Learning by Approximation
J. Kostlivá, Z. Straka, P. Švarný

Today two examples:

1. Approximation in least square sense
2. Approximative Q-learning

Least square approximation

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error

How?:
A: minimize difference in coordinates
B: maximize error
C: minimize sum of squared errors
D: maximize difference in coordinates

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
How?:
A: minimize difference in coordinates
B: maximize error
C: minimize sum of squared errors
D: maximize difference in coordinates

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error

How? - minimize sum of squared errors.

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
How? - minimize sum of squared errors.
Define:
A: $\sum_{i}\left(f\left(x_{i}\right)-x_{i}\right)^{2}$
B: $\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
C: $\sum_{i}\left(x_{i}-f\left(x_{i}\right)\right)^{2}$
D: $\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
How? - minimize sum of squared errors.
Define:
A:
B: $\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
C:
D: \qquad

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$ How?:

A: find solution of $E=0$
B: find maximum of E
C: find minimum of E
D: find solution $E=-\infty$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$ How?:

A: find solution of $E=0$
B: find maximum of E
C: find minimum of E
D: find solution E

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E.

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E.
How? Solve:
A: $E=0$
B: $\partial E=0$
C: $E=-\infty$
D: $\partial E=-\infty$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E.
How? Solve:
A:
B: $\partial E=0$
C:
D:

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\partial E=0$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\partial E=0$
Derive by:
A: x
B: \mathbf{w}
C: w_{1}
D: $f\left(x_{i}\right)$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\partial E=0$
Derive by:
A:
B: w
C:
D:

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$
Evaluate $\frac{\partial E}{\partial w_{0}}$:
A: $\frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}-f\left(x_{i}\right)\right)$
B: $\frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+1-f\left(x_{i}\right)\right)$
C: $\frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)$
D: $\frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(x_{i}-f\left(x_{i}\right)\right)$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$
Evaluate $\frac{\partial E}{\partial w_{0}}$:
A:

B:
C: $\frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)$
D:

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

- $\frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

- $\frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)$

Evaluate $\frac{\partial E}{\partial w_{1}}$:
A: $\frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(w_{1} x_{i}-f\left(x_{i}\right)\right) x_{i}$
B: $\frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}$
C: $\frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(w_{1}+w_{0}-f\left(x_{i}\right)\right)$
D: $\frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(x_{i}+w_{0}-f\left(x_{i}\right)\right)$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

- $\frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)$

Evaluate $\frac{\partial E}{\partial w_{1}}$:
A:
B: $\frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}$
C:
D: \qquad

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=0 \\
& \frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=0 \\
& \frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Solve linear equation system.

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=0 \\
& \frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Solve linear equation system.
Using given tuples

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=0 \\
& \frac{\partial E}{\partial w_{1}}=2 \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Solve linear equation system.
Using given tuples (for simplicity let's use only first three tuples).

Least square approximation

We have:
\rightarrow given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$

- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Evaluate:
A: $\frac{\partial E}{\partial w_{0}}=w_{1}-w_{0}+5$
B: $\frac{\partial E}{\partial w_{0}}=2 w_{1}+w_{0}-4.2$
C: $\frac{\partial E}{\partial w_{0}}=3 w_{1}+3 w_{0}-10.6$
D: $\frac{\partial E}{\partial w_{0}}=w_{1}-2 w_{0}-3.1$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Evaluate:
A:
B:
C: $\frac{\partial E}{\partial w_{0}}=\left(w_{1} \cdot 0+w_{0}-2.1\right)+\left(w_{1} \cdot 1+w_{0}-3.6\right)+\left(w_{1} \cdot 2+w_{0}-4.9\right)=3 w_{1}+3 w_{0}-10.6$
D:

