
INTRODUCTION

TO

SOFTWARE DESIGN

FROM ANALYSIS TO DESIGN,

ENTERPRISE APPLICATION ARCHITECTURE (EAA),

PERSISTENT LAYER OF EAA

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 1

WHAT TO EXPECT FROM

SOFTWARE DESIGN

Problem analysis (Komarek)

• Analysis gave us a real-world view/perspective to the problem

• No software constraints were considered

• Objects/concepts of domain

Software design (Cerny)

• Finding an appropriate software structure to capture the problem

• Determining architecture

• Design objects reflect software constraints

• Data types, structural decomposition, databases, networks

• Artificial objects that do not have anything to do with real world

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 2

WHAT TO EXPECT FROM

SOFTWARE DESIGN

Problem analysis

• System is understood as a black box (BB)

• Analysis described input and output expected from the BB

• Black box uses Domain terminology

Software design

• Opens the BB and aims to design what is inside

• Multiple approaches to do that influenced by many factors

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 3

WHAT TO EXPECT FROM

SOFTWARE DESIGN

Problem analysis

• We know what customer wants

• Vision

• Functional requirements

• Domain model

• Scenarios (use cases)

• Business models

Software design

• Motivation

• Do not reinvent the wheel

• Reuse what possible

• Design something easy to comprehend, easy to read

• Provide the expected functionality

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 4

WHAT TO EXPECT FROM

SOFTWARE DESIGN

Problem analysis

• We know what customer wants

• Vision

• Functional requirements

• Domain model

• Scenarios (use cases)

• Business models

Software design

• Object oriented, Component based, Industry standards!

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 5

AVOID MISTAKES!

FLAWS AND BUGS

Relative costs to fix an issue

Cheap

Hell expensive

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 6

THINK TWICE

BEFORE YOU START

When designing software

• Expect long live

• Expect you work in team

• what you do, should be understood by others

• When you design something, make it easy for other to understand it

• Expect that other spend most of the time reading how it works!

• Abstraction!!

• Interfaces!!

• Annotations!!

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 7

MOTIVATION EXAMPLE

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 8

Car b(List<Car> list) {

Car c = list.get(0);

c.produce();

c.test();

c.ship();

return c;

}

Fabia a(ArrayList<Fabia> list) {

Fabia f = list.get(0);

f.produce();

f.test();

f.ship();

return f;

}

Car

Fabia Octavia

Be abstract!

• List vs. ArrayList

• Car vs. Fabia

• Virtual methods!

• Object-oriented

MOTIVATION EXAMPLE

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 9

Car b(List<Car> list) {

Car c = list.get(0);

c.produce();

c.test();

c.ship();

return c;

}

Fabia a(ArrayList<Fabia> list) {

Fabia f = list.get(0);

f.produce();

f.test();

f.ship();

return f;

}

Car

Fabia Octavia

Be abstract!

• If you do you get A!

THINK TWICE BEFORE

YOU START

Numbers/Statistics

• Software maintenance

• 65-75% of life-cycle

• Understanding to the software

• 40-60% of the entire maintenance!

• User Interface

• Very expensive!

• 50% of the entire development of EA

Consider these

before designing your

home nuclear power

plant

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 10

ASSUME NO ONE IS PERFECT,

BUT CHARGE THE CUSTOMER

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 11

VISUALIZATION OF

FIRST STEPS IN DESIGN

• Keywords

• Use Case (Scenario)

• Domain Model

• System Sequence Diagram

• System Operation

• Operation Contract

• Design Model

?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 12

VISUALIZATION

ANALYSIS OUTCOME

• Domain model

• Real-world representation of concepts

• No software constraints

• Scenarios

• Fully dressed Use Cases

• Capture requirements

• Interaction of user and black box

?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 13

VISUALIZATION

ANALYSIS OUTCOME

• Domain model

• Scenarios

?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 14

1
2
3
4
5

3.*
4.*

VISUALIZATION

ANALYSIS OUTCOME

• Domain model

• Scenarios

?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 15

1
2
3
4
5

3.*
4.*

Static structure
Dynamic and

Static Information

User – system

interaction

VISUALIZATION

DESIGNING

• Domain model

• Scenarios

?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 16

1
2
3
4
5

3.*
4.*

User – system

interaction

VISUALIZATION

DESIGNING

• Domain model

• Scenarios

?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 17

1
2
3
4
5

3.*
4.*

User – system

interaction

• Domain model

• Scenarios ?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 18

1
2
3
4
5

3.*
4.*

VISUALIZATION

DESIGNING

OUTCOME

SYSTEM SEQUENCE DIAGRAM
SSD

• Domain model

• Scenarios ?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 19

1
2
3
4
5

3.*
4.*

System sequence

diagram (SSD)

