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Heuristic (Informed) Search 
(Where we try to choose smartly)  

 
R&N: Chap. 4, Sect. 4.1–3  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Search Algorithm #2

SEARCH#2
1. INSERT(initial-node,FRINGE)
2. Repeat:

a. If empty(FRINGE) then return failure
b. N ! REMOVE(FRINGE)
c. s ! STATE(N)
d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a node N’ as a successor of N
ii. INSERT(N’,FRINGE)

Recall that the ordering 
of FRINGE defines the  
search strategy
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Best-First Search
▪ It exploits state description to estimate 

how “good” each search node is 

▪ An evaluation function f maps each node N 
of the search tree to a real number  
f(N) ≥ 0  
[Traditionally, f(N) is an estimated cost; so, the smaller 
f(N), the more promising N]  

▪ Best-first search sorts the FRINGE in 
increasing f  
[Arbitrary order is assumed among nodes with equal f]
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Best-First Search
▪ It exploits state description to estimate 

how “good” each search node is 

▪ An evaluation function f maps each node N 
of the search tree to a real number  
f(N) ≥ 0  
[Traditionally, f(N) is an estimated cost; so, the smaller 
f(N), the more promising N]  

▪ Best-first search sorts the FRINGE in 
increasing f  
[Arbitrary order is assumed among nodes with equal f]

“Best” does not refer to the quality  
of the generated path 
Best-first search does not generate  
optimal paths in general 
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▪ Typically, f(N) estimates: 
• either the cost of a solution path through N 

Then f(N) = g(N) + h(N), where 
– g(N) is the cost of the path from the initial node to N 
– h(N) is an estimate of the cost of a path from N to a goal node 

• or the cost of a path from N to a goal node 
Then f(N) = h(N)      !   Greedy best-search 

▪ But there are no limitations on f. Any function of 
your choice is acceptable.  
But will it help the search algorithm? 

How to construct f?
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▪ Typically, f(N) estimates: 
• either the cost of a solution path through N 

Then f(N) = g(N) + h(N), where 
– g(N) is the cost of the path from the initial node to N 
– h(N) is an estimate of the cost of a path from N to a goal node 

• or the cost of a path from N to a goal node 
Then f(N) = h(N) 

▪ But there are no limitations on f. Any function of 
your choice is acceptable.  
But will it help the search algorithm? 

How to construct f?

Heuristic function



7

▪ The heuristic function h(N) ≥ 0 estimates the cost 
to go from STATE(N) to a goal state  
 
Its value is independent of the current search 
tree; it depends only on STATE(N) and the goal 
test GOAL? 

▪ Example: 

 h1(N)  = number of misplaced numbered tiles = 6 
 [Why is it an estimate of the distance to the goal?]

Heuristic Function
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▪ h1(N)  = number of misplaced numbered tiles = 6 
▪ h2(N) = sum of the (Manhattan) distance of     

every numbered tile to its goal position  
          = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 

▪ h3(N) = sum of permutation inversions 
          = n5 + n8 + n4 + n2 + n1 + n7 + n3 + n6  
         = 4  + 6  + 3   + 1   + 0  + 2   + 0  + 0  
         = 16

Other Examples
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8-Puzzle
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f(N) = h(N) = number of misplaced numbered tiles

The white tile is the empty tile
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8-Puzzle
f(N) = g(N) + h(N)  
   with h(N) = number of misplaced numbered tiles
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f(N) = h(N) = Σ distances of numbered tiles to their goals
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Robot Navigation

xN

yN
N

xg

yg

2 2
g g1 N Nh (N) = (x -x ) +(y -y ) (L2 or Euclidean distance)

h2(N)  =  |xN-xg| + |yN-yg| (L1 or Manhattan distance)



13

Best-First → Efficiency

f(N) = h(N) = straight distance to the goal

Local-minimum problem
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Can we prove anything?
▪ If the state space is infinite, in general the 

search is not complete  

▪ If the state space is finite and we do not discard 
nodes that revisit states, in general the search is 
not complete 

▪ If the state space is finite and we discard nodes 
that revisit states, the search is complete, but in 
general is not optimal
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Admissible Heuristic

▪  Let h*(N) be the cost of the optimal path 
from N to a goal node  

▪ The heuristic function h(N) is admissible if:  
                0 ≤ h(N) ≤ h*(N) 

▪ An admissible heuristic function is always 
optimistic !