Least square approximation

We have:
\rightarrow given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$

- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=3 w_{1}+3 w_{0}-10.6=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=3 w_{1}+3 w_{0}-10.6=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Evaluate:
A: $\frac{\partial E}{\partial w_{1}}=5 w_{1}+3 w_{0}-13.4$
B: $\frac{\partial E}{\partial w_{1}}=2 w_{1}+6.2$
C: $\frac{\partial E}{\partial w_{1}}=w_{1}+w_{0}-2.4$
D: $\frac{\partial E}{\partial w_{1}}=2 w_{0}-3.1$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=3 w_{1}+3 w_{0}-10.6=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Evaluate:
A: $\frac{\partial E}{\partial w_{1}}=\left(w_{1} \cdot 0+w_{0}-2.1\right) \cdot 0+\left(w_{1} \cdot 1+w_{0}-3.6\right) \cdot 1+\left(w_{1} \cdot 2+w_{0}-4.9\right) \cdot 2=5 w_{1}+3 w_{0}-13.4$
B:
C:
D:

D: $\frac{\partial E}{\partial w}=2 w_{0}-3.1$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=3 w_{1}+3 w_{0}-10.6=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=5 w_{1}+3 w_{0}-13.4=0
\end{aligned}
$$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=3 w_{1}+3 w_{0}-10.6=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=5 w_{1}+3 w_{0}-13.4=0 \quad / \cdot(-1)
\end{aligned}
$$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=3 w_{1}+3 w_{0}-10.6=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=5 w_{1}+3 w_{0}-13.4=0 \quad / \cdot(-1)
\end{aligned}
$$

$$
-2 w_{1}+2.8=0 \rightarrow w_{1}=1.4
$$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=3 w_{1}+3 w_{0}-10.6=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=5 w_{1}+3 w_{0}-13.4=0 \quad / \cdot(-1)
\end{aligned}
$$

$$
\begin{aligned}
& -2 w_{1}+2.8=0 \rightarrow w_{1}=1.4 \\
& w_{0}=1 / 3\left(10.6-3 w_{1}\right)=\frac{6.4}{3} \approx 2.133
\end{aligned}
$$

Least square approximation

We have:

- given tuples $\left(x_{i}, f\left(x_{i}\right)\right):(0,2.1),(1,3.6),(2,4.9),(3,6.6), \ldots$
- approximation of function $\hat{f}(x, \mathbf{w})=w_{1} x+w_{0}$

Task: determine/compute parameters w_{0}, w_{1} with lowest error
Minimize sum of squared errors: $E=\sum_{i}\left(\hat{f}\left(x_{i}, \mathbf{w}\right)-f\left(x_{i}\right)\right)^{2}$
Find minimum of E by derivation $\frac{\partial E}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}} \sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)^{2}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{0}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right)=3 w_{1}+3 w_{0}-10.6=0 \\
& \frac{\partial E}{\partial w_{1}}=\sum_{i}\left(w_{1} x_{i}+w_{0}-f\left(x_{i}\right)\right) x_{i}=5 w_{1}+3 w_{0}-13.4=0 \quad / \cdot(-1)
\end{aligned}
$$

$$
-2 w_{1}+2.8=0 \rightarrow w_{1}=1.4
$$

$$
w_{0}=1 / 3\left(10.6-3 w_{1}\right)=\frac{6.4}{3} \approx 2.133
$$

$$
\Rightarrow \hat{f}(x, \mathbf{w})=1.4 x+2.133
$$

Approximative Q-learning

Approximative Q-learning

We have:

- an unknown grid world
- a few episodes the robot tried

Approximative Q-learning

We have:

- an unknown grid world
- a few episodes the robot tried

Today:

- we approximate Q-function
- $\hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}$
- we will compute parameters w_{0}, w_{1}

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
S=\{-1,0,1\}
$$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

each field in the table is an n-tuple $\left(s_{t}, a_{t}, s_{t+1}, r_{t+1}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	
each field in the table is an n-tuple $\left(s_{t}, a_{t}, s_{t+1}, r_{t+1}\right)$		

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
SGD briefly:

- Find \mathbf{w} that minimize $\sum_{t}\left(\operatorname{trial}_{t}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right)^{2}$
- How to do it online?
- In every timestep t, modify \mathbf{w} that value of $\left(\operatorname{trial}_{t}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right)^{2}$ will decrease.
- How?

