Course Information B0B17MTB – Matlab

Miloslav Čapek, Viktor Adler, Pavel Valtr, Michal Mašek, and Vít Losenický

Department of Electromagnetic Field Czech Technical University in Prague Czech Republic matlab@elmag.org

February 19, 2020 Summer semester 2019/20

Grade

67 - Dav	
MARO	
KAT	

B0B17MTB

- \blacktriangleright 13 weeks (14th week is a "reserve") Points ▶ 11 blocks with new theory, 1 block of bonuses, 1 block of projects. Α 90 - 100▶ Conditions of credit award B 80 - 89▶ To hand in a project (last week of the semester, 50 points). \mathbf{C} 70 - 79▶ Competition assignment (see next slide). D 60 - 69 \blacktriangleright To pass a test (last week of the semester, 20 points, min. 50%). E 50 - 59 \blacktriangleright To gather points from semester (30 points, min. 50%): F 0 - 49▶ short test during semester (15 points). \blacktriangleright homeworks (3 \times 5 points). ▶ Max. 2 missed classes (more absences only after prior arrangement). ▶ There are two courses taught this semester, any lecture can be substituted. ▶ Could happen that not all of the stuff of the course will be presented, because of time constraint – understanding the basics is a priority. ▶ Bonus stuff (slides) available for advanced students.
- https://cw.fel.cvut.cz/b192/courses/b0b17mtb/start

Introduction

B0B17MTB – Teachers and Contact

Viktor Adler Course teacher

Pavel Valtr Course teacher

Michal Mašek Course teacher

Introduction Vít Losenický Course teacher

To contact us, always use matlab@elmag.org!

Categories of Slides

▶ Each slide is categorized into one of following categories (see strip at the edge of slide):

Competition Assignment

▶ Selected assignments from previous semesters:

- see https://cw.fel.cvut.cz/b192/courses/b0b17mtb/start/projects/soutez.
- ▶ Project can be selected by any number of students.
- ► Conditions:
 - \blacktriangleright Project is completed according the assignment \rightarrow credit award.
 - ▶ Project is the best one \rightarrow winning the competition.
 - ▶ Prizes for the first three winners.

Course Syllabus

- 1 Introduction, information on the course, MATLAB environment, basic math operators
- 2 Vectors and matrices
- 3 Vectorization, indexation, relational and logical operators, homework (5 points)
- 4 Loops and program branching
- 5 Functions, debugging, homework (5 points)
- 6 Cells, strings, structures, short test (15 points)
- 7 Visualization, project choice
- 8 Static GUI
- 9 Dynamic GUI, homework (5 points)
- 10 Timer, sorting operations, profiler
- 11 Set operators, error treatment
- 12 Bonuses Symbolic math
- 13 Final test (20 points), presentation of projects (50 points)
- 14 (Reserve)

Schedule I.

Week	Date	Teacher	Lecture
1	17. 2.	MM	1 (intro)
	19. 2. (EN)	VA	1 (intro)
2	24. 2. 26. 2. (EN)	${f M}{f C}$ VL	2 (vectors and matrices)2 (vectors and matrices)
3	2. 3. 4. 3. (EN)	VL VL	3 (indexing) 3 (indexing)
4	9. 3.	MM	4 (loops, branching)
	11. 3. (EN)	MM	4 (loops, branching)
5	16. 3.	VA	5 (functions)
	18. 3. (EN)	PV	5 (functions)
6	23. 3.	VL	6 (strings)
	25. 3. (EN)	VL	6 (strings)
7	30. 3.	VA	7 (visualization)
	1. 4. (EN)	VA	7 (visualization)

Schedule II.

Week	Date	Teacher	Lecture
8	6. 4.	VA	8 (static GUI)
	8. 4. (EN)	VA	8 (static GUI)
9	13. 4.		– <mark>Holidays</mark>
	15. 4. (EN)	MM	9 (dynamic GUI)
10	20. 4. 22. 4. (EN)	$\frac{\rm MM}{\rm MC}$	9 (dynamic GUI) 10 (timer, sorting operations)
11	27. 4.	MC	10 (timer, sorting operations)
	29. 4. (EN)	MC	11 (set operators)
12	4. 5.	MC	11 (set operators)
	6. 5. (EN)	MC	12 (bonuses)
13	11. 5.	MC	12 (bonuses)
	13. 5. (EN)	—	– Rector's day
14	18. 5.	all	13 (test, projects)
	20. 5. (EN)	all	13 (test, projects)

Principles

- *M*Ř
- ▶ The aim of the course is to teach you something if the presentation is to fast, be heard.
- ▶ If you have an idea / proposal how to solve a problem in a more efficient way, put it forward.
- ▶ Can happen that the lecturer is not able to answer your question immediately. In that case the answer will be provided during the next lecture.

Literature

► MATLAB documentation.

► Also online ► Get started (pdf file)

- Attaway, S.: MATLAB A Practical Introduction to Programming and Problem Solving, 3rd ed.
 - ▶ Available at Department's library.
- ▶ Hahn, B. H., Valentine, D. T.: Essential Matlab, 5th Ed.
 - ▶ Available at Department's library.
- ▶ Other literature and sources will be mentioned during the semester...

Questions?

B0B17MTB - Matlab matlab@elmag.org

February 19, 2020 Summer semester 2019/20

Acknowledgement: Filip Kozak.

B0B17MTB - Matlab

This document has been created as a part of B0B17MTB course.

Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.