Constraint Propagation

(Where a better exploitation of the constraints further reduces the need to make decisions)

Constraint Propagation ...

\ldots is the process of determining how the constraints and the possible values of one variable affect the possible values of other variables

It is an important form of "least-commitment" reasoning

Forward checking is only on simple form of constraint propagation

When a pair $(\mathrm{X} \leftarrow \mathrm{v})$ is added to assignment A do:
For each variable Y not in A do:
For every constraint C relating Y to variables in A do: Remove all values from Y's domain that do not satisfy C

- $\mathrm{n}=$ number of variables
- d = size of initial domains
- $s=$ maximum number of constraints involving a given variable ($\mathrm{s} \leq \mathrm{n}-1$)
- Forward checking takes O(nsd) time

Forward Checking in Map Coloring

Empty set: the current assignment $\{(W A \leftarrow R),(Q \leftarrow G),(V \leftarrow B)\}$ does not lead to a solution

WA	NT	Q	NSW	V	SA	T
RGB						
R	又 GB	RGB	RGB	RGB	ДGB	RGB
R	¢B	G	R/8 ${ }^{\text {B }}$	RGB	$\not \subset B$	RGB
R	B	G	R\%	B	$\not \subset$	RGB

Forward Checking in Map Coloring

Forward Checking in Map Coloring

Contradiction that forward checking did not detect

Detecting this contradiction requires a more powerful constraint propagation technique

WA	NT	Q	HSW	V	SA	T
RGB	RGB	RGP	RGB	RGB	RGB	RGB
R	ДGB	RGB	RGB	RGB	RGB	RGB
R	(B)	G	$R /$ / ${ }^{\text {d }}$	RGB	(B)	RGB
R	B	G	R/b	B	\square	RGB

Constraint Propagation for Binary Constraints

REMOVE-VALUES (X, Y) removes every value of Y that is incompatible with the values of X

REMOVE-VALUES (X, Y)

1. removed \leftarrow false
2. For every value v in the domain of Y do

- If there is no value u in the domain of X such that the constraint on (X, Y) is satisfied then

1. Remove v from $Y^{\prime} s$ domain
2. removed \leftarrow true

- Return removed

Constraint Propagation for Binary Constraints

AC3

1. Initialize queue Q with all variables (not yet instantiated)
2. While $Q \neq \varnothing$ do
a. $X \leftarrow \operatorname{Remove}(Q)$

- For every (not yet instantiated) variable Y related to X by a (binary) constraint do 1. If REMOVE-VALUES (X, Y) then
a. If Y 's domain $=\varnothing$ then exit

1. Insert (Y, Q)

Complexity Analysis of AC3

- $n=$ number of variables
- $d=$ size of initial domains
- s = maximum number of constraints involving a given variable ($s \leq n-1$)
- Each variable is inserted in Q up to d times
- REMOVE-VALUES takes O(d²) time
- AC3 takes $O\left(n \times d \times s \times d^{2}\right)=$ $O\left(n \times s \times d^{3}\right)$ time
- Usually more expensive than forward checking

AC3

1. Initialize queue Q with all variables (not yet instantiated)
2. While $Q \neq \varnothing$ do
a. $\quad X \leftarrow \operatorname{Remove}(Q)$

- For every (not yet instantiated) variable Y related to X by a (binary) constraint do

1. If REMOVE-VALUES (X, Y) then
a. If Y 's domain $=\varnothing$ then exit
2. Insert(Y,Q)

REMOVE-VALUES (X,Y)

1. removed \leftarrow false
2. For every value v in the domain of Y do

- If there is no value u in the domain of X such that the constraint on (x, y) is satisfied then
a. Remove v from Y 's domain
b. removed \leftarrow true

3. Return removed

Is AC3 all that we need?

- No!!
- AC3 can't detect all contradictions among binary constraints

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

REMOVE-VALUES(X,Y)

1. removed \leftarrow false
2. For every value v in the domain of Y do

- If there is no value u in the domain of X such that the constraint on (X, Y) is satisfied then

1. Remove v from Y 's domain
2. removed \leftarrow true

- Return removed

Is AC3 all that we need?

- No!!
- AC3 can't detect all contradictions among binary constraints

REMOVE-VALUES(X,Y,Z)
REMOVE-VALUES $(X, Y$ 1. removed \leftarrow false

1. removed \leftarrow false
2. For every value vi

- If there is no va the constraint c

1. Remove
2. removed

- Return removed

3. Return removed

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

- Not all constraints are binary

Tradeoff

Generalizing the constraint propagation algorithm increases its time complexity
\rightarrow Tradeoff between time spent in backtracking search and time spent in constraint propagation

A good tradeoff when all or most constraints are binary is often to combine backtracking with forward checking and/or AC3 (with REMOVE-VALUES for two variables)

Modified Backtracking Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. Run AC3 and update var-domains accordingly
3. If a variable has an empty domain then return failure
4. $X \leftarrow$ select a variable not in A
5. $D \leftarrow$ select an ordering on the domain of X
6. For each value v in D do
a. Add $(X \leftarrow v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result $\leftarrow C S P-B A C K T R A C K I N G(A$, var-domains)
(ii) If result \neq failure then return result \dagger

- Remove $(X \leqslant v)$ from A

7. Return failure

A Complete Example: 4-Queens Problem

1) The modified backtracking algorithm starts by calling AC3, which removes no value

