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Automated Planning

● We have Domain Definition languages (e.g. 
PDDL)

● We have Planning Engines (e.g., LAMA, LPG)
● So, we can generate Plans (quite easily)

● But what about their execution ?



  

Task Planning for AUVs [Chrpa et 
al., 2015]

● Necessity to control multiple heterogeneous 
Autonomous Underwater Vehicles (AUVs)

● An operator (human) specifies high-level tasks 
(e.g. “sample an object with ctd camera”)

● Task assignment to each AUV should be 
automatized 



  

How task assignment can be 
automatized ?

● Each task has specific requirements
● Each vehicle has specific capabilities 
● For completing tasks AUVs have to perform 

certain sequences of actions
● Hence, we need to find a plan that if executed, 

the AUVs will complete all given tasks



  

Available “Machinery”
● In LSTS, AUVs are controlled via NEPTUS (a 

decision support tool with GUI) and DUNE 
(onboard vehicle control) → “low-level” 
control

● Domain-independent AI planning (i.e., finding 
a sequence of actions that achieves a defined 
goal) → “high-level” task planning
– PDDL, a language for specifying planning domain 

models and problem instances

– LPG-td, a planning engine accepting domain and 
problem descriptions in PDDL and returning a plan 
(if exists) 



  

Modular Architecture
● User specifies tasks in 

NEPTUS

● NEPTUS generates a 
planning problem and 
sends it to LPG-td

● LPG-td returns a plan to 
NEPTUS

● NEPTUS distributes the 
plan to each of the 
vehicles



  

“High-level” Specification

● Each AUV has certain payloads attached to it

● Each task must be completed by using a certain payload 
(e.g. camera, sidescan)

● Each AUV has a limited amount of energy that is 
consumed by executing actions

● Collected data can be communicated while an AUV is in 
its “depot” (a “safe spot” close to shore/ship)

● Two (or more) AUVs cannot be at the same location or 
perform the same task simultaneously



  

Formal conceptualization - objects

● Vehicles (V)
● Payloads (P)
● Phenomenons (X)
● Tasks (T)
● Locations (L)



  

Formal Conceptualization – 
predicates

● at ⊆ V×L (vehicle’s location) 
● base ⊆ V×L (vehicle’s “depot”)
● has ⊆ V×P (attached payloads to the vehicle) 
● at-phen ⊆ X×L (phenomenon’s location)
● task ⊆ T×X×P (task description)
● sampled ⊆ T×V (acquired task data by vehicle) 
● data ⊆ T (acquired task data by the control centre) 



  

Formal Conceptualization – 
(numeric) fluents

● dist: L × L → ℝ+ (distance between locations)
● survey-dist: L × L → ℝ+ (length of survey)
● speed: V → ℝ+ (vehicle’s speed)
● battery-level: V → ℝ+ (vehicle’s battery level)
● battery-use: V∪ P → ℝ+ (vehicle’s or payload’s 

energy consumption)



  

Formal Conceptualization - actions

Move (v,l1,l2)

   Duration: d=dist(l1,l2)/speed(v)

   Precondition:

         At start: (v,l1)∈at, battery-level(v)≥ d*battery-use(v) 

         At end: ∄v’≠v: (v’,l2)∈at

   Effects:

        At start: (v,l1)∉at, battery-level(v)=battery-level(v)-d*battery-use(v)

        At end: (v,l2)∈at



  

Formal Conceptualization - actions

Sample (v,t,x,p,l)

   Duration: d=60 (constant duration)

   Precondition:

         At start: battery-level(v)≥ d*battery-use(p) 

         Overall: (v,l)∈at, (x,l)∈at-phen, (v,p)∈has, (t,x,v)∈task

   Effects:

        At start: battery-level(v)=battery-level(v)-d*battery-use(p)

        At end: (t,v)∈sampled



  

Formal Conceptualization - actions

Survey (v,t,x,p,l1,l2)

   Duration: d=survey-dist(l1,l2)

   Precondition:

         At start: (v,l1)∈at, battery-level(v)≥ d*(battery-use(v)+battery-use(p)) 

         Overall: (x,l1)∈at-phen, (x,l2)∈at-phen, (v,p)∈has, (t,x,v)∈task

   Effects:

        At start: (v,l1)∉at, battery-level(v)=battery-level(v)-d*(battery-use(v)+battery-use(p))

        At end: (v,l2)∈at, (t,v)∈sampled

No concurrent survey action can be executed over x



  

Formal Conceptualization - actions

Collect-data (v,t,l)

   Duration: d=60 (constant duration)

   Precondition:

        Overall: (v,l)∈at, (v,l)∈base,(t,v)∈sampled

   Effects:

        At end: t∈data



  

PDDL model of the Sample action

(:durative­action sample

 :parameters (?v ­ vehicle ?l – location ?t ­task 

              ?o ­ phenomenon ?p ­ payload)

 :duration (= ?duration 60)

 :condition (and (over all (at­phen ?o ?l))

                 (over all (task ?t ?o ?p))

                 (over all (at ?v ?l))

                 (over all (has ?p ?v))

                 (at start (>= (battery­level ?v)

                               (* (battery­use ?p) 60))))

