
Constraint Satisfaction Problems (CSP) 
(Where we postpone making difficult decisions until they become easy to make)  

 
 R&N: Chap. 5

1

What we will try to do ...

▪ Search techniques make choices in an often
arbitrary order. Often little information is
available to make each of them

▪ In many problems, the same states can be reached
independent of the order in which choices are
made (“commutative” actions)

▪ Can we solve such problems more efficiently by
picking the order appropriately? Can we even avoid
making any choice?

2

Uninformed Search

3

Constraint Propagation

▪ Place a queen in a square
▪ Remove the attacked squares from future consideration

4

6
6
5
5

5
5
6

5 5 5 5 5 6 7

Constraint Propagation

▪ Count the number of non-attacked squares in every row and
column

▪ Place a queen in a row or column with minimum number
▪ Remove the attacked squares from future consideration

5

3
4

4

3
3
5

4 3 3 3 4 5

▪ Repeat

Constraint Propagation

6

4

3

2
3
4

3 3 3 4 3

Constraint Propagation

7

4

2

2
1
3

3 3 3 1

Constraint Propagation

8

2

2

1

2 2 1

Constraint Propagation

9

Constraint Propagation

2

1

1 2

10

Constraint Propagation

1

1

11

Constraint Propagation

12

What do we need?

▪ More than just a successor function and a goal
test

▪ We also need:
• A means to propagate the constraints imposed by one

queen’s position on the positions of the other queens
• An early failure test

! Explicit representation of constraints
! Constraint propagation algorithms

13

Constraint Satisfaction Problem (CSP)

▪ Set of variables {X1, X2, …, Xn}

▪ Each variable Xi has a domain Di of possible
values. Usually, Di is finite

▪ Set of constraints {C1, C2, …, Cp}

▪ Each constraint relates a subset of variables by
specifying the valid combinations of their values

▪ Goal: Assign a value to every variable such that
all constraints are satisfied

14

Map Coloring

▪ 7 variables {WA,NT,SA,Q,NSW,V,T}
▪ Each variable has the same domain:  
 {red, green, blue}
▪ No two adjacent variables have the same value: 
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q,  
 SA≠NSW, SA≠V, Q≠NSW, NSW≠V

WA

NT

SA

Q

NSW
V

T

15

Map Coloring

▪ 7 variables {WA,NT,SA,Q,NSW,V,T}
▪ Each variable has the same domain:  
 {red, green, blue}
▪ No two adjacent variables have the same value: 
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q,  
 SA≠NSW, SA≠V, Q≠NSW, NSW≠V

WA

NT

SA

Q

NSW
V

T

16

8-Queen Problem

▪ 8 variables Xi, i = 1 to 8

▪ The domain of each variable is: {1,2,…,8}
▪ Constraints are of the forms:

• Xi = k ➔ Xj ≠ k for all j = 1 to 8, j≠i
• Similar constraints for diagonals

All constraints are binary

17

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

Who owns the Zebra?
Who drinks Water?

18

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

∀i,j∈[1,5], i≠j, Ni ≠ Nj

∀i,j∈[1,5], i≠j, Ci ≠ Cj
 ...

19

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = English) ⇔ (Ci = Red)

(Ni = Japanese) ⇔ (Ji = Painter)

(N1 = Norwegian)

left as an exercise

(Ci = White) ⇔ (Ci+1 = Green)
(C5 ≠ White)
(C1 ≠ Green)

20

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s

(Ni = English) ⇔ (Ci = Red)

(Ni = Japanese) ⇔ (Ji = Painter)

(N1 = Norwegian)

(Ci = White) ⇔ (Ci+1 = Green)
(C5 ≠ White)
(C1 ≠ Green)

unary constraints21

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left ! N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk ! D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s 22

Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian}
Ci = {Red, Green, White, Yellow, Blue}
Di = {Tea, Coffee, Milk, Fruit-juice, Water}
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor}
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house ! C1 ≠ Red
The Spaniard has a Dog ! A1 ≠ Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left ! N1 = Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk ! D3 = Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice ! J3 ≠ Violinist
The Fox is in the house next to the Doctor’s
The Horse is next to the Diplomat’s 23

Task Scheduling

Four tasks T1, T2, T3, and T4 are related by time constraints:
• T1 must be done during T3

• T2 must be achieved before T1 starts
• T2 must overlap with T3

• T4 must start after T1 is complete

▪ Are the constraints compatible?
▪ What are the possible time relations between two tasks?
▪ What if the tasks use resources in limited supply?

How to formulate this problem as a CSP?