System sequence

diagram (SSD)
Special usage of UML

Sequence diagram to

describe communication

with black box and user

OUTCOME

SYSTEM OPERATION

• Domain model

• Scenarios ?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 20

1
2
3
4
5

3.*
4.*

SSD helps to deduce

System Operations

CallX()

CallY()
CallZ() System Operation

Function called from

outside of the system

that is processed by

the black box to get

required results

• Domain model

• Scenarios ?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 21

1
2
3
4
5

3.*
4.*

CallX()

CallY()
CallZ()

OUTCOME

SYSTEM OPERATION

CallX()
CallY()
CallZ()

System

System operation

Function called from

outside of the system

that is processed by

the black box to get

required results

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 22

EXAMPLE:

USE CASE SCENARIO
TO

SSD

Use case:

1. Uživatel odešle dotaz na cenu košíku

2. Systém zpracuje košík, dohledá ceny

a sečte kvantitu vynásobenou cenou a

prezentuje uživateli cenu košíku

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 23

EXAMPLE:

USE CASE SCENARIO
TO

SSD

SSD:Use case:

1. Uživatel odešle dotaz na cenu košíku

2. Systém zpracuje košík, dohledá ceny

a sečte kvantitu vynásobenou cenou a

prezentuje uživateli cenu košíku

Cena košíku

Dotaz na cenu()
:Uživatel

:System

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 24

EXAMPLE:

USE CASE SCENARIO
TO

SSD

SSD:Use case:

1. Uživatel odešle dotaz na cenu košíku

2. Systém zpracuje košík, dohledá ceny

a sečte kvantitu vynásobenou cenou a

prezentuje uživateli cenu košíku

Cena košíku

Dotaz na cenu()
:Uživatel

:System

System

getTotelCharge()

..

..

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016

EXAMPLE II:

USE CASE SCENARIO
TO

SSD

Simple cash-only Process Sale Scenario

1. Customer arrives at a POS checkout

with goods to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item, and

presents item description, price and

running total.

cashier repeats steps 3-4 until

indicates done.

5. System presents total with taxes

calculated.

6. Get payment

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 26

EXAMPLE II:

USE CASE SCENARIO
TO

SSD

change due, receipt

makePayment(amount)

total with taxes

endSale()

description, total

addLineItem(itemID, quantity)

makeNewSale()
:Cashier

:System

Simple cash-only Process Sale Scenario

1. Customer arrives at a POS checkout

with goods to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item, and

presents item description, price and

running total.

cashier repeats steps 3-4 until

indicates done.

5. System presents total with taxes

calculated.

6. Get payment

*[more items]

EXAMPLE II:

SSD TO SYSTEM OPERATION

The set of all required system operations is

determined by identifying the system events.

• makeNewSale()

• addLineItem(itemID, quantity)

• endSale()

• makePayment(amount)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 27

System

makeNewSale()

addLineItem(itemID, quantity)

endSale()

makePayment()

In the UML the

system as a whole

can be represented

as a class.

• Domain model

• Scenarios ?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 28

1
2
3
4
5

3.*
4.*

CallX()

CallY()
CallZ()

TOWARDS DESIGN

OPERATION CONTRACTS

CallX()
CallY()
CallZ()

System

Operation Contracts

Contracts are documents

that describe system

behavior.

Contract

CallX

EXAMPLE II:

OPERATION CONRACTS

Contracts may be defined for system operations

• Operations that the system (as a black box) offers in its public interface

to handle incoming system events.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 29

System

makeNewSale()

addLineItem(itemID, quantity)

endSale()

makePayment()

The entire set of
system operations

across all use
cases, defines the

public system
interface.

EXAMPLE II:

OPERATION CONRACT:

Contract CO2: addLineItem

Operation: addLineItem (itemID: ItemID, quantity: integer)

Cross References: Use Cases: Process Sale.

Pre-conditions: There is a sale underway.

