
Constraint Propagation 
 

(Where a better exploitation of the constraints further reduces the need to make decisions)  
 

!1

Constraint Propagation …

 … is the process of determining how the
constraints and the possible values of one variable
affect the possible values of other variables

It is an important form of “least-commitment”
reasoning

!2

Forward checking is only on simple
form of constraint propagation

When a pair (X!v) is added to assignment A do:
 For each variable Y not in A do:
 For every constraint C relating Y to variables in A do:
 Remove all values from Y’s domain that do not satisfy C

!3

▪ n = number of variables
▪ d = size of initial domains
▪ s = maximum number of constraints

involving a given variable (s ≤ n-1)
▪ Forward checking takes O(nsd) time

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

Forward Checking in Map Coloring

Empty set: the current assignment  
 {(WA ! R), (Q ! G), (V ! B)}
does not lead to a solution

!4

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

!5

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

Detecting this contradiction requires a more  
powerful constraint propagation technique

!6

Constraint Propagation  
for Binary Constraints

REMOVE-VALUES(X,Y)
1. removed ! false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that the constraint on
(X,Y) is satisfied then
1. Remove v from Y‘s domain
2. removed ! true

• Return removed

!7

REMOVE-VALUES(X,Y) removes every value of Y that is
incompatible with the values of X

Constraint Propagation  
for Binary Constraints

AC3
1. Initialize queue Q with all variables (not yet instantiated)

2. While Q ≠ ∅ do
a. X ! Remove(Q)
– For every (not yet instantiated) variable Y related to X

by a (binary) constraint do
1. If REMOVE-VALUES(X,Y) then

a. If Y’s domain = ∅ then exit
1. Insert(Y,Q)

!8

Complexity Analysis of AC3

▪ n = number of variables
▪ d = size of initial domains
▪ s = maximum number of

constraints involving a given
variable (s ≤ n-1)

▪ Each variable is inserted in Q
up to d times

▪ REMOVE-VALUES takes O(d2) time
▪ AC3 takes O(n×d×s×d2) =

O(n×s×d3) time
▪ Usually more expensive than

forward checking

REMOVE-VALUES(X,Y)
1. removed ! false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that
the constraint on (x,y) is satisfied then
a. Remove v from Y‘s domain
b. removed ! true

3. Return removed
!9

AC3
1. Initialize queue Q with all variables (not yet

instantiated)
2. While Q ≠ ∅ do

a. X ! Remove(Q)
• For every (not yet instantiated) variable Y

related to X by a (binary) constraint do
1. If REMOVE-VALUES(X,Y) then

a. If Y’s domain = ∅ then exit
1. Insert(Y,Q)

Is AC3 all that we need?
▪ No !!
▪ AC3 can’t detect all contradictions among binary

constraints
X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

!10

Is AC3 all that we need?
▪ No !!
▪ AC3 can’t detect all contradictions among binary

constraints
X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

REMOVE-VALUES(X,Y)
1. removed ! false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that
the constraint on (X,Y) is satisfied then
1. Remove v from Y‘s domain
2. removed ! true

• Return removed !11

Is AC3 all that we need?
▪ No !!
▪ AC3 can’t detect all contradictions among binary

constraints
X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

REMOVE-VALUES(X,Y)
1. removed ! false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that
the constraint on (X,Y) is satisfied then
1. Remove v from Y‘s domain
2. removed ! true

• Return removed

REMOVE-VALUES(X,Y,Z)
1. removed ! false
2. For every value w in the domain of Z do

– If there is no pair (u,v) of values in the domains of X
and Y verifying the constraint on (X,Y) such that the
constraints on (X,Z) and (Y,Z) are satisfied then
• Remove w from Z‘s domain
1. removed ! true

3. Return removed
!12

Is AC3 all that we need?
▪ No !!
▪ AC3 can’t detect all contradictions among binary

constraints

▪ Not all constraints are binary

X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

!13

Tradeoff

Generalizing the constraint propagation algorithm
increases its time complexity

"Tradeoff between time spent in  
 backtracking search and time spent in  
 constraint propagation