T1

T2

T3

T4

24

3-SAT

▪ n Boolean variables u1, ..., un

▪ p constraints of the form
 ui* ∨ uj* ∨ uk*= 1 

where u* stands for either u or ¬u

▪ Known to be NP-complete

25

Finite vs. Infinite CSP

▪ Finite CSP: each variable has a finite
domain of values

▪ Infinite CSP: some or all variables have an
infinite domain  
E.g., linear programming problems over the reals:

▪ We will only consider finite CSP

=

≤

ni,ni,1 1 i,2 2 i,0

nj,nj,1 1 j,2 2 j,0

for i = 1, 2, ..., p : a x +a x +...+a x a
for j = 1, 2, ..., q : b x +b x +...+b x b

26

CSP as a Search Problem
▪ n variables X1, ..., Xn

▪ Valid assignment: {Xi1 " vi1, ..., Xik " vik}, 0≤ k ≤ n,  
such that the values vi1, ..., vik satisfy all constraints relating the
variables Xi1, ..., Xik

▪ Complete assignment: one where k = n  
[if all variable domains have size d, there are O(dn) complete
assignments]

▪ States: valid assignments
▪ Initial state: empty assignment {}, i.e. k = 0
▪ Successor of a state:
 {Xi1"vi1, ..., Xik"vik} ! {Xi1"vi1, ..., Xik"vik, Xik+1"vik+1}

▪ Goal test: k = n 27

{Xi1"vi1, ..., Xik"vik}

r = n−k variables with s values ! r×s branching factor

{Xi1"vi1, ..., Xik"vik, Xik+1"vik+1}

28

A Key property of CSP: Commutativity

The order in which variables are assigned values has
no impact on the reachable complete valid assignments

Hence:

1) One can expand a node N by first selecting one
variable X not in the assignment A associated
with N and then assigning every value v in the
domain of X  
[! big reduction in branching factor]

29

{Xi1"vi1, ..., Xik"vik}

r = n-k variables with s values ! r×s branching factor

{Xi1"vi1, ..., Xik"vik, Xik+1"vik+1}

r = n−k variables with s values ! s branching factor

The depth of the solutions in the search tree is un-changed (n)

30

▪ 4 variables X1, ..., X4

▪ Let the valid assignment of N be:  
 A = {X1 " v1, X3 " v3}

▪ For example pick variable X4

▪ Let the domain of X4 be {v4,1, v4,2, v4,3}
▪ The successors of A are all the valid assignments among:
 {X1 " v1, X3 " v3 , X4 " v4,1 }
 {X1 " v1, X3 " v3 , X4 " v4,2 }
 {X1 " v1, X3 " v3 , X4 " v4,3 }

31

A Key property of CSP: Commutativity

Hence:

1) One can expand a node N by first selecting one
variable X not in the assignment A associated
with N and then assigning every value v in the
domain of X  
[! big reduction in branching factor] 

2) One need not store the path to a node
 ! Backtracking search algorithm

The order in which variables are assigned values
has no impact on the reachable complete valid
assignments

32

Backtracking Search

Essentially a simplified depth-first
algorithm using recursion

33

Backtracking Search 
(3 variables)

Assignment = {}
34

Backtracking Search 
(3 variables)

Assignment = {(X1,v11)}

X1

v11

35

Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

36

Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

X2 Assume that no value of X2

leads to a valid assignment

Then, the search algorithm
backtracks to the previous variable
(X3) and tries another value

37

Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32v31

X2

38

Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32

X2

Assume again that no value of  
X2 leads to a valid assignment

The search algorithm
backtracks to the previous
variable (X3) and tries another
value. But assume that X3 has
only two possible values. The
algorithm backtracks to X1

v31

X2

39

Backtracking Search 
(3 variables)

Assignment = {(X1,v12)}

X1

v11

X3

v32

X2

v31

X2

v12

40

Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

41

Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

The algorithm need not consider
the variables in the same order in
this sub-tree as in the other

42

Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

43

Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

The algorithm need
not consider the values
of X3 in the same order
in this sub-tree

44

Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

Since there are only
three variables, the
assignment is complete

45

Backtracking Algorithm

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

1. Add (X"v) to A
2. If A is valid then

1. result " CSP-BACKTRACKING(A)
» If result ≠ failure then return result

3. Remove (X"v) from A
– Return failure

Call CSP-BACKTRACKING({})
[This recursive algorithm keeps too much data in memory.  
An iterative version could save memory (left as an exercise)] 46