Post-conditions:

 A SalesLineItem instance sli was created. (instance creation)

 sli was associated with the Sale. (association formed)

 sli.quantity was set to quantity. (attribute modification)

 sli was associated with a ProductSpecification, based on itemID

match (association formed)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 30

addLineItem

EXAMPLE II:

OVERVIEW

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 31

Operation:

makeNewSale

...

Use Case:

Process Sale

Use Case

System

Sequence

Diagram

System

Operations Contracts

makeNewSale()

addLineItem

(itemID, quantity)

endSale()

makePayment()

System

makeNewSale()

addLineItem(itemID, quantity)

endSale()

makePayment()

Operation:

addLineItem

...

Operation:

endSale

...

Operation:

makePayment

...

• Domain model

• Scenarios ?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 32

1
2
3
4
5

3.*
4.*

CallX()

CallY()
CallZ()

CallX()
CallY()
CallZ()

System

TOWARDS DESIGN MODEL

ASSIGN SYSTEM OPERATIONS TO OBJECTS

?
Contract

CallX

TOWARDS DESIGN

GRASP

• Domain model

• Scenarios ?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 33

1
2
3
4
5

3.*
4.*

CallX()

CallY()
CallZ()

CallX()
CallY()
CallZ()

System

CallX()

CallZ()

GRASP

Genenal Responsibility Assignment

Software Patterns.

Assign responsibilities to objects

(Which operation to which object)

GRASP

Contract

CallX

GRASP

• Patterns that help us to choose object into which we assign

a particular responsibility

• Name / Problem / Solution

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 34

GRASP

Genenal Responsibility Assignment

Software Patterns.

Assign responsibilities to objects

(Which operation to which object)

1. Information Expert

2. Creator

3. Low coupling

4. High cohesion

5. Controller

6. Polymorphism

7. Pure fabrication

8. Indirection

9. Do not talk to strangers

GRASP

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 35

1. Information Expert

• Most basic principle to assign
responsibility

2. Creator

• Who should create new instances

3. Low coupling

• Support low dependency, low change
impact, increase reuse

4. High cohesion

• Keep complexity manageable, keep
clarity

5. Controller

• Handle system events

6. Polymorphism

• Variation of behavior through
polymorphic methods

7. Pure fabrication

• Make artificial object to help (3) a (4)

8. Indirection

• Get information through a delegation
to associated objects

9. Do not talk to strangers

• Talk to associated objects only, avoid
indirect objects

http://store3.yimg.com/I/ied-online_1551_2585237

GRASP

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 36

More about grasps next week

http://store3.yimg.com/I/ied-online_1551_2585237

OPENING BLACK BOX

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 37
Tomáš Černý

Multiple approaches Objects

Packages

Libraries

Layers

Components

Constructs
Artifacts

OBJECT-ORIENTED DESIGN
OOD

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 38
Tomáš Černý

• Object-oriented constructs

• Generalization, polymorphism, information hiding

• Delegation, functional decomposition

• Component design

• Layers

• Subsystems

• Best practice

• Design patterns (Solution to a repeatable problems)

QUALITY ATTRIBUTES

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 39
*See more at http://en.wikipedia.org/wiki/List_of_system_quality_attributes

Tomáš Černý

• Runtime

• Performance

• Security

• Availability

• Reliability

• Fault-tolerance

• Functionality

• Usability

• Availability

• Static

• Modifiability

• Readability

• Integrability

• Reuse

• Testability

We cannot have all!!!

ENTERPRISE APPLICATION (EA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 40
Tomáš Černý

• Enterprise Application (EA)

• An enterprise application is the term used to describe

applications -- or software -- that a business would use to

assist the organization in solving enterprise problems.

• When the word "enterprise” is combined with

"application," it usually refers to a software platform that

is too large and too complex for individual or small

business use.

• Something big that handles a lot of data and business rules

• Sometimes use term Enterprise System

• http://en.wikipedia.org/wiki/Enterprise_software

http://www.ecrmguide.com/
http://www.webopedia.com/TERM/E/enterprise.html
http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/S/software.html
http://www.webopedia.com/TERM/S/SMB.html

ENTERPRISE APPLICATION (EA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 41
Tomáš Černý