A good tradeoff when all or most constraints are
binary is often to combine backtracking with forward
checking and/or AC3 (with REMOVE-VALUES for two
variables)

!14

Modified Backtracking Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. Run AC3 and update var-domains accordingly
3. If a variable has an empty domain then return failure
4. X ! select a variable not in A
5. D ! select an ordering on the domain of X
6. For each value v in D do

a. Add (X ! v) to A
b. var-domains ! forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then  

(i) result ! CSP-BACKTRACKING(A, var-domains) 
(ii) If result ≠ failure then return result

• Remove (X ! v) from A
7. Return failure !15

A Complete Example: 
4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

1) The modified backtracking algorithm starts by calling AC3, which removes
no value

!16

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

2) The backtracking algorithm then selects a variable and a value for this
variable. No heuristic helps in this selection. X1 and the value 1 are arbitrarily
selected !17

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

3) The algorithm performs forward checking, which eliminates 2 values in each
other variable’s domain

!18

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

4) The algorithm calls AC3

!19

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the domain of X2

X2 = 3 is
incompatible
with any of the  
remaining values 
of X3

REMOVE-VALUES(X,Y)
1. removed ! false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that
the constraint on (x,y) is satisfied then
a. Remove v from Y‘s domain
b. removed ! true

3. Return removed

!20

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the domain of X2, and 2
from the domain of X3

!21

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the domain of X2, and 2
from the domain of X3, and 4 from the domain of X3

!22

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

5) The domain of X3 is empty " backtracking

!23

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

6) The algorithm removes 1 from X1’s domain and assign 2 to X1

!24

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

7) The algorithm performs forward checking

!25

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

8) The algorithm calls AC3

!26

4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

8) The algorithm calls AC3, which reduces the domains of X3 and X4 to a single
value

!27

Further Weaknesses of Backtracking
Trashing: Backtracking throws away the
reason of the conflict

Example: A,B,C,D,E::1..10, A>E  
BT tries all the assignments for B,C,D before finding
that A≠1

 
Solution: backjumping  
 (= jump to the source  
of the failure)

!28

Backjumping (BJ) explained
Let us find a safe jump:

 
Backjumping from leaf nodes (leaf dead-ends):

Safe jump:

!29

Backjumping explained
Let us find a safe jump:

 
Backjumping from leaf nodes (leaf dead-ends):

Safe jump:

!30

Backjumping (BJ) explained
Let us find a safe jump:

 
Backjumping from leaf nodes (leaf dead-ends):

Safe jump:

Gashing backjumping: BJ from leaf nodes only
!31

Backjumping (BJ) explained
Let us find a safe jump:

 
Backjumping from internal nodes (internal dead-ends):

!32

Graph Directed Backjumping

!33

– driven by the structure of constraint network only  
 (does not assume (dis)satisfaction of constraints)
– can do several jumps in a sequence

jump to a closest variable from the set of predecessors
or the closest predecessor of all dead-ends  
visited on this backjump.

Exploiting the Structure of CSP
If the constraint graph contains several components,
then solve one independent CSP per component

T
WA

NT

SA

Q

NSW

V

!34

Exploiting the Structure of CSP
If the constraint graph is a tree, then :
1. Order the variables from the root to the

leaves " (X1, X2, …, Xn)

2. For j = n, n-1, …, 2 call 
REMOVE-VALUES(Xj, Xi)  
where Xi is the parent of Xj

3. Assign any valid value to X1

4. For j = 2, …, n do 
Assign any value to Xj consistent with the
value assigned to its parent Xi

X

Y Z

U V

W

!35

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the
backtracking algorithm, propagate this value and
remove the variable from the constraint graph

WA

NT

SA

Q

NSW

V

!36

WA

NT
Q

NSW

V

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the
backtracking algorithm, propagate this value and
remove the variable from the constraint graph

If the graph becomes  
a tree, then proceed as
shown in previous slide

!37