Critical Questions for the Efficiency of
CSP-Backtracking

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

a. Add (X"v) to A
b. If a is valid then

i. result " CSP-BACKTRACKING(A)
ii. If result ≠ failure then return result

• Remove (X"v) from A

5. Return failure
47

Critical Questions for the Efficiency of
CSP-Backtracking

1) Which variable X should be assigned a value next?  
The current assignment may not lead to any solution, but
the algorithm still does know it. Selecting the right
variable to which to assign a value may help discover the
contradiction more quickly

2) In which order should X’s values be assigned?  
The current assignment may be part of a solution.
Selecting the right value to assign to X may help discover
this solution more quickly

More on these questions in a short while ...
48

Critical Questions for the Efficiency of
CSP-Backtracking

1) Which variable X should be assigned a value next?  
The current assignment may not lead to any solution, but
the algorithm does not know it yet. Selecting the right
variable X may help discover the contradiction more
quickly

2) In which order should X’s values be assigned?  
The current assignment may be part of a solution.
Selecting the right value to assign to X may help discover
this solution more quickly

More on these questions in a short while ...
49

Critical Questions for the Efficiency of
CSP-Backtracking

1) Which variable X should be assigned a value next?  
The current assignment may not lead to any solution, but
the algorithm does not know it yet. Selecting the right
variable X may help discover the contradiction more
quickly

2) In which order should X’s values be assigned?  
The current assignment may be part of a solution.
Selecting the right value to assign to X may help discover
this solution more quickly

More on these questions in a short while ...
50

Critical Questions for the Efficiency of
CSP-Backtracking

1) Which variable X should be assigned a value next?  
The current assignment may not lead to any solution, but
the algorithm does not know it yet. Selecting the right
variable X may help discover the contradiction more
quickly

2) In which order should X’s values be assigned?  
The current assignment may be part of a solution.
Selecting the right value to assign to X may help discover
this solution more quickly

More on these questions very soon ...
51

Forward Checking

Assigning the value 5 to X1  
leads to removing values from  
the domains of X2, X3, ..., X8

1
2
3
4
5
6
7
8

X1 X2 X3 X4 X5 X6 X7 X8

A simple constraint-propagation technique: 

52

Forward Checking in Map Coloring

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Constraint graph

53

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

Forward checking removes the value Red of NT and of SA

54

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R GB G RGB RGB GB RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

55

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

R B G RB B B RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

56

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

R B G RB B B RGB

Forward Checking in Map Coloring

Empty set: the current assignment  
 {(WA " R), (Q " G), (V " B)}
does not lead to a solution

57

Forward Checking (General Form)

Whenever a pair (X"v) is added to assignment A do:

 For each variable Y not in A do:
 For every constraint C relating Y to  
 the variables in A do:
 Remove all values from Y’s domain  
 that do not satisfy C  

58

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

a. Add (X"v) to A
b. var-domains " forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then  

(i) result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result

d. Remove (X"v) from A
5. Return failure

59

Modified Backtracking Algorithm

60

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

a. Add (X"v) to A
b. If a is valid then

i. result " CSP-BACKTRACKING(A)
ii. If result ≠ failure then return result

• Remove (X"v) from A

5. Return failure

No need any more to  
verify that A is valid

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

a. Add (X"v) to A
b. var-domains " forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then  

(i) result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result

d. Remove (X"v) from A
5. Return failure

61

Need to pass down the  
updated variable domains

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

a. Add (X"v) to A
b. var-domains " forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then  

(i) result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result

d. Remove (X"v) from A
5. Return failure

62

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

a. Add (X"v) to A
b. var-domains " forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then  

(i) result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result

1. Remove (X"v) from A
5. Return failure

63

1) Which variable Xi should be assigned a value
next?  
! Most-constrained-variable heuristic 
! Most-constraining-variable heuristic

2) In which order should its values be assigned?  
! Least-constraining-value heuristic

These heuristics can be quite confusing

Keep in mind that all variables must eventually
get a value, while only one value from a domain
must be assigned to each variable 64

Most-Constrained-Variable Heuristic

1) Which variable Xi should be assigned a value
next?

 Select the variable with the smallest
remaining domain

 [Rationale: Minimize the branching factor]

65

8-Queens

4 3 2 3 4 Numbers
of values for
each un-assigned 
variable

New assignment

Forward checking

66

8-Queens

3 2 1 3 New numbers
of values for
each un-assigned 
variable

New assignment

Forward checking

67

Map Coloring

▪ SA’s remaining domain has size 1 (value Blue remaining)
▪ Q’s remaining domain has size 2
▪ NSW’s, V’s, and T’s remaining domains have size 3

! Select SA 68

Most-Constraining-Variable Heuristic

1) Which variable Xi should be assigned a value next?

