We have:

- unknown squared world of unknown size and structure
- ▶ robot/agents moves in unknown directions with unknown parameters
- ightarrow We do not know anything
- we only have a few episodes the robot tried

- A: Run away :-
- B: Examine episodes and learn
- C: Guess
- D: Try something

We have:

- unknown squared world of unknown size and structure
- ▶ robot/agents moves in unknown directions with unknown parameters
- \rightarrow We do not know anything
- we only have a few episodes the robot tried

- A: Run away :-
- B: Examine episodes and learn
- C: Guess
- D: Try something

We have:

- unknown squared world of unknown size and structure
- ▶ robot/agents moves in unknown directions with unknown parameters
- \rightarrow We do not know anything
- we only have a few episodes the robot tried

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

We have:

- unknown squared world of unknown size and structure
- ▶ robot/agents moves in unknown directions with unknown parameters
- \rightarrow We do not know anything
- we only have a few episodes the robot tried

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r), known discount factor $\gamma = 1$

Task: for non-terminal states determine the optimal policy. Use model-based learning.

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy τ

C: state set S, action set A, transition model p(s'|s,a)

D: state set S, action set A, rewards r, transition model p(s'|s,a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r), known discount factor $\gamma = 1$

Task: for non-terminal states determine the optimal policy. Use model-based learning.

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy π

C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s,a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

Task: for non-terminal states determine the optimal policy

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy π

C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

What is the state set S?

- A: $S = \{B, C\}$
- B: $S = \{A, B, C, D, exit\}$
- $\mathbf{C}:\ \mathcal{S}=\{A,B,C,D\}$
- $\mathsf{D} \colon \ \mathcal{S} = \{A, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

What is the state set S?

- A: $S = \{B, C\}$
- **B**: $S = \{A, B, C, D, exit\}$
- $\mathbf{C}:\ \mathcal{S}=\{A,B,C,D\}$
- **D**: $S = \{A, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$

What are the terminal states?

- A: $\{A, B, C, D\}$ B: $\{A, D\}$ C: $\{B, C\}$
- $D: \{A,C,D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

- What are the terminal states?
 - A: $\{A, B, C, D\}$
 - B: {*A*, *D*}

 - C: {B, C} D: {A, C, D}

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$

► What are the terminal states?

- **A**: $\{A, B, C, D\}$
- $\mathsf{B}\colon \left\{ A,D\right\}$
- **C**: $\{B, C\}$
- **D**: $\{A, C, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$

- ► Terminal states: {*A*, *D*}
- What are the non-terminal states?
 - A: {A,B,C,D} B: {A,D} C: {B,C} D: {A,B,C}

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$

- ► Terminal states: {*A*, *D*}
- ▶ What are the non-terminal states?
 - A: $\{A, B, C, D\}$
 - B: {*A*, *D*}
 - **C**: {*B*, *C*}
 - D: $\{A, B, C\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$

- ► Terminal states: {*A*, *D*}
- ▶ What are the non-terminal states?
 - **A**: $\{A, B, C, D\}$
 - **B**: {*A*, *D*}
 - **C**: {*B*, *C*}
 - **D**: $\{A, B, C\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- A: $\{\rightarrow,\leftarrow\}$
- B: $\{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- C: $\{\rightarrow,\leftarrow,\uparrow\}$
- D: $\{\rightarrow,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- A: $\{\rightarrow,\leftarrow\}$
- $\mathsf{B}\colon\ \{\to,\leftarrow,\uparrow,\downarrow\}$
- $\mathsf{C}\colon\ \{\to,\leftarrow,\uparrow\}$
- $\mathsf{D}\colon\ \{\to,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- $\textbf{A} \colon \ \{ \rightarrow, \leftarrow \}$
- $B: \ \{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- $\textbf{C} \colon \; \{\rightarrow, \leftarrow, \uparrow\}$
- $\textbf{D: } \{\rightarrow,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S=\{A,B,C,D\}$$
, terminal states: $\{A,D\}$, non-terminal states: $\{B,C\}$ Action set $A=\{\to,\leftarrow\}$

What is the transition model?

