Constraint Propagation

(Where a better exploitation of the constraints further reduces the need to make decisions)

Constraint Propagation ...

... Is the process of determining how the
constraints and the possible values of one variable
affect the possible values of other variables

It is an important form of “least-commitment”
reasoning

Forward checking is only on simple
form of constraint propagation

When a pair (X<v) is added to assignment A do:
For each variable Y not in A do:
For every constraint C relating Y to variables in A do:
Remove all values from Y’s domain that do not satisfy C

= N = number of variables
= d = size of initial domains

= s = maximum number of constraints
involving a given variable (s = n-1)

= Forward checking takes O(nsd) time

Forward Checking in Map Coloring

Empty set: the current assignment
{(WA< R),(Qe G), (V< B)

does not lead to a solution

WA [NT Q NSW |V SA T

RGB |RGB |[RGB [RGB |[RGB |RGB |RGB
R RGB |RGB |RGB |RGB |G RGB
R B G RZB |RGB |#ZB RGB
R B G R |B 4 RGB

Forward Checking in Map Coloring

Contradiction that forward

checking did not detect

Py

RGB

RGB

RGB

Forward Checking in Map Coloring

N'{\.

e

N

Contradiction that forward
checking did not detect

— A1

Detecting this contradiction requires a more
powerful constraint propagation technique

WA [NT T

RGB |RGB RGB
R RGB RGB
R (@"/ G RZ5 [RGB |AB) |RGB
R B |G R |B ¥ [RGB

Constraint Propagation
for Binary Constraints

REMOVE-VALUES(X,Y) removes every value of Y that is
incompatible with the values of X

REMOVE-VALUES(X,Y)
1. removed € false
2. For every value v in the domain of Y do

- If there is no value u in the domain of X such that the constraint on
(X,Y) is satisfied then

1. Remove v from Y's domain
2. removed € true
o Return removed

Constraint Propagation
for Binary Constraints

AC3

1. TInitialize queue Q with all variables (not yet instantiated)

2. While Q = J do
a. X €& Remove(Q)
- For every (not yet instantiated) variable ¥ related to X
by a (binary) constraint do
1. If REMOVE-VALUES(X,Y) then
a. If Y's domain = & then exit
1. Insert(Y,Q)

Complexity Analysis of AC3

n = number of variables
d = size of initial domains

s = maximum number of
constraints involving a given
variable (s = n-1)

Each variable is inserted in Q
up to d times

REMOVE-VALUES takes O(d?) time
AC3 takes O(nxdxsxd?) =
O(nxsxd3) time

Usually more expensive than
forward checking

AC3

1. Initialize queue Q with all variables (not yet
instantiated)

2. While Q = & do
a. X € Remove(Q)

For every (not yet instantiated) variable Y
related to X by a (binary) constraint do

1. If REMOVE-VALUES(X,Y) then
a. IfY’'s domain = & then exit

1. Insert(Y,Q)

REMOVE-VALUES(X,Y)
1. removed € false
2. For every value v in the domain of ¥ do

- If there is no value u in the domain of X such that
the constraint on (x,y) is satisfied then

a. Remove v from Y's domain
b. removed € true
3. Return removed

Is AC3 all that we need?

= No I

= AC3 can't detect all contradictions among binary
constraints
{1,2)

10

Is AC3 all that we need?

= No I

= AC3 can't detect all contradictions among binary
constraints

REMOVE-VALUES(X,Y)
1. removed & false
2. For every value v in the domain of Y do

- If there is no value u in the domain of X such that
the constraint on (X,Y) is satisfied then

1. Remove v from Y'‘s domain
2. removed <€ true
o Return removed 1

Is AC3 all that we need?

= No I

= AC3 can't detect all contradictions among binary
constraints

REMOVE-VALUES(X,Y,Z)

REMOVE-VALUES(X,Y|1- removed & false
1. removed & falsg2.- Forevery value w in the domain of Z do

2. Forevery value v i - If there is no pair (u,v) of values in the domains of X
and Y verifying the constraint on (X,Y) such that the
constraints on (X,Z) and (Y,Z) are satisfied then

1. Remove \ e Remove w from Z's domain
2 removed 1. removed <& true
3 Return removed

- If there is no v3
the constraint @

o Return removed : 12

Is AC3 all that we need?

