

Mixed-initiative Task Planning for
Autonomous Underwater

Vehicles

In collaboration with LSTS lab, University of Porto
[Chrpa et al., 2015;2017]

Automated Planning

● We have Domain Definition languages (e.g.
PDDL)

● We have Planning Engines (e.g., LAMA, LPG)
● So, we can generate Plans (quite easily)

● But what about their execution ?

Task Planning for AUVs [Chrpa et
al., 2015]

● Necessity to control multiple heterogeneous
Autonomous Underwater Vehicles (AUVs)

● An operator (human) specifies high-level tasks
(e.g. “sample an object with ctd camera”)

● Task assignment to each AUV should be
automatized

How task assignment can be
automatized ?

● Each task has specific requirements
● Each vehicle has specific capabilities
● For completing tasks AUVs have to perform

certain sequences of actions
● Hence, we need to find a plan that if executed,

the AUVs will complete all given tasks

Available “Machinery”
● In LSTS, AUVs are controlled via NEPTUS (a

decision support tool with GUI) and DUNE
(onboard vehicle control) → “low-level”
control

● Domain-independent AI planning (i.e., finding
a sequence of actions that achieves a defined
goal) → “high-level” task planning
– PDDL, a language for specifying planning domain

models and problem instances

– LPG-td, a planning engine accepting domain and
problem descriptions in PDDL and returning a plan
(if exists)

Modular Architecture
● User specifies tasks in

NEPTUS

● NEPTUS generates a
planning problem and
sends it to LPG-td

● LPG-td returns a plan to
NEPTUS

● NEPTUS distributes the
plan to each of the
vehicles

“High-level” Specification

● Each AUV has certain payloads attached to it

● Each task must be completed by using a certain payload
(e.g. camera, sidescan)

● Each AUV has a limited amount of energy that is
consumed by executing actions

● Collected data can be communicated while an AUV is in
its “depot” (a “safe spot” close to shore/ship)

● Two (or more) AUVs cannot be at the same location or
perform the same task simultaneously

Formal conceptualization - objects

● Vehicles (V)
● Payloads (P)
● Phenomenons (X)
● Tasks (T)
● Locations (L)

Formal Conceptualization –
predicates

● at ⊆ V×L (vehicle’s location)
● base ⊆ V×L (vehicle’s “depot”)
● has ⊆ V×P (attached payloads to the vehicle)
● at-phen ⊆ X×L (phenomenon’s location)
● task ⊆ T×X×P (task description)
● sampled ⊆ T×V (acquired task data by vehicle)
● data ⊆ T (acquired task data by the control centre)

Formal Conceptualization –
(numeric) fluents

● dist: L × L → ℝ+ (distance between locations)
● survey-dist: L × L → ℝ+ (length of survey)
● speed: V → ℝ+ (vehicle’s speed)
● battery-level: V → ℝ+ (vehicle’s battery level)
● battery-use: V∪ P → ℝ+ (vehicle’s or payload’s

energy consumption)

Formal Conceptualization - actions

Move (v,l1,l2)

 Duration: d=dist(l1,l2)/speed(v)

 Precondition:

 At start: (v,l1)∈at, battery-level(v)≥ d*battery-use(v)

 At end: ∄v’≠v: (v’,l2)∈at

 Effects:

 At start: (v,l1)∉at, battery-level(v)=battery-level(v)-d*battery-use(v)

 At end: (v,l2)∈at

Formal Conceptualization - actions

Sample (v,t,x,p,l)

 Duration: d=60 (constant duration)

 Precondition:

 At start: battery-level(v)≥ d*battery-use(p)

 Overall: (v,l)∈at, (x,l)∈at-phen, (v,p)∈has, (t,x,v)∈task

 Effects:

 At start: battery-level(v)=battery-level(v)-d*battery-use(p)

 At end: (t,v)∈sampled

Formal Conceptualization - actions

Survey (v,t,x,p,l1,l2)

 Duration: d=survey-dist(l1,l2)

 Precondition:

 At start: (v,l1)∈at, battery-level(v)≥ d*(battery-use(v)+battery-use(p))

 Overall: (x,l1)∈at-phen, (x,l2)∈at-phen, (v,p)∈has, (t,x,v)∈task

 Effects:

 At start: (v,l1)∉at, battery-level(v)=battery-level(v)-d*(battery-use(v)+battery-use(p))

 At end: (v,l2)∈at, (t,v)∈sampled

No concurrent survey action can be executed over x

Formal Conceptualization - actions

Collect-data (v,t,l)

 Duration: d=60 (constant duration)

 Precondition:

 Overall: (v,l)∈at, (v,l)∈base,(t,v)∈sampled

 Effects:

 At end: t∈data

PDDL model of the Sample action

(:durativeaction sample

 :parameters (?v vehicle ?l – location ?t task

 ?o phenomenon ?p payload)

 :duration (= ?duration 60)

 :condition (and (over all (atphen ?o ?l))

 (over all (task ?t ?o ?p))

 (over all (at ?v ?l))