A: deterministic

B: non-deterministic

Let's examine :

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

A: deterministic

B: non-deterministic

Let's examine :-

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

A: deterministic

B: non-deterministic

Let's examine :-)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- ► How to compute?
 - A: for each state and action
 - B: for each state, action and new state
 - C: for each state
 - D: for each action and new state

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- ► How to compute?
 - A: for each state and action
 - B: for each state, action and new state
 - C: for each state
 - D: for each action and new state

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - 1. for each state, action and new state
 - 2. A: as relative frequencies in one episode
 - B: as sum of occurencies in one episode
 - C: as relative frequencies in all episodes
 - D: as sum of occurencies in all episodes

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - 1. for each state, action and new state
 - 2. A: as relative frequencies in one episode
 - B: as sum of occurencies in one episode
 - C: as relative frequencies in all episodes
 - D: as sum of occurencies in all episodes

	Episode 1	Episode 2	Episode 3	Episode 4
Γ	$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
	$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
	$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A,\leftarrow,exit,6)$
_				

each field in table is n-tuple (s, a, s', r)

State set
$$S=\{A,B,C,D\}$$
, terminal states: $\{A,D\}$, non-terminal states: $\{B,C\}$ Action set $A=\{\to,\leftarrow\}$

- How to compute?
 - 1. for each state, action and new state
 - 2. as relative frequencies in all episodes
 - ▶ evaluate $p(C|B, \rightarrow)$
 - A: 1
 - B: 2/3
 - C: 1/2
 - D: 1/3

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$
		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

- ► How to compute?
 - 1. for each state, action and new state
 - 2. as relative frequencies in all episodes
 - ightharpoonup evaluate $p(C|B, \rightarrow)$

A:
$$1 = \frac{\#(B, \to, C, \cdot)}{\#(B, \to, \cdot, \cdot)} = 2/2$$

B: 2/3

C: 1/2

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

$$p(C|B, \rightarrow) = 2/2 = 1$$
 $p(A|B, \leftarrow) = 2/2 = 1$
 $p(D|C, \rightarrow) = 2/2 = 1$
 $p(B|C, \leftarrow) = 2/2 = 1$

- A: non-deterministic
- B: deterministic

_					
	Episode 1	Episode 2	Episode 3	Episode 4	
Г	$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$	
	$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	
	$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$	
				$(B,\leftarrow,A,-1)$	
				$(A,\leftarrow,exit,6)$	
_					

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

$$p(C|B, →) = 2/2 = 1
 p(A|B, ←) = 2/2 = 1
 p(D|C, →) = 2/2 = 1
 p(B|C, ←) = 2/2 = 1$$

- A: non-deterministic
- B: deterministic

Episode 1	Episode 2	Episode 3	Episode 4	
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$	
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$	
			$(B,\leftarrow,A,-1)$	
			$(A, \leftarrow, exit, 6)$	
1 (1 1 1 1 1 1 1 1		`		

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

$$p(C|B, \rightarrow) = 2/2 = 1$$

 $p(A|B, \leftarrow) = 2/2 = 1$
 $p(D|C, \rightarrow) = 2/2 = 1$
 $p(B|C, \leftarrow) = 2/2 = 1$

- A: non-deterministic
- B: deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$
1 6 111		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

$$p(C|B, \rightarrow) = 2/2 = 1$$

 $p(A|B, \leftarrow) = 2/2 = 1$
 $p(D|C, \rightarrow) = 2/2 = 1$
 $p(B|C, \leftarrow) = 2/2 = 1$

- A: non-deterministic
- B: deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

A: A C B D
B: A B C D
C: B A C D

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

- A: A C B D
- B: A B C D
- C: B A C D

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

- **A**: A C B D
- B: A B C D
- C: B A C D

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

What is a correct value for the reward function?