= No !l

= AC3 can't detect all contradictions among binary
constraints

X=Y

{1, 2} y 1. 2}

= Not all constraints are binary

13

Tradeoff

Generalizing the constraint propagation algorithm
increases its time complexity

-~ Tradeoff between time spent in
backtracking search and time spent in
constraint propagation

A good tradeoff when all or most constraints are
binary is often to combine backtracking with forward
checking and/or AC3 (with REMOVE-VALUES for two
variables)

14

Modified Backtracking Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)

o O

If assignment A is complete then return A
Run AC3 and update var-domains accordingly

If a variable has an empty domain then return failure
X € select a variable not in A
D € select an ordering on the domain of X
For each value v in D do
a. Add(X < v)to A
b. var-domains € forward checking(var-domains, X, v, A)

c. If no variable has an empty domain then
(i) result € CSP-BACKTRACKING(A, var-domains)

(ii) If result # failure then return result
Remove (X € v) from A
Return failure 15

A Complete Example:
4-Queens Problem

X1 X2
1,2,3,4 1,2,3,4
1 2 3 4 { } { }
1
2
3
4 X, X,
{1,2,3,4} {1,2,3,4}

1) The modified backtracking algorithm starts by calling AC3, which removes
no value

4-Queens Problem

X, X,
{1,234} {1,234}
1 2 3 4

'

2

3

4 X3 X4
{1,2,3,4} {1,2,3,4}

2) The backtracking algorithm then selects a variable and a value for this
variable. No heuristic helps in this selection. X, and the value 1 are arbitrarily

selected 17

4-Queens Problem

X, X,
{1,234 |{, .34
1 2 3 4
14+ 00 e
2| @
3 O
4 O X, X,
{2, .4 {23}

3) The algorithm performs forward checking, which eliminates 2 values in each

other variable’s domain
18

4)

4-Queens Problem

4
O

@ O

A~ W N -

The algorithm calls AC3

X

{1,2,3,4}

19

REMOVE-VALUES(XY)._. 4 Queens PrOblem

1. removed € false ™
2. For every value v in The domcun of Y do

- If there is no value tin the domain of X such That--
the constraint on (x y) is satisfied then

a. Remove v from Y's domain

b. removed € true X e X,
3. Return removed {1,2,3,4} {, 3,4}
1 2 3 4
1 + \\\\ X2 =3is
‘ ‘ ‘ incompatible
2 ‘ with any of the
. remaining values

3 ‘ of X,
4 ‘ X, X,

{@ {23}

4) The algorithm calls AC3, which eliminates 3 from the domain of X,

20

4-Queens Problem

X1 X2
{1,234 |{.,, 4
1
2
3
4 X, X,
{2, .4) {2,3,}
N

4) The algorithm calls AC3, which eliminates 3 from the domain of X,, and 2

from the domain of X,
21

4-Queens Problem

X, X
1 2 3 4 U234 L)
1400 ®
2| 9@
3| @@
e)
{,, .4} { .23, }

4) The algorithm calls AC3, which eliminates 3 from the domain of X,, and 2
from the domain of X;, and 4 from the domain of X,

4-Queens Problem

{”’4}

X1
{1,2,3,4}
1 2 3 4
1 +Heolo/e
AROC
IWOC
| lee 0

{,,

»

5) The domain of X; is empty - backtracking

23

4-Queens Problem

X1 X2
{ ,2,3,4} {1,2,3,4}
1 2 3 4

1

2 4

3

4 X, X,
{1,2,3,4} {1,2,3,4}

6) The algorithm removes 1 from X;'s domain and assign 2 to X,

4-Queens Problem

X1
{234
1 2 3 4
1 @
2 -0 0 ®
3| @
4 ‘ >

3
{1’ ’3’ }

7) The algorithm performs forward checking

{ 4

4
{1, ,3,4}

25

4-Queens Problem

X1 X2
{,2,3,4} { 4
1 2 3 4
1 @
24000
3| | @
4 O X, X

{1, .3, } {1, ,3,4}

8) The algorithm calls AC3

4-Queens Problem

X, X,
{234 | 4}
1 2 3 4
1 | @HHO®
2+ 00 e
3 l@eH
‘. +He e . X,

{1”’} {”3’}

8) The algorithm calls AC3, which reduces the domains of X; and X, to a single

value
27

Further Weaknesses of Backtracking

Trashing: Backtracking throws away the
reason of the conflict
Example: AB,CD,E::1..10, A>E