• Enterprise Application (EA) Examples

• Information system of school, hospital

• Bank transactions

• Accounting system

• Flight booking

• E-commerce

• Components

• Database

• Content management

• Web-services

• Lot of User Interface to collect and manipulate data

• Business rules

ENTERPRISE APPLICATION

ARCHITECTURE (EAA) FRAMEWORK

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 42
Tomáš Černý

• Usually the responsibilities divide to layers

• Example: Java EE Framework to build EA with EAA

ENTERPRISE APPLICATION

ARCHITECTURE (EAA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 43
Tomáš Černý

• Usually application responsibilities divide to layers

• EAA with 3 layers

ENTERPRISE APPLICATION

ARCHITECTURE (EAA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 44
Tomáš Černý

• EAA in the context of EAA framework

ENTERPRISE APPLICATION

ARCHITECTURE (EAA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 45
Tomáš Černý

ENTERPRISE APPLICATION

ARCHITECTURE (EAA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 46
Tomáš Černý

ENTERPRISE APPLICATION

ARCHITECTURE (EAA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 47
Tomáš Černý

• Layers (Bottom up)

• Persistence

• Data model, data persistence, data access

• Business logic (other names)

• Interaction, Business flow, Business constraints/rules

• Dependency injection, validation, calculation

• Presentation

• User Interfaces, present the above to user make it easy

to process task, automate as much as passible
• Do not teach users new things

ENTERPRISE APPLICATION

ARCHITECTURE (EAA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 48
Tomáš Černý

• Layers - Components

• Persistence

• Data model – Entity JPA

• Data Access - Data Access Object (DAO)

• Business logic

• Services – integrate business flow/constraints/rules - EJB

• Dependency injection – CDI (which DAO/Service to use)

• Patterns – Façade, Bridge

• Transitions

• Presentation

• Controllers – Java Beans, Session Scopes

• View code – XHTML/JSP/JSF

ENTERPRISE APPLICATION

ARCHITECTURE (EAA)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 49
Tomáš Černý

• Layers - Components

• Persistence

• Data model – Entity JPA

• Data Access - Data Access Object (DAO)

• Business logic

• Services – integrate business flow/constraints/rules - EJB

• Dependency injection – CDI (which DAO/Service to use)

• Patterns – Façade, Bridge

• Presentation

• Controllers – Java Beans, Session Scopes

• View code – XHTML/JSP/JSF

S
e
c
u
ri
ty

T
ra

n
s
a
c
ti
o
n
s

E
x
c
e
p
ti
o
n
 h

a
n
d
lin

g

Not everything is

that easy!

PERSISTENCE LAYER

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 50

OBJECT-RELATIONAL MAPPING
ORM

• Quotes

• Ted Neward, late 2004

• "Object-Relational mapping is the Vietnam of our industry”

• I've seen developers struggle for years with the huge mismatch

between relational database models and traditional object

models. And all the solutions they come up with seem to make

the problem worse.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 51

WHAT IS ORM?

• Persistence

• Helping to achieve persistence – app data outlive the process

• Relational database

• Persistence to RDBMS in Object-oriented app

• Object-relational mismatch

• Paradigm mismatch – object model and relational model incompatible

• Granularity

• More objects than tables in DB (Person>Address)

• Subtypes

• Inheritance in DB?

• Identity notion

• Primary key vs. a == b and a.equals(b) options

• Associations

• Unidirectional/Bidirectional in OOP vs Foreign Key in RDBMS

• Data navigation

• Fundamental difference in OOP and DRBMS

• Object network vs. JOIN ? Efficiency number of SQL queries (lazy load)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 52

OBJECT-RELATIONAL MAPPING
ORM

• Databases are relational

• Relations and SQL

• No inheritance

• Good performance and centralization

• ACID, fast to save and retrieve data = GOOD for Persistence

• Object works

• Great for problem decomposition

• Slow to be used for data persistence

• Designed to deal with problems not to persist data

• All nice features and instruments of Object-oriented design

• Polymorphism, Generics..

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 53

PERSISTENCE LAYER

Object-relational mapping (ORM)

• Databases are relational RDBMS

• Objects are not

• Technical incompatibility

• Solution – mapping to both directions

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 54

OBJECT-RELATIONAL MAPPING

(ORM)

• Create

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 55

public void create() {

Event e = new Event(”First event!”,new Date())

Session session = sessionFactory.openSession();

session.beginTransaction();

session.save(e);

session.save(new Event(”Second event”,new Date()));

session.getTransaction().commit();

session.close();

}

OBJECT-RELATIONAL MAPPING

(ORM)

• Read

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 56

public void read() {

Session session = sessionFactory.openSession();

session.beginTransaction();

List result = session.createQuery("from Event”).list();

for (Event event : (List<Event>) result) {

out.print(”Event “+event.getDate()+”):”+event.getTitle());

}

session.getTransaction().commit();

session.close();

}

OBJECT-RELATIONAL MAPPING

(ORM)

• Entity + annotation

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 57

@Entity

@Table(name = "EVENTS")

public class Event {

...