A: r(B) = -1

B: $r(B, \leftarrow, A) = -4$

C: r(B) = -3

D: $r(B, \leftarrow) = -1$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

What is a correct value for the reward function?

- **A**: r(B) = -1
- **B**: $r(B, \leftarrow, A) = -4$
- **C**: r(B) = -3
- D: $r(B, \leftarrow) = -1$

Episode 2	Episode 3	Episode 4		
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
		$(C,\leftarrow,B,-1)$		
		$(B,\leftarrow,A,-1)$		
		$(A,\leftarrow,exit,6)$		
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$		

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$ightharpoonup r(B,\leftarrow)=-1$$

- A: r(B) = -1
- B: $r(B, \to) = -3$
- C: r(B) = -3
- D: $r(B, \to, C) = -1$

Episode 1	Episode 2	Episode 3	Episode 4		
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A,\leftarrow,exit,6)$		

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$ightharpoonup r(B, \leftarrow) = -1$$

A:
$$r(B) = -1$$

B:
$$r(B, \to) = -3$$

C:
$$r(B) = -3$$

D:
$$r(B, \rightarrow, C) = -1$$

Episode 1	Episode 2	Episode 3	Episode 4		
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A,\leftarrow,exit,6)$		

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$ightharpoonup r(B,\leftarrow)=-1$$

A:
$$r(B) = -1$$

B:
$$r(B, \to) = -3$$

C:
$$r(B) = -3$$

D:
$$r(B, \to, C) = -1$$

=X4111910 1					
Episode 2	Episode 3	Episode 4			
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$			
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$			
		$(C,\leftarrow,B,-1)$			
		$(B,\leftarrow,A,-1)$			
		$(A, \leftarrow, exit, 6)$			
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$			

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A \mid B \mid C \mid D$

$$r(B,\leftarrow) = -1, \ r(B,\rightarrow) = -3$$

What is also correct for the reward function?

A:
$$r(C) = -1$$

B:
$$r(C, \leftarrow, B) = -3$$

C: None

D:
$$r(C, \leftarrow) = -1$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$
1 6 111 111		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3$$

What is also correct for the reward function?

A:
$$r(C) = -1$$

B:
$$r(C, \leftarrow, B) = -3$$

C: None

D:
$$r(C, \leftarrow) = -1$$

-						
	Episode 1	Episode 2	Episode 3	Episode 4		
	$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
	$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
	$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$		
				$(B,\leftarrow,A,-1)$		
				$(A,\leftarrow,exit,6)$		
	1 6: 1 1 1 1 1 1		`			

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1$$

- A: r(C) = -1
- B: $r(C, \rightarrow) = -3$
- C: r(C) = -3
- D: $r(C, \rightarrow, D) = -4$

	Episode 1	Episode 2	Episode 3	Episode 4
ĺ	$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
	$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
	$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A,\leftarrow,exit,6)$
٠,				

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1$$

A:
$$r(C) = -1$$

B:
$$r(C, \to) = -3$$

C:
$$r(C) = -3$$

D:
$$r(C, \rightarrow, D) = -4$$

Episode 1	Episode 2	Episode 3	Episode 4		
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A,\leftarrow,exit,6)$		

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: $A B C D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1$$

A:
$$r(C) = -1$$

B:
$$r(C, \to) = -3$$

C:
$$r(C) = -3$$

D:
$$r(C, \to, D) = -4$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3, r(C,\leftarrow) = -1, r(C,\rightarrow) = -3$$

Discussion point, do we need more reward values?

- A: Yes, for all states and actions.
- B: No.
- C: Yes, for terminal states.

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,\textit{exit},6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3$$

Add also the terminal state rewards:
$$r(\{A,D\},\{\leftarrow,\rightarrow\})=6$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

vvorid structure: A B C D Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure:
$$A \mid B \mid C \mid D$$

Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 \ r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure:
$$A B C D$$

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Let's compute the policy.