 Among the variables with the smallest
remaining domains (ties with respect to the
most-constrained-variable heuristic), select
the one that appears in the largest number
of constraints on variables not in the
current assignment

 [Rationale: Increase future elimination of values,
to reduce future branching factors] 69

Map Coloring

▪ Before any value has been assigned, all variables
have a domain of size 3, but SA is involved in
more constraints (5) than any other variable

! Select SA and assign a value to it (e.g., Blue)
70

Modified Backtracking Algorithm

 1) Most-constrained-variable heuristic 
2) Most-constraining-variable heuristic

 
3) Least-constraining-value heuristic

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

a. Add (X"v) to A
b. var-domains " forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then 

(i) result " CSP-BACKTRACKING(A, var-domains) 
(ii) If result ≠ failure then return result

1. Remove (X"v) from A
5. Return failure

71

1) Select the variable with the smallest remaining domain
2) Select the variable that appears in the largest number of  

constraints on variables not in the current assignment

Least-Constraining-Value Heuristic
2) In which order should X’s values be assigned?

 Select the value of X that removes the smallest
number of values from the domains of those
variables which are not in the current assignment

 [Rationale: Since only one value will eventually be
assigned to X, pick the least-constraining value first,
since it is the most likely not to lead to an invalid
assignment]

 [Note: Using this heuristic requires performing a forward-
checking step for every value, not just for the selected value]

72

{}

Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

▪ Q’s domain has two remaining values: Blue and Red
▪ Assigning Blue to Q would leave 0 value for SA, while

assigning Red would leave 1 value

73

blue?

{Blue}

Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

▪ Q’s domain has two remaining values: Blue and Red
▪ Assigning Blue to Q would leave 0 value for SA, while

assigning Red would leave 1 value
! So, assign Red to Q

74

{}

WA

NT

SA

Q

NSW
V

T

WA

NT

Modified Backtracking Algorithm

 1) Most-constrained-variable heuristic 
2) Most-constraining-variable heuristic

 
3) Least-constraining-value heuristic

CSP-BACKTRACKING(A, var-domains)
1. If assignment A is complete then return A
2. X " select a variable not in A
3. D " select an ordering on the domain of X
4. For each value v in D do

a. Add (X"v) to A
b. var-domains " forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then 

(i) result " CSP-BACKTRACKING(A, var-domains) 
(ii) If result ≠ failure then return result

1. Remove (X"v) from A
5. Return failure

75

Applications of CSP

▪ CSP techniques are widely used
▪ Applications include:

• Crew assignments to flights
• Management of transportation fleet
• Flight/rail schedules
• Job shop scheduling
• Task scheduling in port operations
• Design, including spatial layout design
• Radiosurgical procedures

76

Radiosurgery

Tumor = bad

Brain = good

Critical structures
= good and sensitive

 Minimally invasive procedure that uses a
beam of radiation as an ablative surgical
instrument to destroy tumors

77

Problem

Burn tumor without damaging healthy tissue
78

The CyberKnife
linear accelerator robot arm

X-Ray
cameras

79

Inputs

1) Regions of interest

80

Inputs

2) Dose constraints

Critical

Tumor

Dose to tumor

Falloff of dose  
around tumor

Falloff of dose  
in critical structure

Dose to critical
structure

81

Beam Sampling

82

Constraints
▪ 2000 ≤ Tumor ≤ 2200

2000 ≤ B2 + B4 ≤ 2200
2000 ≤ B4 ≤ 2200
2000 ≤ B3 + B4 ≤ 2200
2000 ≤ B3 ≤ 2200
2000 ≤ B1 + B3 + B4 ≤ 2200
2000 ≤ B1 + B4 ≤ 2200
2000 ≤ B1 + B2 + B4 ≤ 2200
2000 ≤ B1 ≤ 2200
2000 ≤ B1 + B2 ≤ 2200

▪ 0 ≤ Critical ≤ 500
0 ≤ B2 ≤ 500

T

C

B1

B2

B3
B4

T

 2000 < Tumor < 2200
2000 < B2 + B4 < 2200
2000 < B4 < 2200
2000 < B3 + B4 < 2200
2000 < B3 < 2200
2000 < B1 + B3 + B4 < 2200
2000 < B1 + B4 < 2200
2000 < B1 + B2 + B4 < 2200
2000 < B1 < 2200
2000 < B1 + B2 < 2200

 2000 < Tumor < 2200

2000 < B4

2000 < B3
B1 + B3 + B4 < 2200

B1 + B2 + B4 < 2200
2000 < B1

83

Case Results

50% Isodose  
Surface

80% Isodose
Surface

LINAC system Cyberknife 84

85

