Two Player Games
B4B36/ZUlI, LS 2018

Branislav Bosansky, Martin Schaefer, David Fiedler, Jaromir Janisch
{name.surname}@agents.fel.cvut.cz
Artificial Intelligence Center, Czech Technical University

/\I

Minimax CENTER

function minimax(node, depth, Player)
if (depth = 0 or node is a terminal node) return evaluation value of node
if (Player = MaxPlayer)
for each child of node
v := max(v, minimax(child, depth-1, switch(Player)))

returnv
else
for each child of node
v := min(v, minimax(child, depth-1, switch(Player)))

return v

: /\1i
Alpha-Beta Pruning An

function alphabeta(node, depth, o, 3, Player)
if (depth = 0 or node is a terminal node) return evaluation value of node
if (Player = MaxPlayer)
for each child of node
v := max(v, alphabeta(child, depth-1, a, 3, switch(Player)))
a := max(a,v); if (B<a) break
returnv
else
for each child of node
v := min(v, alphabeta(child, depth-1, a, 3, switch(Player)))
B := min(B,v); if (B<a) break

return v

/\I

Game CENTER
MAX
MIN
MAX
"R
2 3 4 0 0 1 5 6 1 5 3 0 1 7 2 4

Negamax

function negamax(node, depth, o, 3, Player)

if (depth = 0 or node is a terminal node) return evaluation value of node

for each child of node
v := max(v, -negamax(child, depth-1, -B, -a, switch(Player)))
a := max(a,v); if (B<a) break

return v

/\I

CENTER

/\I

NegaScout — Main Ildea AN

« enhancement of the alpha-beta algorithm

o assumes some heuristic that determines move ordering

the algorithm assumes that the first action is the best one

after evaluating the first action, the algorithm checks whether the
remaining actions are worse

the “test” is performed via null-window search
e [0, a+l]

o the algorithm needs to re-search, if the test fails (i.e.,

there might be a better outcome for the player when
following the tested action)

/\I

NegaScout CENTER

function negascout(node, depth, a, B, Player)

. if ((depth = 0) or (node is a terminal node)) return eval(node)

. b:=p

. for each child of node

. v := max(v,-negascout(child, depth-1, -b, -a, switch(Player))))

. if ((o < v) and (child is not the first child))

. v := max(v,-negascout(child, depth-1, -B, -a, switch(Player))))
. o := max(a, v)

. if (B<a) break

. b:=a+1

o returnv

Alpha-Beta with null window check A\

(negascout) CENTER
function ns_alphabeta(node, depth, a, B, Player)

if (depth = 0 or node is a terminal node) return evaluation value of node
if (Player = MaxPlayer)
for each child of node
v := max(v, alphabeta(child, depth-1, a, a+1, switch(Player)))
if (v > a and child not a first child)
v := max(v, alphabeta(child, depth-1, a, B, switch(Player)))
a := max(a,v); if (B<a) break
return v
else
for each child of node
v := min(v, alphabeta(child, depth-1, B-1, B, switch(Player)))
if (v < 3 and child not a first child)
v := min(v, alphabeta(child, depth-1, a, B, switch(Player)))
B :=min(B,v); if (B<a) break

return v

/\I

NegaScout CENTER

function negascout(node, depth, a, B, Player)

. if ((depth = 0) or (node is a terminal node)) return eval(node)

. b:=p

. for each child of node

. v := max(v,-negascout(child, depth-1, -b, -a, switch(Player))))

. if ((o < v <B)and (child is not the first child))

. v := max(v,-negascout(child, depth-1, -B, -v, switch(Player))))
. o := max(a, v)

. if (B<a) break

. b:=a+1

o returnv

/\I

Alpha Beta and Negascout in Practice CENTER

Ordering moves using heuristic

_ The algorithms work better if goods moves are evaluated first
Cache for previous results (transposition tables)

- What do you need to identify a state/partial result?

- state, player, searched depth, bounds, ...

Iterative deepening (using previous results in game playing)

Implementation of game states (bit operations, modifications
have to be as quick as possible)