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$
 World structure: A B C D

World structure:
$$A \mid B \mid C \mid D$$

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Observation: Immediate rewards significantly decrease state value.

- A: Best is to go directly to terminal state
- B: We can go to the terminal state arbitrarily

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: A B C D Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Observation: Immediate rewards significantly decrease state value.

- A: Best is to go directly to terminal state
- B: We can go to the terminal state arbitrarily

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$
		`	

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\lbrace B,C\rbrace,\leftarrow)=-1, r(\lbrace B,C\rbrace,\rightarrow)=-3 \ r(\lbrace A,D\rbrace,\lbrace \leftarrow,\rightarrow\rbrace)=6$$

Obs.: Immediate rewards significantly decrease state value. ightarrow Best is to go directly to terminal state

- Compute
- A: $q(B, \leftarrow) = 5$
- B: $q(B, \leftarrow) = 3$
- C: $q(B, \leftarrow) = -1$
- D: $q(B, \leftarrow) = -3$

Episode 2	Episode 3	Episode 4		
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$		
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
		$(C,\leftarrow,B,-1)$		
		$(B,\leftarrow,A,-1)$		
		$(A, \leftarrow, exit, 6)$		
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$		

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\lbrace B,C\rbrace,\leftarrow)=-1, r(\lbrace B,C\rbrace,\rightarrow)=-3 \ r(\lbrace A,D\rbrace,\lbrace \leftarrow,\rightarrow\rbrace)=6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- A: $q(B, \leftarrow) = 5$
- B: $q(B, \leftarrow) = 3$
- C: $q(B, \leftarrow) = -1$
- D: $q(B, \leftarrow) = -3$

1 4
ode 4
B,-1)
(C, -3)
B,-1)
A, -1)
exit, 6)

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

A:
$$q(B, \leftarrow) = B \leftarrow A = 6 - 1 = 5$$

B:
$$q(B, \leftarrow) = 3$$

C:
$$q(B, \leftarrow) = -1$$

D:
$$q(B, \leftarrow) = -3$$

	Episode 1	Episode 2	Episode 3	Episode 4
ĺ	$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
	$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
	$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A,\leftarrow,exit,6)$
٠,				

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: A B C D

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

$$ightharpoonup q(B,\leftarrow)=5$$

(What can we assume about $\pi(C)$?)

A:
$$q(B, \rightarrow) = 5$$

B:
$$q(B, \rightarrow) = 3$$

C:
$$g(B, \rightarrow) = 0$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

$$ightharpoonup q(B,\leftarrow)=5$$

(What can we assume about $\pi(C)$?)

A:
$$q(B, \rightarrow) = 5$$

B:
$$a(B, \rightarrow) = 3$$

C:
$$q(B, \rightarrow) = 0$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

$$ightharpoonup q(B,\leftarrow)=5$$

(What can we assume about $\pi(C)$?)

A:
$$q(B, \to) = 5$$

B:
$$a(B, \to) = 3$$

C:
$$q(B, \to) = B \to C \to D = 6 - 3 - 3 = 0$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure: A B C D

Reward function:
$$r(\lbrace B,C\rbrace,\leftarrow)=-1, r(\lbrace B,C\rbrace,\rightarrow)=-3 \ r(\lbrace A,D\rbrace,\lbrace \leftarrow,\rightarrow\rbrace)=6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- $ightharpoonup q(B,\leftarrow)=5$
- $ightharpoonup q(B, \rightarrow) = 0$

 $\rightarrow \pi(B) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\lbrace B,C\rbrace,\leftarrow)=-1, r(\lbrace B,C\rbrace,\rightarrow)=-3 \ r(\lbrace A,D\rbrace,\lbrace \leftarrow,\rightarrow\rbrace)=6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- $ightharpoonup q(B,\leftarrow)=5$
- $ightharpoonup q(B, \rightarrow) = 0$
- $\rightarrow \pi(B) = \leftarrow$