4-Queens Problem

2) The backtracking algorithm then selects a variable and a value for this variable. No heuristic helps in this selection. X_{1} and the value 1 are arbitrarily selected

4-Queens Problem

3) The algorithm performs forward checking, which eliminates 2 values in each other variable's domain

4-Queens Problem

4) The algorithm calls AC3

REMOVE-VALUES $\left(X_{1}, Y_{2}\right)$

4-Queens Problem

1. removed \leftarrow false
2. For every value v in the domain of y do

- If there is no value ùin the domain of X such thàt the constraint on (x, y) is satisfied then
a. Remove v from Y 's domain
b. removed \leftarrow true

3. Return removed

 incompatible with any of the remaining values of X_{3}
4) The algorithm calls AC3, which eliminates 3 from the domain of X_{2}

4-Queens Problem

4) The algorithm calls AC3, which eliminates 3 from the domain of X_{2}, and 2 from the domain of X_{3}

4-Queens Problem

4) The algorithm calls AC3, which eliminates 3 from the domain of X_{2}, and 2 from the domain of X_{3}, and 4 from the domain of X_{3}

4-Queens Problem

5) The domain of X_{3} is empty \rightarrow backtracking

4-Queens Problem

6) The algorithm removes 1 from X_{1} 's domain and assign 2 to X_{1}

4-Queens Problem

7) The algorithm performs forward checking

4-Queens Problem

8) The algorithm calls AC3

4-Queens Problem

8) The algorithm calls AC3, which reduces the domains of X_{3} and X_{4} to a single value

Further Weaknesses of Backtracking

Trashing: Backtracking throws away the reason of the conflict

Example: A,B,C,D,E::1..10, A>E $B T$ tries all the assignments for B, C, D before finding that $A \neq 1$

Solution: backjumping (= jump to the source of the failure)

Backjumping (BJ) explained

Let us find a safe jump:

algorithm could jump from x_{k+1} to whichever variable x_{j} is such that the current assignment to x_{1}, \ldots, x_{j} cannot be extended to form a solution with any value of x_{k+1}.

Backjumping from leaf nodes (leaf dead-ends):

x_{k+1} are inconsistent with the current partial solution $x_{1}, \ldots, x_{k}=a_{1}, \ldots, a_{k}$
x_{k+1} is a leaf of the search tree

Safe jump:

the shortest prefix of $x_{1}, \ldots, x_{k}=a_{1}, \ldots, a_{k}$ inconsistent with $x_{k+1}=a_{k+1}$

Backjumping from leaf nodes (leaf dead-ends):

x_{k+1} are inconsistent with the current partial solution $x_{1}, \ldots, x_{k}=a_{1}, \ldots, a_{k}$ x_{k+1} is a leaf of the search tree

Safe jump:

the shortest prefix of $x_{1}, \ldots, x_{k}=a_{1}, \ldots, a_{k}$ inconsistent with $x_{k+1}=a_{k+1}$

Backjumping (BJ) explained

Let us find a safe jump:

algorithm could jump from x_{k+1} to whichever variable x_{j} is such that the current assignment to x_{1}, \ldots, x_{j} cannot be extended to form a solution with any value of x_{k+1}.

Backjumping from leaf nodes (leaf dead-ends):
x_{k+1} are inconsistent with the current partial solution $x_{1}, \ldots, x_{k}=a_{1}, \ldots, a_{k}$
x_{k+1} is a leaf of the search tree
Safe jump:
the shortest prefix of $x_{1}, \ldots, x_{k}=a_{1}, \ldots, a_{k}$ inconsistent with $x_{k+1}=a_{k+1}$

Gashing backjumping: BJ from leaf nodes only

Backjumping (BJ) explained

Let us find a safe jump:

algorithm could jump from x_{k+1} to whichever variable x_{j} is such that the current assignment to x_{1}, \ldots, x_{j} cannot be extended to form a solution with any value of x_{k+1}.

Backjumping from internal nodes (internal dead-ends):

the algorithm can backjump to a previous variable x_{i} provided that the current truth evaluation of x_{1}, \ldots, x_{i} is inconsistent with all the truth evaluations of x_{k+1}, x_{k+2}, \ldots in the leaf nodes that are descendants of the node x_{k+1}.

Graph Directed Backjumping

- driven by the structure of constraint network only (does not assume (dis)satisfaction of constraints)
- can do several jumps in a sequence
jump to a closest variable from the set of predecessors or the closest predecessor of all dead-ends visited on this backjump.

Exploiting the Structure of CSP

If the constraint graph contains several components, then solve one independent CSP per component

T

Exploiting the Structure of CSP

If the constraint graph is a tree, then :

1. Order the variables from the root to the leaves $\rightarrow\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
2. For $j=n, n-1, \ldots, 2$ call REMOVE-VALUES $\left(X_{j}, X_{i}\right)$ where X_{i} is the parent of X_{j}
3. Assign any valid value to X_{1}
4. For $j=2, \ldots, n$ do

Assign any value to X_{j} consistent with the value assigned to its parent X_{i}

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the backtracking algorithm, propagate this value and remove the variable from the constraint graph

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the backtracking algorithm, propagate this value and remove the variable from the constraint graph

If the graph becomes a tree, then proceed as shown in previous slide