 :effect (and (at end (sampled ?t ?v))

              (at start (decrease (battery­level ?v)

              (* (battery­use ?p) 60)))) )



  

Execution of the model: Settings
● Evaluated in Leixões 

Harbour, Porto
● 3  light AUVs carrying 

different payloads
● In phase one, areas 

of interest were 
surveyed

● In phase two, 
contacts identified in 
phase one were 
explored



  

Planned vs. Execution time

● The plans were 
executable

● High discrepancies, 
especially for move 
and survey actions

● Rough time 
predictions that 
were done only on 
distance and type of 
vehicle

Vehicle Action Time Difference

Noptilus-1

move
survey
sample
communicate

Noptilus-2

move
survey
sample N/A
communicate

Noptilus-3

move
survey
sample
communicate

47.80 ± 49.11
23.15 ± 23.26

1.33 ± 0.58
0.16 ± 0.17

39.57 ± 35.66
107.88 ± 141.10

0.25 ± 0.07
59.90 ± 57.05
24.00 ± 0.00
9.57 ± 13.64
0.11 ± 0.16



  

Additional Assumptions [Chrpa et 
al., 2017]

1) Users can add, remove or modify tasks during 
the mission

2) Vehicles might fail to execute an action

3) Communication with the control center is 
possible only when a vehicle is in its “depot”



  

Additional Requirements for the 
System

● System has to be flexible (e.g. a user can add 
a new task) and robust (e.g. handling vehicles’ 
failures)

● Dynamic Planning, Execution and Re-planning
– Automatized response on task changes by user 

and/or exceptional circumstances during plan 
execution

● How the “one shot” model has to be changed ?



  

Model Amendments 

● Removed battery constraints 
– vehicles’ battery levels were much higher than duration of operations

● Added maximum “away” time constraints
– Vehicles have to come to their depots to establish communication (if they are 

“away” communication might not be possible)

● Split the move action into move-to-sample, move-to-survey, move-to-
base, the former two must be succeeded by sample and survey action 
respectively
● Optimizing plans (vehicles cannot go to locations they do not have 

anything to do)
● Modified representation of phenomenons (objects and areas of 

interests are explicitly distinguished)



  

Maximum “away” time constraints

● Numeric fluents
– from-base: V → ℝ+ (how long the vehicle is “away”)

– max-to-base: V → ℝ+ (maximum “away”time)

● Preconditions (at start) of the move, sample, survey actions 
contain (d – action duration):
–  from-depot(v) ≤ max-to-depot(v) – d

● Effects (at end) of the move, sample, survey actions contain (d – 
action duration):
–  from-depot(v) =  from-depot(v) + d

● Effects (at end) of the move-to-base action contain:
– from-depot(v)=0



  

PDDL model of amended sample 
action

(:durative­action sample

:parameters (?v ­ vehicle ?l ­ location ?t ­task ?o ­ oi ?p ­ payload)

:duration (= ?duration 60)

:condition (and (over all (at­oi ?o ?l))

                (over all (task ?t ?o ?p))

                (over all (at ?v ?l))

                (over all (has ?p ?v))

                (at start (<= (from­base ?v) (­ (max­to­base ?v) 60)))

           )

:effect (and (at end (sampled ?t ?v))

             (at end (can­move ?v))

             (at start (increase (from­base ?v) 60))

        )

)



  

Considered Models

● All Tasks
– Allocates all specified tasks to the vehicles

– Minimizes the plan execution time and the number 
of vehicles’ returns to their depots

● One Round
– Allocates only tasks for the next “round” (i.e., after 

vehicles return to their depots they cannot move)

– Maximizes the number of completed tasks



  

Execution
● Preprocessing

– Splitting large surveillance areas into smaller ones

● Planning

– NEPTUS generates a problem specification in PDDL, runs LPG-td, then 
processes and distributes the plan among the vehicles

● Execution

– Each vehicle is responsible for executing its actions

– Move actions are translated into timed-waypoints for mitigating the 
differences between planned and actual times

– When in depots vehicles communicate status of completed tasks 
(success/failure) – failed tasks are “re-inserted”

● Replanning

– If a new planning request comes (e.g. a user added a new task), vehicles 
continue to execute their current plans until they come back to their 
depots, then they receive new plans 



  

Execution of the models: Settings

● Evaluated in Leixões 
Harbour, Porto

● Mine-hunting scenario was 
used

● 3  light AUVs, 2 carried 
sidescan, one carried camera

● In phase one, areas of 
interest were surveyed

● In phase two, contacts 
identified in phase one 
sampled to identify them as 
mines, or false positives



  

Results of the Models Execution

● Both models produced 
correct plans that were 
successfully executed

● During one of the executions 
one AUV (Noptilus 3) failed 
(depth sensor fault) – tasks 
were automatically re-
inserted and allocated to a 
different AUV, which 
completed them

● All Tasks model produces 
better quality plans (for larger 
scenarios, however, One 
Round model might be more 
efficient)

Most planned/actual differences are 
quite small (less than 3 seconds).

Around time 1000 a noticeable 
difference occurred (vehicle had to 
ascend during the survey). The delay 
was eliminated by accelerating 
during the following move action.
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