Episode 2	Episode 3	Episode 4
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
		$(C,\leftarrow,B,-1)$
		$(B,\leftarrow,A,-1)$
		$(A,\leftarrow,exit,6)$
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B)$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$
World structure: $A \mid B \mid C \mid D$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$

A:
$$q(C, \rightarrow) = 5$$

B:
$$q(C, \rightarrow) = 3$$

C:
$$q(C, \rightarrow) = 0$$

D:
$$q(C, \to) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$

A:
$$q(C, \rightarrow) = 5$$

B:
$$q(C, \rightarrow) = 3$$

C:
$$q(C, \rightarrow) = 0$$

D:
$$q(C, \rightarrow) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$

A:
$$q(C, \to) = 5$$

B:
$$q(C, \to) = C \to D = 6 - 3 = 3$$

C:
$$q(C, \to) = 0$$

D:
$$q(C, \to) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\lbrace B,C\rbrace,\leftarrow)=-1, r(\lbrace B,C\rbrace,\rightarrow)=-3 \ r(\lbrace A,D\rbrace,\lbrace \leftarrow,\rightarrow\rbrace)=6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$

$$ightharpoonup q(C, \rightarrow) = 3$$

A:
$$q(C, \leftarrow) = 4$$

B:
$$q(C, \leftarrow) = 3$$

C:
$$a(C, \leftarrow) = 0$$

Episode 2	Episode 3	Episode 4
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
		$(C,\leftarrow,B,-1)$
		$(B,\leftarrow,A,-1)$
		$(A, \leftarrow, exit, 6)$
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Action set
$$A = \{\rightarrow, \leftarrow\}$$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$

$$ightharpoonup q(C, \rightarrow) = 3$$

A:
$$q(C, \leftarrow) = C \leftarrow B \leftarrow A = 6 - 1 - 1 = 4$$

B:
$$q(C, \leftarrow) = 3$$

C:
$$q(C, \leftarrow) = 0$$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$

- $ightharpoonup q(C, \rightarrow) = 3$
- $ightharpoonup a(C, \leftarrow) = 4$

Episode 2	Episode 3	Episode 4
$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
		$(C,\leftarrow,B,-1)$
		$(B,\leftarrow,A,-1)$
		$(A, \leftarrow, exit, 6)$
	$(B,\leftarrow,A,-1)$	$(B,\leftarrow,A,-1) (C,\rightarrow,D,-3)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

World structure: A B C D

Reward function: $r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3 \ r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$

- $ightharpoonup q(C, \rightarrow) = 3$
- $ightharpoonup q(C,\leftarrow)=4$
- $\rightarrow \pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D,\leftarrow,exit,6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A,\leftarrow,exit,6)$

each field in table is n-tuple (s, a, s', r)

State set
$$S = \{A, B, C, D\}$$
, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

Deterministic transition model:
$$p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$$

World structure:
$$\begin{bmatrix} A & B & C & D \end{bmatrix}$$

Reward function:
$$r(\{B,C\},\leftarrow) = -1, r(\{B,C\},\rightarrow) = -3, r(\{A,D\},\{\leftarrow,\rightarrow\}) = 6$$

Obs.: Immediate rewards significantly decrease state value. ightarrow Best is to go directly to terminal state

Solution:

- \blacktriangleright $\pi(B) = \leftarrow$
- \blacktriangleright $\pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C, \leftarrow, D, -3)$	
' ' ' ' '			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$, ,			

Calculating policy

- ▶ state set *S*,
- action set A,
- rewards *r*,
- ▶ transition model p(s'|s, a)
- ightharpoonup policy π

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C, \leftarrow, D, -3)$	
' ' ' ' ' '			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is the transition model?