 (over all (has ?p ?v))

 (at start (>= (batterylevel ?v)

 (* (batteryuse ?p) 60))))

 :effect (and (at end (sampled ?t ?v))

 (at start (decrease (batterylevel ?v)

 (* (batteryuse ?p) 60)))))

Execution of the model: Settings
● Evaluated in Leixões

Harbour, Porto
● 3 light AUVs carrying

different payloads
● In phase one, areas

of interest were
surveyed

● In phase two,
contacts identified in
phase one were
explored

Planned vs. Execution time

● The plans were
executable

● High discrepancies,
especially for move
and survey actions

● Rough time
predictions that
were done only on
distance and type of
vehicle

Vehicle Action Time Difference

Noptilus-1

move
survey
sample
communicate

Noptilus-2

move
survey
sample N/A
communicate

Noptilus-3

move
survey
sample
communicate

47.80 ± 49.11
23.15 ± 23.26

1.33 ± 0.58
0.16 ± 0.17

39.57 ± 35.66
107.88 ± 141.10

0.25 ± 0.07
59.90 ± 57.05
24.00 ± 0.00
9.57 ± 13.64
0.11 ± 0.16

Additional Assumptions [Chrpa et
al., 2017]

1) Users can add, remove or modify tasks during
the mission

2) Vehicles might fail to execute an action

3) Communication with the control center is
possible only when a vehicle is in its “depot”

Additional Requirements for the
System

● System has to be flexible (e.g. a user can add
a new task) and robust (e.g. handling vehicles’
failures)

● Dynamic Planning, Execution and Re-planning
– Automatized response on task changes by user

and/or exceptional circumstances during plan
execution

● How the “one shot” model has to be changed ?

Model Amendments

● Removed battery constraints
– vehicles’ battery levels were much higher than duration of operations

● Added maximum “away” time constraints
– Vehicles have to come to their depots to establish communication (if they are

“away” communication might not be possible)

● Split the move action into move-to-sample, move-to-survey, move-to-
base, the former two must be succeeded by sample and survey action
respectively
● Optimizing plans (vehicles cannot go to locations they do not have

anything to do)
● Modified representation of phenomenons (objects and areas of

interests are explicitly distinguished)

Maximum “away” time constraints

● Numeric fluents
– from-base: V → ℝ+ (how long the vehicle is “away”)

– max-to-base: V → ℝ+ (maximum “away”time)

● Preconditions (at start) of the move, sample, survey actions
contain (d – action duration):
– from-depot(v) ≤ max-to-depot(v) – d

● Effects (at end) of the move, sample, survey actions contain (d –
action duration):
– from-depot(v) = from-depot(v) + d

● Effects (at end) of the move-to-base action contain:
– from-depot(v)=0

PDDL model of amended sample
action

(:durativeaction sample

:parameters (?v vehicle ?l location ?t task ?o oi ?p payload)

:duration (= ?duration 60)

:condition (and (over all (atoi ?o ?l))

 (over all (task ?t ?o ?p))

 (over all (at ?v ?l))

 (over all (has ?p ?v))

 (at start (<= (frombase ?v) ((maxtobase ?v) 60)))

)

:effect (and (at end (sampled ?t ?v))

 (at end (canmove ?v))

 (at start (increase (frombase ?v) 60))

)

)

Considered Models

● All Tasks
– Allocates all specified tasks to the vehicles

– Minimizes the plan execution time and the number
of vehicles’ returns to their depots

● One Round
– Allocates only tasks for the next “round” (i.e., after

vehicles return to their depots they cannot move)

– Maximizes the number of completed tasks

Execution
● Preprocessing

– Splitting large surveillance areas into smaller ones

● Planning

– NEPTUS generates a problem specification in PDDL, runs LPG-td, then
processes and distributes the plan among the vehicles

● Execution

– Each vehicle is responsible for executing its actions

– Move actions are translated into timed-waypoints for mitigating the
differences between planned and actual times

– When in depots vehicles communicate status of completed tasks
(success/failure) – failed tasks are “re-inserted”

● Replanning

– If a new planning request comes (e.g. a user added a new task), vehicles
continue to execute their current plans until they come back to their
depots, then they receive new plans

Execution of the models: Settings

● Evaluated in Leixões
Harbour, Porto

● Mine-hunting scenario was
used

● 3 light AUVs, 2 carried
sidescan, one carried camera

● In phase one, areas of
interest were surveyed

● In phase two, contacts
identified in phase one
sampled to identify them as
mines, or false positives

Results of the Models Execution

● Both models produced
correct plans that were
successfully executed

● During one of the executions
one AUV (Noptilus 3) failed
(depth sensor fault) – tasks
were automatically re-
inserted and allocated to a
different AUV, which
completed them

● All Tasks model produces
better quality plans (for larger
scenarios, however, One
Round model might be more
efficient)

Most planned/actual differences are
quite small (less than 3 seconds).

Around time 1000 a noticeable
difference occurred (vehicle had to
ascend during the survey). The delay
was eliminated by accelerating
during the following move action.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