▪  Let h*(N) be the cost of the optimal path 
from N to a goal node  

▪ The heuristic function h(N) is admissible if:  
                0 ≤ h(N) ≤ h*(N) 

▪ An admissible heuristic function is always 
optimistic !
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Admissible Heuristic

G is a goal node ➔ h(G) = 0
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▪ h1(N)  = number of misplaced tiles = 6  
is ??? 

▪ h2(N) = sum of the (Manhattan) distances of     
             every tile to its goal position 
          = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible 

▪ h3(N) = sum of permutation inversions 
          = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is not admissible

8-Puzzle Heuristics
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▪ h1(N)  = number of misplaced tiles = 6  
is admissible 

▪ h2(N) = sum of the (Manhattan) distances of     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▪ h1(N)  = number of misplaced tiles = 6  
is admissible 

▪ h2(N) = sum of the (Manhattan) distances of     
             every tile to its goal position 
          = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 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▪ h1(N)  = number of misplaced tiles = 6  
is admissible 

▪ h2(N) = sum of the (Manhattan) distances of     
             every tile to its goal position 
          = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step =  2

2 2
g g1 N Nh (N) = (x -x ) +(y -y ) is  admissible
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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step =  2

h2(N)  =  |xN-xg| + |yN-yg| is ???
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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step =  2

h2(N)  =  |xN-xg| + |yN-yg| is admissible if moving along  
diagonals is not allowed, and  
not admissible otherwiseh*(I) = 4√2 

h2(I) = 8
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How to create an admissible h?

▪ An admissible heuristic can usually be seen as the 
cost of an optimal solution to a relaxed problem (one 
obtained by removing constraints) 

▪ In robot navigation: 
• The Manhattan distance corresponds to removing the 

obstacles  
• The Euclidean distance corresponds to removing both the 

obstacles and the constraint that the robot moves on a 
grid 

▪ More on this topic later 
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A* Search 
(most popular algorithm in AI)

1) f(N) = g(N) + h(N), where: 
• g(N) = cost of best path found so far to N 
• h(N) = admissible heuristic function  

2) for all arcs: c(N,N’) ≥ ε > 0  

3) SEARCH#2 algorithm is used 

➔ Best-first search is then called A* search
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Result #1

 A* is complete and optimal 
  

 [This result holds if nodes revisiting 
states are not discarded]
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Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution  

 - For each node N on the OpenList,  
  f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,  
  where d(N) is the depth of N in the tree 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Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution  

 - For each node N on the OpenList,  
  f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,  
  where d(N) is the depth of N in the tree 
- As long as A* hasn’t terminated, a node K    
   on the OpenList lies on a solution path

K
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Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution  

 - For each node N on the OpenList,  
  f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,  
  where d(N) is the depth of N in the tree 

- As long as A* hasn’t terminated, a node K    
   on the OpenList lies on a solution path 
- Since each node expansion increases the  
   length of one path, K will eventually be  
   selected for expansion, unless a solution is  
   found along another path

K
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Proof (2/2)
2) Whenever A* chooses to expand a goal 

node, the path to this node is optimal 

 

K

- C*= cost of the optimal solution path  

- G’: non-optimal goal node in the fringe 
       f(G’) = g(G’) + h(G’) = g(G’) > C* 

- A node K in the fringe lies on an optimal  
   path: 
 f(K) = g(K) + h(K) ≤ C* 

- So, G’ will not be selected for expansion

G’
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Time Limit Issue
▪ When a problem has no solution, A* runs for ever if the 

state space is infinite. In other cases, it may take a 
huge amount of time to terminate  

▪ So, in practice, A* is given a time limit. If it has not 
found a solution within this limit, it stops. Then there is 
no way to know if the problem has no solution, or if 
more time was needed to find it 

▪ When AI systems are “small” and solving a single search 
problem at a time, this is not too much of a concern.  

▪ When AI systems become larger, they solve many 
search problems concurrently, some with no solution. 
What should be the time limit for each of them? 
More on this in the lecture on Motion Planning ...
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f(N) = g(N) + h(N)  
   with h(N) = number of misplaced tiles
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Robot Navigation
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Robot Navigation
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f(N) = h(N), with h(N) = Manhattan distance to the goal  
(not A*)
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Robot Navigation
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Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal 
(A*)
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Best-First Search

▪ An evaluation function f maps each node N of the 
search tree to a real number  
f(N) ≥ 0  

▪ Best-first search sorts the OpenList in 
increasing f  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A* Search

1) f(N) = g(N) + h(N), where: 
• g(N) = cost of best path found so far to N 
• h(N) = admissible heuristic function  