A: deterministic

B: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$	(11, 7, 0,11, 0)	(B, 7, care, 0)	$(C,\leftarrow,B,-1)$	$(B,\leftarrow,A,-1)$	(11, 7, 0.11, 0)	$(C,\leftarrow,D,-3)$	(2, 7, 0,7, 0)
			$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A,\leftarrow,\textit{exit},6)$		$(D,\leftarrow,\mathit{exit},6)$	

What is a correct transitional probability?

A
$$p(C|B, \to) = 0.75$$

B
$$p(A|B, \to) = 0.75$$

$$(C p(A|B, ←) = 0.25)$$

D
$$p(D|B,\leftarrow) = 0.75$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C,\leftarrow,D,-3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is a correct transitional probability?

- A $p(C|B, \rightarrow) = 0.75$, see the episodes (B, \rightarrow) occurs 4 times, three of which lead to C, one case to A thus also $p(A|B, \rightarrow) = 0.25$
- **B** $p(A|B, \to) = 0.75$
- **C** $p(A|B,\leftarrow) = 0.25$
- **D** $p(D|B, \leftarrow) = 0.75$

Transition model: Similarly for other probabilities. Agent follows the direction given with probability 0.75. Otherwise, it goes the other direction.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C, \leftarrow, D, -3)$	
			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is the reward function?

A
$$r(B, \rightarrow, C) = -3$$

B
$$p(B, \rightarrow, A) = -3$$

$$P(B,\leftarrow,A)=-3$$

$$D p(B,\leftarrow,C) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(A, \rightarrow, cxt, 0)$	$(D, \neg \gamma, exit, o)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$	$(A, \rightarrow, cxtt, 0)$	$(C, \leftarrow, D, -3)$	$(\mathcal{D}, \rightarrow, exit, o)$
			$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A, \leftarrow, exit, 6)$		$(D,\leftarrow,\textit{exit},6)$	

What is the reward function?

A
$$r(B, \rightarrow, C) = -3$$

B
$$p(B, \to, A) = -3$$

C
$$p(B, \leftarrow, A) = -3$$

$$D p(B,\leftarrow,C) = -3$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$

Result:

- ▶ States: $S = \{A, B, C, D\}$, terminal= $\{A, D\}$, nonterminal= $\{B, C\}$
- ▶ Action set: $\{\leftarrow, \rightarrow\}$
- ► Rewards:

$$r(B, \{\leftarrow, \rightarrow\}, C) = -3, r(B, \{\leftarrow, \rightarrow\}, A) = -1, r(C, \{\leftarrow, \rightarrow\}, B) = -1, r(C, \{\leftarrow, \rightarrow\}, D) = -3$$

World structure:

- ► Transition model: Agent follows the direction given with probability 0.75. Otherwise, it goes the other direction.
- ▶ Policy: $\pi(B) = ?, \pi(C) = ?$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B,\leftarrow,A,-1)$		$(C,\leftarrow,D,-3)$	
			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

Policy evaluation:

$$\leftarrow$$
, \rightarrow $q(B, \leftarrow) =?, q(C, \rightarrow) =?$

$$\rightarrow$$
, \rightarrow $q(B, \rightarrow) =?, q(C, \rightarrow) =?$

$$\rightarrow$$
, \leftarrow $q(B, \rightarrow) =?, q(C, \leftarrow) =?$

$$\leftarrow$$
, \leftarrow $q(B, \leftarrow) =?, q(C, \leftarrow) =?$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D,\leftarrow,exit,6)$	(* ', ' , ', ', ', ', ', ', ', ', ', ', ',	(-, -, -, -, -,	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B,\leftarrow,A,-1)$	(**, **, ***, **,	$(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	(= , - , - , - , - ,
			$(A, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A,\leftarrow,\textit{exit},6)$		$(D,\leftarrow,extt,6)$	