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
How?:
A: $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)+\alpha\left(\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right)$
B: $\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right) \leftarrow \alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right)$
C: $\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right) \leftarrow \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)+\alpha($ trial $)$
D: $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2$)$
$(1,1$, exit , 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
How?:
A:

B:

C:
D: $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$>\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

Define:
A: trial $=r_{t+1}+\gamma \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
B: trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
C: trial $=\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
D: trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t}, a, \mathbf{w}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

Define:
A:
B: trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
C:
D:
$\max _{a} \hat{q}\left(s_{t}, a, \mathbf{w}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

each field in the table is an n-tuple $\left(s_{t}, a_{t}, s_{t+1}, r_{t+1}\right)$
Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Define w_{1} update:
A: $w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}$
B: $w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)$
C: $w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}$
D: $w_{1}^{t+1}=w_{1}^{t}+\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Define w_{1} update:
A:
B:
C: $w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}$
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	
each field in the table is		

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	
each field in the table is		

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

each field in the table is an n-tuple ($s_{t}, a_{t}, s_{t+1}, r_{t+1}$)
Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Define w_{0} update:
A: $w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)$
B: $w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)$
C: $w_{0}^{t+1}=w_{0}^{t}+\alpha($ trial $)\left(1-a_{t}\right)$
D: $w_{0}^{t+1}=w_{0}^{t}+\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2$)$
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Define w_{0} update:
A:
B: $w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)$
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$
$w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}$
$w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Let's compute $\mathbf{w}=\left(w_{1}, w_{0}\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Let's compute $\mathbf{w}=\left(w_{1}, w_{0}\right)$
For simplicity: $\gamma=1, \alpha=1$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Initialize w:
A: $\mathbf{w}=\left(w_{1}, w_{0}\right)=(1,1)$
B: $\mathbf{w}=\left(w_{1}, w_{0}\right)=(0,1)$
C: $\mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
D: arbitrarily

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$
$w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}$
$w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)$
- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

Initialize w:
A:
B:
C: $w=\left(w_{1}, w_{0}\right)=(0,0)$
D: arbitrarily (we choose $\left.\mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)\right)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t}
$$

$$
w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(0,0)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1$:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1$:
Compute:
A: trial $=-2$
B: trial $=0$
C: trial $=-1$
D: trial $=1$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha\left(\right.$ trial $\left.-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)\right) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1$:
Compute:
A: trial $=-2+\max \left\{\hat{q}\left(s_{t+1}=1, a=0, \mathbf{w}^{t}\right), \hat{q}\left(s_{t+1}=1, a=1, \mathbf{w}^{t}\right)\right\}=-2+\max \{0,0\}=-2$
B: trial $=0$
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	
each field in the table is an n-tuple $\left(s_{t}, a_{t}, s_{t+1}, r_{t+1}\right)$		

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha(\operatorname{diff}) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right) ;$ diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=0 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)
$$

$$
\text { Transition }\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1: \text { trial }=-2
$$

$$
\text { Compute diff }=\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right):
$$

A: diff $=0$
B: \quad diff $=1$
C: diff $=-1$
D: \quad diff $=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition ($s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2$), $t=1:$ trial $=-2$
Compute diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$:
A:
B: diff $=1$
C: diff $=-1$
D: diff $=-2-0=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1:$ trial $=-2$, diff $=-2$
Compute :
A: $w_{1}^{t+1}=2$
B: $w_{1}^{t+1}=0$
C: $w_{1}^{t+1}=1$
D: $w_{1}^{t+1}=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1$: trial $=-2$, diff $=-2$
Compute :
A:
B: $w_{1}^{t+1}=w_{1}^{t}+[\mathrm{diff}] s_{t} a_{t}=0+(-2) \cdot 1 \cdot 0=0$
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1$: trial $=-2$, diff $=-2 \Rightarrow w_{1}^{t+1}=0$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2$)$
$(1,1$, exit , 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1$: trial $=-2$, diff $=-2 \Rightarrow w_{1}^{t+1}=0$ Compute:

A: $w_{0}^{t+1}=2$
B: $w_{0}^{t+1}=1$
C: $w_{0}^{t+1}=0$
D: $w_{0}^{t+1}=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=0 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=0, a_{t}=1, s_{t+1}=1, r_{t+1}=-2\right), t=1$: trial $=-2$, diff $=-2 \Rightarrow w_{1}^{t+1}=0$
Compute :
A:
B:
C: $w_{0}^{t+1}=w_{0}^{t}+[\operatorname{diff}]\left(1-a_{t}\right)=0+-2(1-1)=0$
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=1, a_{t}=1, s_{t+1}=e x i t, r_{t+1}=2\right), t=2$:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition ($s_{t}=1, a_{t}=1, s_{t+1}=e x i t, r_{t+1}=2$), $t=2$:
Compute:
A: trial $=-2$
B: trial $=0$
C: trial $=-1$
D: trial $=2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=1, a_{t}=1, s_{t+1}=e x i t, r_{t+1}=2\right), t=2$:
Compute:
A:
B:
C:
D: trial $=2+\max \{0,0\}=2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha$ (diff) $\nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)
$$

$$
\text { Transition }\left(s_{t}=1, a_{t}=1, s_{t+1}=e x i t, r_{t+1}=2\right), t=2: \text { trial }=2
$$

$$
\text { Compute diff }=\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right):
$$

A: diff $=0$
B: diff $=2$
C: \quad diff $=-1$
D: \quad diff $=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha$ (diff) $\nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=1, a_{t}=1, s_{t+1}=\right.$ exit, $\left.r_{t+1}=2\right), t=2$: trial $=2$
Compute diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$:
A: diff $=0$
B: diff $=2-0=2$
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=1, a_{t}=1, s_{t+1}=\right.$ exit, $\left.r_{t+1}=2\right), t=2:$ trial $=2$, diff $=2$
Compute :
A: $w_{1}^{t+1}=2$
B: $w_{1}^{t+1}=0$
C: $w_{1}^{t+1}=1$
D: $w_{1}^{t+1}=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition ($s_{t}=1, a_{t}=1, s_{t+1}=$ exit, $r_{t+1}=2$), $t=2$: trial $=2$, diff $=2$
Compute :
A: $w_{1}^{t+1}=0+2 \cdot 1 \cdot 1=2$
B:
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=1, a_{t}=1, s_{t+1}=\right.$ exit, $\left.r_{t+1}=2\right), t=1$: trial $=2$, diff $=2 \Rightarrow w_{1}^{t+1}=2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=1, a_{t}=1, s_{t+1}=\right.$ exit, $\left.r_{t+1}=2\right), t=1:$ trial $=2$, diff $=2 \Rightarrow w_{1}^{t+1}=2$
Compute :
A: $w_{0}^{t+1}=2$
B: $w_{0}^{t+1}=1$
C: $w_{0}^{t+1}=0$
D: $w_{0}^{t+1}=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=1 \mathbf{w}=\left(w_{1}, w_{0}\right)=(0,0)$
Transition $\left(s_{t}=1, a_{t}=1, s_{t+1}=\right.$ exit, $\left.r_{t+1}=2\right), t=2$: trial $=2$, diff $=2 \Rightarrow w_{1}^{t+1}=2$
Compute :
A:
B:
C: $w_{0}^{t+1}=0+2(1-1)=0$
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=2 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(2,0)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=2 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)
$$

Transition $\left(s_{t}=0, a_{t}=0, s_{t+1}=-1, r_{t+1}=0\right), t=3:$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=2 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)
$$