2) for all arcs: c(N,N’) ≥ ε > 0  

3) SEARCH#2 algorithm is used 

➔ Best-first search is then called A* search
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Result #1

 A* is complete and optimal 
  

 [This result holds if nodes revisiting 
states are not discarded]
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What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1  The heuristic h is 
clearly admissible



41

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

104

4+90

f = 1+100 2+1

?
If we discard this new node, then the search 
algorithm expands the goal node next and 
returns a non-optimal solution
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Instead, if we do not discard nodes revisiting  
states, the search terminates with an optimal  
solution

What to do with revisited states?
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▪ It is not harmful to discard a node revisiting a 
state if the cost of the new path to this state is ≥ 
cost of the previous path 
[so, in particular, one can discard a node if it re-visits a 
state already visited by one of its ancestors] 

▪ A* remains optimal, but states can still be re-
visited multiple times  
[the size of the search tree can still be exponential in the 
number of visited states] 

▪ Fortunately, for a large family of admissible 
heuristics – consistent heuristics – there is a much 
more efficient way to handle revisited states
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Consistent Heuristic
 An admissible heuristic h is consistent (or 

monotone) if for each node N and each child 
N’ of N: 

     h(N) ≤ c(N,N’) + h(N’) 

       

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

h(N)  ≤  C*(N)  ≤  c(N,N’) + h*(N’) 
h(N)  − c(N,N’)  ≤  h*(N’) 
h(N)  − c(N,N’) ≤ h(N’) ≤  h*(N’)
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Consistent Heuristic
 An admissible heuristic h is consistent (or 

monotone) if for each node N and each child 
N’ of N: 

     h(N) ≤ c(N,N’) + h(N’) 

       

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

! Intuition: a consistent heuristics becomes 
more precise as we get deeper in the search tree

h(N)  ≤  C*(N)  ≤  c(N,N’) + h*(N’) 
h(N)  − c(N,N’)  ≤  h*(N’) 
h(N)  − c(N,N’) ≤ h(N’) ≤  h*(N’)
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Consistency Violation

N

N’ h(N)  
=100

h(N’) 
=10

c(N,N’) 
=10

(triangle inequality)

If h tells that N is 100 units 
from the goal,  then moving 
from N along an arc costing 10 
units should not lead to a node 
N’ that h estimates to be 10 
units away from the goal
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Consistent Heuristic 
(alternative definition)

 Any heuristic h is consistent (or monotone) if  
 1) for each node N and each child N’ of N: 
     h(N) ≤ c(N,N’) + h(N’) 

       2) for each goal node G: 

     h(G) = 0
(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

A consistent heuristic  
is also admissible
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▪ A consistent heuristic is also admissible 

▪ An admissible heuristic may not be 
consistent, but many admissible heuristics 
are consistent 

▪ Proof?

Admissibility and Consistency
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8-Puzzle
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STATE(N) goal

▪ h1(N)  = number of misplaced tiles 
▪ h2(N) = sum of the (Manhattan) distances  
               of every tile to its goal position 
are both consistent (why?)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)
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Robot Navigation

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step =  2

2 2
g g1 N Nh (N) = (x -x ) +(y -y )

h2(N)  =  |xN-xg| + |yN-yg|
is consistent

is consistent if moving along  
diagonals is not allowed, and  
not consistent otherwise

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)



51

 If h is consistent, then whenever A* 
expands a node, it has already found 
an optimal path to this node’s state

Result #2
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Proof (1/2)
1) Consider a node N and its child N’  

Since h is consistent: h(N) ≤ c(N,N’)+h(N’)  
 
f(N)  = g(N)+h(N)  ≤  g(N)+c(N,N’)+h(N’) =  f(N’) 
So, f is non-decreasing along any path

N

N’



2) If a node K is selected for expansion, then any other node N in 
the OpenList verifies f(N) ≥ f(K)  

 If one node N lies on another path to the state of K, the cost 
of this other path is no smaller than that of the path to K: 

 f(N’) ≥ f(N) ≥ f(K)    and     h(N’) = h(K) 
 So, g(N’) ≥ g(K) 53

Proof (2/2)

K N

N’S
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2) If a node K is selected for expansion, then any other node N in 
the fringe verifies f(N) ≥ f(K)  

 If one node N lies on another path to the state of K, the cost 
of this other path is no smaller than that of the path to K: 

 f(N’) ≥ f(N) ≥ f(K)    and     h(N’) = h(K) 
 So, g(N’) ≥ g(K)