A single policy computation:

$$\leftarrow, \rightarrow q(B, \leftarrow) =?, q(C, \rightarrow) =?$$

$$A \ q(B, \leftarrow) = .5 \cdot -1 + .5 \cdot -3,$$

$$q(C, \rightarrow) = .5 \cdot -1 + .5 \cdot -3$$

$$B \ q(B, \leftarrow) = .25 \cdot (6 - 1) + .75 \cdot (-3 + V(C)),$$

$$q(C, \rightarrow) = .25 \cdot -1 + .75 \cdot (-3 + V(B))$$

$$C \ q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot (-3 + V(C)),$$

$$q(C, \rightarrow) = .75 \cdot (-3 + 6) + .25 \cdot (-1 + V(B))$$

$$D \ q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot -3,$$

$$q(C, \rightarrow) = .5 \cdot -1 + .25 \cdot -3$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D,\leftarrow,\textit{exit},6)$	(* ', ' , ', ', ', ', ', ', ', ', ', ', ',	(-, -, -, -, -,	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B,\leftarrow,A,-1)$	(**, **, ***, **,	$(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	(= , - , - , - , - , - ,
			$(A, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A, \leftarrow, exit, 6)$		$(D,\leftarrow,exit,6)$	

A single policy computation:

$$\leftarrow, \rightarrow q(B, \leftarrow) =?, q(C, \rightarrow) =?$$

$$A \ q(B, \leftarrow) = .5 \cdot -1 + .5 \cdot -3,$$

$$q(C, \rightarrow) = .5 \cdot -1 + .5 \cdot -3$$

$$B \ q(B, \leftarrow) = .25 \cdot (6 - 1) + .75 \cdot (-3 + V(C)),$$

$$q(C, \rightarrow) = .25 \cdot -1 + .75 \cdot (-3 + V(B))$$

$$C \ q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot (-3 + V(C)),$$

$$q(C, \rightarrow) = .75 \cdot (-3 + 6) + .25 \cdot (-1 + V(B))$$

$$D \ q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot -3,$$

$$q(C, \rightarrow) = .5 \cdot -1 + .25 \cdot -3$$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C,\leftarrow,B,-1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$	$(B,\leftarrow,A,-1)$		$(C,\leftarrow,D,-3)$	
			$(B,\leftarrow,A,-1)$	$(A, \leftarrow, exit, 6)$		$(D,\leftarrow,\textit{exit},6)$	
			$(A, \leftarrow, exit, 6)$				

A single policy computation. As the policy is fixed $V(B) = q(B, \leftarrow), V(C) = q(C, \rightarrow)$:

▶
$$q(B, \leftarrow) = .75 \cdot (6-1) + .25 \cdot (-3 + q(C, \rightarrow))$$

$$q(C, \to) = .75 \cdot (-3 + 6) + .25 \cdot (-1 + q(B, \leftarrow))$$

Therefore:

$$prod q(B, \leftarrow) = .75 \cdot 5 + .25 \cdot (-3 + .75 \cdot 3 + .25 \cdot (-1 + q(B, \leftarrow))) = ... \approx 3.73$$

$$q(C, \rightarrow) = .75 \cdot 3 + .25 \cdot (-1 + 3.73) \approx 2.93$$

And we calculate for the remaining policies.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1) (B, \rightarrow, C, -3) (C, \leftarrow, B, -1) (B, \leftarrow, A, -1)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3) (D, \rightarrow, exit, 6)$
			$(A, \leftarrow, exit, 6)$				

$$\leftarrow$$
, \rightarrow $q(B, \leftarrow) \approx 3.73$, $q(C, \rightarrow) \approx 2.93$

$$ightarrow,
ightarrow q(B,
ightarrow) pprox 0.62, \ q(C,
ightarrow) pprox 2.15$$

$$ightarrow$$
, \leftarrow $q(B, \rightarrow) \approx -2.29$, $q(C, \leftarrow) \approx -1.71$

$$\leftarrow$$
, \leftarrow $q(B, \leftarrow) \approx 3.70$, $q(C, \leftarrow) \approx 2.77$

And we can determine the best policy: $\pi(B) = \leftarrow, \pi(C) = \rightarrow$