Transition $\left(s_{t}=0, a_{t}=0, s_{t+1}=-1, r_{t+1}=0\right), t=3:$
Compute:
A: trial $=-2$
B: trial $=0$
C: trial $=-1$
D: trial $=2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha$ (diff) $\nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=2 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)
$$

Transition ($s_{t}=0, a_{t}=0, s_{t+1}=-1, r_{t+1}=0$), $t=3$:
Compute:
A:
B: trial $=0+\max \{(2 \cdot(-1) \cdot 0+0(1-0)),(2(-1) 1+0(1-1))\}=0+\max \{-2,0\}=0$
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha$ (diff) $\nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma$ max $_{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=2 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)
$$

Transition $\left(s_{t}=0, a_{t}=0, s_{t+1}=-1, r_{t+1}=0\right), t=3$: trial $=0$
Compute diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$:
A: diff $=0$
B: diff $=2$
C: diff $=-1$
D: diff $=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma$ max $_{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=2 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)
$$

$$
\text { Transition }\left(s_{t}=0, a_{t}=0, s_{t+1}=-1, r_{t+1}=0\right), t=3: \text { trial }=0
$$

$$
\text { Compute diff }=\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right):
$$

A: diff $=0-(2 \cdot 0 \cdot 0+0(1-0))=0$
B:
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2$)$
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, w)=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

each field in the table is an n-tuple $\left(s_{t}, a_{t}, s_{t+1}, r_{t+1}\right)$
Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha(\operatorname{diff}) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right) ;$ diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=2 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition $\left(s_{t}=0, a_{t}=0, s_{t+1}=-1, r_{t+1}=0\right), t=3:$ trial $=0$, diff $=0$
Since $[\mathrm{diff}]=0$:
\Rightarrow no change in (w_{1}, w_{0})

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition ($s_{t}=-1, a_{t}=0, s_{t+1}=$ exit, $r_{t+1}=-1$), $t=4$:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=e x i t, r_{t+1}=-1\right), t=4$:
Compute:
A: trial $=-2$
B: trial $=0$
C: trial $=-1$
D: trial $=2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \boldsymbol{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=e x i t, r_{t+1}=-1\right), t=4$:
Compute:
A:
B: trial $=0$
C: trial $=-1+0=-1$
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2$)$
$(1,1$, exit , 2$)$	$(-1,0$, exit, -1$)$	

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha(\operatorname{diff}) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=3 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)
$$

Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=e x i t, r_{t+1}=-1\right), t=4:$ trial $=-1$
Compute diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$:
A: diff $=0$
B: diff $=2$
C: \quad diff $=-1$
D: \quad diff $=-2$

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2$)$
$(1,1$, exit , 2$)$	$(-1,0$, exit, -1$)$	

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha(\operatorname{diff}) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right) ;$ diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=3 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)
$$

Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=e x i t, r_{t+1}=-1\right), t=4:$ trial $=-1$ Compute diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$:
A:
B:
C: diff $=-1-0=-1$
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=\right.$ exit, $\left.r_{t+1}=-1\right), t=4$: trial $=-1$, diff $=-1$
Compute :
A: $w_{1}^{t+1}=2$
B: $w_{1}^{t+1}=0$
C: $w_{1}^{t+1}=1$
D: $w_{1}^{t+1}=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=\right.$ exit, $\left.r_{t+1}=-1\right), t=4$: trial $=-1$, diff $=-1$
Compute :
A: $w_{1}^{t+1}=2+(-1) \cdot(-1) \cdot 0=2$
B:
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=\right.$ exit, $\left.r_{t+1}=-1\right), t=4:$ trial $=-1$, diff $=-1 \Rightarrow w_{1}^{t+1}=2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=\right.$ exit, $\left.r_{t+1}=-1\right), t=4:$ trial $=-1$, diff $=-1 \Rightarrow w_{1}^{t+1}=2$
Compute:
A: $w_{0}^{t+1}=2$
B: $w_{0}^{t+1}=-1$
C: $w_{0}^{t+1}=0$
D: $w_{0}^{t+1}=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=3 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,0)$
Transition $\left(s_{t}=-1, a_{t}=0, s_{t+1}=e x i t, r_{t+1}=-1\right), t=4:$ trial $=-1$, diff $=-1 \Rightarrow w_{1}^{t+1}=2$
Compute :
A:
B: $w_{0}^{t+1}=0+(-1) \cdot(1-0)=-1$
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=4 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=4 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)$
Transition ($s_{t}=1, a_{t}=1, s_{t+1}=e x i t, r_{t+1}=2$), $t=5$:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=4 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)
$$