BT tries all the assignments for B,C,D before finding
that A=1

Solution: backjumping
(= jump to the source
of the failure)

Backjumping (BJ) explained

Let us find a safe jump:

algorithm could jump from x ;1 to whichever variable x; is such that the current
assignment to x1, . . ., ; cannot be extended to form a solution with any value of xj1.

Backjumping from leaf nodes (leaf dead-ends):

Zk+1 are inconsistent with the current partial solution ¢, ...,y = a1,...,ax
ZTk+1 IS a leaf of the search tree

Safe jump:

the shortest prefix of 1, ...,z = a1, ..., ak inconsistent with 51 = agi1

29

L ————————————————————————————
ry =a1 ... Tp-1 =01 T =0ar Tp41 = A1
r1 = a1 Tp—1 = Q-1 Ti+1 = Ak41
Let us fin
algorithm cou e current
assignment g T, = ay Thi1 = Qs yalue of g 1.

Backjumping from leaf nodes (leaf dead-ends):

Zk+1 are inconsistent with the current partial solution ¢, ...,y = a1,...,ax
ZTk+1 IS a leaf of the search tree

Safe jump:

the shortest prefix of 1, ...,z = a1, ..., ak inconsistent with 51 = agi1

30

Backjumping (BJ) explained

Let us find a safe jump:

algorithm could jump from x ;1 to whichever variable x; is such that the current
assignment to x1, . . ., ; cannot be extended to form a solution with any value of xj1.

Backjumping from leaf nodes (leaf dead-ends):

Zk+1 are inconsistent with the current partial solution ¢, ...,y = a1,...,ax
ZTk+1 IS a leaf of the search tree

Safe jump:

the shortest prefix of 1, ...,z = a1, ..., ak inconsistent with 51 = agi1

Gashing backjumping: BJ from leaf nodes only

31

Backjumping (BJ) explained

Let us find a safe jump:

algorithm could jump from x ;1 to whichever variable x; is such that the current
assignment to x1, . . ., ; cannot be extended to form a solution with any value of xj1.

Backjumping from internal nodes (internal dead-ends):

the algorithm can backjump to a previous variable x; provided that the current truth
evaluation of 1, . .., x; is inconsistent with all the truth evaluations of x4 1, k12, - .
in the leaf nodes that are descendants of the node 1.

32

Graph Directed Backjumping

— driven by the structure of constraint network only
(does not assume (dis)satisfaction of constraints)

— can do several jJumps in a sequence

jump to a closest variable from the set of predecessors
or the closest predecessor of all dead-ends |
visited on this backjump.

33

Exploiting the Structure of CSP

If the constraint graph contains several components,
then solve one independent CSP per component

NT \Q
- <VW

34

Exploiting the Structure of CSP

If the constraint graph is a tree, then:

1.

Order the variables from the root to the
leaves > (X, X,, ..., X,)

For j=n,n-1, .., 2 call

X

REMOVE-VALUES(X;, X,) Y

where X; is the parent of X;
Assign any valid value to X,

Forj=2,..,ndo
Assign any value to X; consistent with the
value assigned to its parent X,

N

Z
U Vv

35

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the
backtracking algorithm, propagate this value and
remove the variable from the constraint graph

NT

N

Q
WA
SA NSW
\Y

36

Exploiting the Structure of CSP

Whenever a variable is assigned a value by the
backtracking algorithm, propagate this value and
remove the variable from the constraint graph

NT

WA

NSW

If the graph becomes
a tree, then proceed as
shown in previous slide

37