@Id

@GeneratedValue("increment”)

@GenericGenerator(

name="increment",

strategy = "increment")

public Long getId() {

return id;

}

public String getTitle() {

return title;

}

@Temporal(TemporalType.TIMESTAMP)

@Column(name = "EVENT_DATE")

public Date getDate() {

return date;

}

}

Note the JavaBeans

rules @Component

OBJECT-RELATIONAL MAPPING

(ORM)

• Read/Write

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 58

...

Cat fritz = (Cat) sess.load(Cat.class, generatedId);

..

Cat cat = (Cat) sess.get(Cat.class, id);

if (cat==null) {

cat = new Cat();

sess.save(cat, id);

}

..

sess.save(cat);

sess.flush(); //force the SQL INSERT

sess.refresh(cat); //re-read the state (after the trigger executes)

...

@Entity

public class FlyingObject

@ManyToOne

public PropulsionType

getPropulsion() {

return altitude;

}

@OneToOne(cascade =

CascadeType.ALL)

public Navigation getNavi() {

return navi;

}

OBJECT-RELATIONAL MAPPING

(ORM)

• Inheritance Associations

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 59

@Entity

@Inheritance(strategy=

InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(

name="planetype”,

discriminatorType=

DiscriminatorType.STRING

)

@DiscriminatorValue("Plane")

public class Plane { ... }

@Entity

@DiscriminatorValue("A320")

public class A320 extends Plane

{ ... }

Note the JavaBeans

rules @Component

ORM FEATURES

• Object property mapping

• Association mapping (One-one, one-many, many-many)

• Lazy loading

• Inheritance mapping

• Single/Table per class/Table per concrete class

• Generated Keys

• Cascades

• Locking – Bob and John modify Person with ID = 1

• Hibernate Query Language HQL

• Mapping to many databases

• Cache

• Criteria API

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 60

OBJECT-RELATIONAL MAPPING

(ORM)

• Issues

• Needs custom equals and hashCode

• Too much SQL

• You can make custom/native query

• More at DOC

• http://docs.jboss.org/hibernate/orm/4.2/quickstart/en-US/html/

• http://docs.jboss.org/hibernate/orm/4.2/devguide/en-US/html/

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 61

DESIGN PATTERNS

• Best practice solution to a particular problem

• Named problem and solution

• Not relevant to a specific contest

• Good Software Engineer and Developer has good

overview of Design Patterns

• Programming Bible

• Erich Gamma

• Martin Fowler

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 62

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN

• Problem:

• How to access persistent objects

• Where to persist data

• Wrap access to Data Source

• Indirection

• Object that provides interface to persistence mechanism

• Separates data access

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 63

Client/Test/

Upper object

You App
Entity

e.g. Database

DAO Indirection

• Design pattern

• Object that provides interface to persistence mechanism

• Separates data access

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 64

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN

Client/Test/

Upper object

You App
Entity

e.g. Database

DAO Indirection

DAO Interface

• Interaction

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 65

Data

Entity
Client/Test/

Upper object

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN

• Usual situation

• Different Objects

• Client does not know the details

• Transparent Data Source

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 66

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN

• Usual situation

• Different Data Sources

• Client unaware

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 67

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN

e.g. Database

test

e.g. Database

production
e.g. XML

storage test

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN INTERFACE

// Interface that all CustomerDAOs must support

public interface CustomerDAO {

public int insertCustomer(...);

public boolean deleteCustomer(...);

public Customer findCustomer(...);

public boolean updateCustomer(...);

public RowSet selectCustomersRS(...);

public Collection selectCustomersTO(...);

...

}

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 68

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN IMPLEMENTATION

public class CloudscapeCustomerDAO

implements CustomerDAO {

public int insertCustomer(...) {

// Implement insert customer here.