Transition ($s_{t}=1, a_{t}=1, s_{t+1}=$ exit, $r_{t+1}=2$), $t=5$:
Compute:
A: trial $=-2$
B: trial $=0$
C: trial $=-1$
D: trial $=2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=$ trial $-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=4 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)
$$

Transition ($s_{t}=1, a_{t}=1, s_{t+1}=e x i t, r_{t+1}=2$), $t=5$:
Compute:
A:
B:
C:
D: trial $=2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha$ (diff) $\nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=4 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)
$$

Transition ($s_{t}=1, a_{t}=1, s_{t+1}=$ exit, $r_{t+1}=2$), $t=5$: trial $=2$
Compute diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$:
A: diff $=0$
B: diff $=2$
C: diff $=-1$
D: diff $=-2$

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2)	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}

- $\mathbf{w} \leftarrow \mathbf{w}+\alpha($ diff $) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$

$$
t=4 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)
$$

$$
\text { Transition }\left(s_{t}=1, a_{t}=1, s_{t+1}=\text { exit, } r_{t+1}=2\right), t=5: \text { trial }=2
$$

$$
\text { Compute diff }=\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right):
$$

A: diff $=2-(2 \cdot 1 \cdot 1+(-1)(1-1))=2-2=0$
B:
C:
D:

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2)
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q-function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha(\operatorname{diff}) \nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right) ;$ diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=4 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)$
Transition $\left(s_{t}=1, a_{t}=1, s_{t+1}=\right.$ exit, $\left.r_{t+1}=2\right), t=5$: trial $=2$, diff $=0$
Since [diff] $=0$:
\Rightarrow no change in (w_{1}, w_{0})

Approximative Q-learning

Episode 1	Episode 2	Episode 3
$(0,1,1,-2)$	$(0,0,-1,0)$	$(1,1$, exit, 2$)$
$(1,1$, exit, 2$)$	$(-1,0$, exit, -1$)$	

$$
\begin{aligned}
& S=\{-1,0,1\} \\
& A=\{0,1\} \\
& \gamma=1, \alpha=1 \\
& \hat{q}(s, a, \mathbf{w})=a s w_{1}+(1-a) w_{0}
\end{aligned}
$$

Task: compute Q -function - from each tuple refine w_{0}, w_{1}
$-\mathbf{w} \leftarrow \mathbf{w}+\alpha$ (diff) $\nabla \hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$; diff $=\operatorname{trial}-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}\right)$

$$
\begin{aligned}
& w_{1}^{t+1}=w_{1}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right) s_{t} a_{t} \\
& w_{0}^{t+1}=w_{0}^{t}+\alpha\left(\text { trial }-\hat{q}\left(s_{t}, a_{t}, \mathbf{w}^{t}\right)\right)\left(1-a_{t}\right)
\end{aligned}
$$

- trial $=r_{t+1}+\gamma \max _{a} \hat{q}\left(s_{t+1}, a, \mathbf{w}\right)$
$t=4 \mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)$
Transition ($s_{t}=1, a_{t}=1, s_{t+1}=$ exit, $r_{t+1}=2$), $t=5$: trial $=2$, diff $=0$
Since [diff] $=0$:
\Rightarrow no change in (w_{1}, w_{0})
Final solution: $\mathbf{w}=\left(w_{1}, w_{0}\right)=(2,-1)$

