} < Vi — V{]

HBVk - VtrueH < 7HVk - VtrueH

Rewards are bounded, at the beginning then Value error is

HVO - Vtrue” S 21%'“;)(

We run N iterations and reduce the error by factor v in each and want to stop the error is
below e:

YN2Rmax /(1 — 7) < € Taking logs, we find: N > %

To stop the iteration we want to find a bound relating the error to the size of one Bellman
update for any given iteration.

We stop if

e(l —
Wies — i < L=

then also: || Vks+1 — Viruell < € Proof on the next slide

19/23
Notes

Try to proove that:
[l max f(a) — maxg(a)|| < max||f(a) — g(a)]|

Convergence cont'd

| Vik+1 — Viruel] < € is the same as || Vi1 — Vo <€

Assume || Viy1 — Vil = err

In each of the following iteration steps we reduce the error by the factor ~. Till oo, the total
sum of reduced errors is:

total = yerr 4+ ~2err 4+ y3err + yterr 4 - = e
(1-7)
We want to have total < e.
~Yerr
<€
(1-7)
From it follows that)
err < 1-7)
Y

Hence we can stop if || Vi1 — Vil < e(1 —7)/v

20/23
Notes

Value iteration demo

Visa(s) R(s) 7 max 3~ P(s'ls, a)Vi(s)
acA(s
S/

0 1 2 3
0 0
1 1
2 2
0 1 2 3
21/23
Notes
Run mdp_agents.py and try to compute next state value in advance. Remind the R(s) = —0.04 and v =1 in

order to simplify computation. Then discuss the course of the Values.

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' <0 in all states

22/23
Notes

Value iteration algorithm

function VALUE-ITERATION(env,¢) returns: state values V
input: env - MDP problem, ¢
V' <0 in all states
repeat > iterate values until convergence

22/23

Notes

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' <0 in all states

repeat > iterate values until convergence
V« V/ > keep the last known values
6+ 0 > reset the max difference

22/23

Notes

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' <0 in all states

repeat > iterate values until convergence
V« V/ > keep the last known values
6+ 0 > reset the max difference

for each state s in S do
V'[s] < R(s) +~ m:(x) o P(s|s,a)V(s)
acA(s

if |V'[s] — V|[s]| > d then 6 + |V'[s] — V][d]|
end for

Notes

Value iteration algorithm

function VALUE-ITERATION(env,€) returns: state values V
input: env - MDP problem, ¢
V' <0 in all states

repeat > iterate values until convergence
V« V/ > keep the last known values
6+ 0 > reset the max difference

for each state s in S do
V'[s] < R(s) +~ m:(x) o P(s|s,a)V(s)
acA(s
if |V'[s] — V|[s]| > d then 6 + |V'[s] — V][d]|
end for

until § < e(1—7)/y
end function

Notes

References

Some figures from [1] (chapter 17) but notation slightly changed in order to adapt notation
from [2] (chapters 3, 4) which will help us in the Reinforcement Learning part of the course.

Note that the book [2] is available on-line.

[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.

http://www.incompleteideas.net/book/the-book-2nd.html.

Notes

23 /23

http://aima.cs.berkeley.edu/
http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Rewards

	MDPs
	Utilities

	Solving MDPs
	Utilities, Values, MEU
	Value iteration

	References