// Return created customer number

// or a -1 on error

}

public boolean deleteCustomer(...) {

// Implement delete customer here

// True -success, false -failure

}

public Customer findCustomer(...) {

// Find a customer using supplied

// argument values -search criteria

// Return Transfer Object if found,

// return null on error / not found

}

public boolean updateCustomer(...) {

// update record here using data

// from the customerData Object

// True - success, false – failure

}

…

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 69

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN ENTITY

@Entity

public class Customer implements java.io.Serializable {

// member variables

int customerNumber;

String name;

String streetAddress;

String city;

...

// getter and setter methods...

...

}

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 70

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN

// create the required DAO Factory

DAOFactory cloudscapeFactory = ..

// Create a DAO

CustomerDAO custDAO =

daoFactory.getCustomerDAO();

// create a new customer

int custNo = custDAO.insertCustomer(...);

// Find a customer object.

Customer cust = custDAO.findCustomer(...);

// modify the values in the Transfer Object.

cust.setAddress(...);

cust.setEmail(...);

// update the customer object using the DAO

custDAO.updateCustomer(cust);

// delete a customer object

custDAO.deleteCustomer(cust);

// select all customers in the same city

Customer criteria=new Customer();

criteria.setCity("New York");

Collection customersList =

custDAO.selectCustomersTO(criteria);

// returns customersList

….

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 71

DATA ACCESS OBJECT (DAO)

DESIGN PATTERN

• Defines CRUD

• Create

• Read

• Update

• Delete

• See more at

• http://www.oracle.com/technetwork/java/dataaccessobject-

138824.html

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 72

DATA REPOSITORY

DESIGN PATTERN

• Problem

• CRUD

• Look up a particular object.

• We know the ID, name and need the object.

• Find all orders from a customer.

• Concentration of query construction code.

• Large number of domain classes or heavy querying.

• The goal of Data Repository is to significantly reduce

the amount of boilerplate code required to implement

data access layers for various persistence stores.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 73

DATA REPOSITORY

DESIGN PATTERN BY DELTASPIKE

Sample usage POM.XML

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 80

<dependency>

<groupId>org.apache.deltaspike.modules</groupId>

<artifactId>deltaspike-data-module-api</artifactId>

<version>${deltaspike.version}</version>

<scope>compile</scope>

</dependency>

<dependency>

<groupId>org.apache.deltaspike.modules</groupId>

<artifactId>deltaspike-data-module-impl</artifactId>

<version>${deltaspike.version}</version>

<scope>runtime</scope>

</dependency>

DATA REPOSITORY

DESIGN PATTERN BY DELTASPIKE

Sample usage

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 81

public interface EntityRepository<E, PK extends Serializable> {

E save(E entity);

void remove(E entity);

void refresh(E entity);

void flush();

E findBy(PK primaryKey);

List<E> findAll();

List<E> findBy(E example, SingularAttribute<E, ?>... attributes);

List<E> findByLike(E example, SingularAttribute<E, ?>... attributes);

Long count();

Long count(E example, SingularAttribute<E, ?>... attributes);

Long countLike(E example, SingularAttribute<E, ?>... attributes); }

DATA REPOSITORY

DESIGN PATTERN BY DELTASPIKE

Sample usage

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 82

@Repository

public interface PersonRepository extends EntityRepository<Person, Long> {

List<Person> findByAgeBetweenAndGender(int minAge, int maxAge, Gender g);

@Query("select p from Person p where p.ssn = ?1")

Person findBySSN(String ssn);

@Query(named=Person.BY_FULL_NAME)

Person findByFullName(String firstName, String lastName);

Person findBySsn(String ssn);

}

DATA REPOSITORY

DESIGN PATTERN BY DELTASPIKE

Sample usage : Its and injectable component

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 83

@Stateless

public class MyService {

@Inject

private PersonRepositorypersonRepository;

List<Person> result = personRepository.findAllByAge(18, 65)

.orderAsc("p.lastName", false).orderDesc("p.age”,false)

.lockMode(LockModeType.WRITE)

.hint("org.hibernate.timeout", Integer.valueOf(10))

.getResultList();

// Query API style

QueryResult<Person> paged = personRepository.findByAge(age)

.maxResults(10) .firstResult(50);

DATA REPOSITORY

DESIGN PATTERN

Details:

• Spring

• http://docs.spring.io/spring-data/data-

commons/docs/1.6.1.RELEASE/reference/html/repositories.ht

ml

• DeltaSpike

• https://deltaspike.apache.org/documentation/data.html

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 84

http://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html