Proof (2/2)

K N

N’S

 If h is consistent, then whenever A* expands a 
node, it has already found an optimal path to this 
node’s state 

Result #2
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Implication of Result #2

N N1
S S1

The path to N  
is the optimal  
path to S 

N2

N2 can be  
discarded
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Revisited States with Consistent 
Heuristic

▪ When a node is expanded, store its state 
into CLOSED  

▪ When a new node N is generated: 
• If STATE(N) is in CLOSED, discard N 
• If there exists a node N’ in the 

OpenList such that STATE(N’) = 
STATE(N), discard the node – N or N’ – 
with the largest f (or, equivalently, g)
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Is A* with some consistent heuristic all 
that we need?

No !  
 There are very dumb consistent heuristic 

functions
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For example:  h ≡ 0

▪ It is consistent (hence, admissible) ! 
▪ A* with h≡0 is uniform-cost search 
▪ Breadth-first and uniform-cost are 

particular cases of A*
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Heuristic Accuracy
 Let h1 and h2 be two consistent heuristics such that for all 

nodes N:  
 

                   h1(N) ≤ h2(N) 

 h2 is said to be more accurate (or more informed) than h1

▪ h1(N) = number of misplaced tiles  
▪ h2(N) = sum of distances of 

every tile to its goal position 

▪ h2 is more accurate than h1 
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Result #3

▪ Let h2 be more accurate than h1 

▪ Let  A1* be A* using h1  
and A2* be A* using h2  

▪ Whenever a solution exists, all the nodes 
expanded by A2*, except possibly for some 
nodes such that  
   f1(N) = f2(N) = C* (cost of optimal solution)  

are also expanded by A1* 
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Proof
▪ C* = h*(initial-node) [cost of optimal solution] 

▪ Every node N such that f(N) < C* is eventually expanded. No 
node N such that f(N) > C* is ever expanded 

▪ Every node N such that h(N) < C*−g(N) is eventually 
expanded. So, every node N such that h2(N) < C*−g(N) is 
expanded by A2*. Since h1(N) ≤ h2(N), N is also expanded by 
A1* 

▪ If there are several nodes N such that f1(N) = f2(N) = C* 
(such nodes include the optimal goal nodes, if there exists a 
solution), A1* and A2* may or may not expand them in the 
same order (until one goal node is expanded)
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Effective Branching Factor

▪ It is used as a measure the effectiveness 
of a heuristic 

▪ Let n be the total number of nodes 
expanded by A* for a particular problem 
and d the depth of the solution 

▪ The effective branching factor b* is 
defined by n = 1 + b* + (b*)2 +...+ (b*)d 
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Experimental Results 
(see R&N for details)

▪ 8-puzzle with: 
▪ h1 = number of misplaced tiles 
▪ h2 = sum of distances of tiles to their goal positions 

▪ Random generation of many problem instances 
▪ Average effective branching factors:

d IDS A1* A2*

2 2.45 1.79 1.79

6 2.73 1.34 1.30

12 2.78 (3,644,035) 1.42 (227) 1.24 (73)

16 -- 1.45 1.25

20 -- 1.47 1.27

24 -- 1.48 (39,135) 1.26 (1,641)
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▪ By solving relaxed problems at each node 
▪ In the 8-puzzle, the sum of the distances of each tile to its 

goal position (h2) corresponds to solving 8 simple problems: 

▪ It ignores negative interactions among tiles 

How to create good heuristics?
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di is the length of the 
shortest path to move 
tile i to its goal position,  
ignoring the other tiles, 
e.g., d5 = 2 

h2 = Σi=1,...8 di
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Can we do better?
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d1234 = length of the  
shortest path to move  
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▪For example, we could consider two more complex relaxed problems: 
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▪ For example, we could consider two more complex relaxed problems: 

Can we do better?
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shortest path to move  
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their goal positions,  
ignoring the other tiles 

d5678

! Several order-of-magnitude speedups  
for the 15- and 24-puzzle (see R&N)
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On Completeness and Optimality
▪ A* with a consistent heuristic function has nice 

properties: completeness, optimality, no need to 
revisit states 

▪ Theoretical completeness does not mean 
“practical” completeness if you must wait too long 
to get a solution (remember the time limit issue) 

▪ So, if one can’t design an accurate consistent 
heuristic, it may be better to settle for a non-
admissible heuristic that “works well in practice”, 
even through completeness and optimality are no 
longer guaranteed 


