
1

Heuristic (Informed) Search 
(Where we try to choose smartly)  

 
R&N: Chap. 4, Sect. 4.1–3  

2

Search Algorithm #2

SEARCH#2
1. INSERT(initial-node,FRINGE)
2. Repeat:

a. If empty(FRINGE) then return failure
b. N ! REMOVE(FRINGE)
c. s ! STATE(N)
d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a node N’ as a successor of N
ii. INSERT(N’,FRINGE)

Recall that the ordering
of FRINGE defines the
search strategy

3

Best-First Search
▪ It exploits state description to estimate

how “good” each search node is

▪ An evaluation function f maps each node N
of the search tree to a real number  
f(N) ≥ 0  
[Traditionally, f(N) is an estimated cost; so, the smaller
f(N), the more promising N]  

▪ Best-first search sorts the FRINGE in
increasing f  
[Arbitrary order is assumed among nodes with equal f]

4

Best-First Search
▪ It exploits state description to estimate

how “good” each search node is

▪ An evaluation function f maps each node N
of the search tree to a real number  
f(N) ≥ 0  
[Traditionally, f(N) is an estimated cost; so, the smaller
f(N), the more promising N]  

▪ Best-first search sorts the FRINGE in
increasing f  
[Arbitrary order is assumed among nodes with equal f]

“Best” does not refer to the quality  
of the generated path
Best-first search does not generate
optimal paths in general

5

▪ Typically, f(N) estimates:
• either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
– g(N) is the cost of the path from the initial node to N
– h(N) is an estimate of the cost of a path from N to a goal node

• or the cost of a path from N to a goal node
Then f(N) = h(N) ! Greedy best-search

▪ But there are no limitations on f. Any function of
your choice is acceptable.  
But will it help the search algorithm? 

How to construct f?

6

▪ Typically, f(N) estimates:
• either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
– g(N) is the cost of the path from the initial node to N
– h(N) is an estimate of the cost of a path from N to a goal node

• or the cost of a path from N to a goal node
Then f(N) = h(N)

▪ But there are no limitations on f. Any function of
your choice is acceptable.  
But will it help the search algorithm? 

How to construct f?

Heuristic function

7

▪ The heuristic function h(N) ≥ 0 estimates the cost
to go from STATE(N) to a goal state  
 
Its value is independent of the current search
tree; it depends only on STATE(N) and the goal
test GOAL? 

▪ Example:

 h1(N) = number of misplaced numbered tiles = 6
 [Why is it an estimate of the distance to the goal?]

Heuristic Function

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

8

▪ h1(N) = number of misplaced numbered tiles = 6
▪ h2(N) = sum of the (Manhattan) distance of

every numbered tile to its goal position  
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

▪ h3(N) = sum of permutation inversions 
 = n5 + n8 + n4 + n2 + n1 + n7 + n3 + n6  
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0  
 = 16

Other Examples

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

9

8-Puzzle

4

5

5

3

3

4

3 4

4

2 1

2

0

3

4

3

f(N) = h(N) = number of misplaced numbered tiles

The white tile is the empty tile

10

0+4

1+5

1+5

1+3

3+3

3+4

3+4

3+2 4+1

5+2

5+0

2+3

2+4

2+3

8-Puzzle
f(N) = g(N) + h(N)  
 with h(N) = number of misplaced numbered tiles

11

5

6

6

4

4

2 1

2

0

5

5

3

8-Puzzle
f(N) = h(N) = Σ distances of numbered tiles to their goals

12

Robot Navigation

xN

yN
N

xg

yg

2 2
g g1 N Nh (N) = (x -x) +(y -y) (L2 or Euclidean distance)

h2(N) = |xN-xg| + |yN-yg| (L1 or Manhattan distance)

13

Best-First → Efficiency

f(N) = h(N) = straight distance to the goal

Local-minimum problem

14

Can we prove anything?
▪ If the state space is infinite, in general the

search is not complete

▪ If the state space is finite and we do not discard
nodes that revisit states, in general the search is
not complete

▪ If the state space is finite and we discard nodes
that revisit states, the search is complete, but in
general is not optimal

15

Admissible Heuristic

▪ Let h*(N) be the cost of the optimal path
from N to a goal node  

▪ The heuristic function h(N) is admissible if:  
 0 ≤ h(N) ≤ h*(N)

▪ An admissible heuristic function is always
optimistic !

▪ Let h*(N) be the cost of the optimal path
from N to a goal node  

▪ The heuristic function h(N) is admissible if:  
 0 ≤ h(N) ≤ h*(N)

▪ An admissible heuristic function is always
optimistic !

16

Admissible Heuristic

G is a goal node ➔ h(G) = 0

17

▪ h1(N) = number of misplaced tiles = 6  
is ???

▪ h2(N) = sum of the (Manhattan) distances of  
 every tile to its goal position 
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible

▪ h3(N) = sum of permutation inversions 
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is not admissible

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

18

▪ h1(N) = number of misplaced tiles = 6  
is admissible

▪ h2(N) = sum of the (Manhattan) distances of  
 every tile to its goal position 
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is ???

▪ h3(N) = sum of permutation inversions 
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is not admissible

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

19

▪ h1(N) = number of misplaced tiles = 6  
is admissible

▪ h2(N) = sum of the (Manhattan) distances of  
 every tile to its goal position 
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible

▪ h3(N) = sum of permutation inversions 
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is ???

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

20

▪ h1(N) = number of misplaced tiles = 6  
is admissible

▪ h2(N) = sum of the (Manhattan) distances of  
 every tile to its goal position 
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible

▪ h3(N) = sum of permutation inversions 
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is not admissible

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

21

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y) is admissible

22

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

h2(N) = |xN-xg| + |yN-yg| is ???

23

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

h2(N) = |xN-xg| + |yN-yg| is admissible if moving along
diagonals is not allowed, and
not admissible otherwiseh*(I) = 4√2

h2(I) = 8

24

How to create an admissible h?

▪ An admissible heuristic can usually be seen as the
cost of an optimal solution to a relaxed problem (one
obtained by removing constraints)

▪ In robot navigation:
• The Manhattan distance corresponds to removing the

obstacles
• The Euclidean distance corresponds to removing both the

obstacles and the constraint that the robot moves on a
grid

▪ More on this topic later

25

A* Search 
(most popular algorithm in AI)

1) f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function  

2) for all arcs: c(N,N’) ≥ ε > 0  

3) SEARCH#2 algorithm is used

➔ Best-first search is then called A* search

26

Result #1

 A* is complete and optimal

 [This result holds if nodes revisiting
states are not discarded]

27

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution  

 - For each node N on the OpenList,  
 f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,  
 where d(N) is the depth of N in the tree 

28

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution  

 - For each node N on the OpenList,  
 f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,  
 where d(N) is the depth of N in the tree 
- As long as A* hasn’t terminated, a node K  
 on the OpenList lies on a solution path

K

29

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution  

 - For each node N on the OpenList,  
 f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,  
 where d(N) is the depth of N in the tree

- As long as A* hasn’t terminated, a node K  
 on the OpenList lies on a solution path
- Since each node expansion increases the  
 length of one path, K will eventually be  
 selected for expansion, unless a solution is  
 found along another path

K

30

Proof (2/2)
2) Whenever A* chooses to expand a goal

node, the path to this node is optimal

K

- C*= cost of the optimal solution path

- G’: non-optimal goal node in the fringe 
 f(G’) = g(G’) + h(G’) = g(G’) > C*

- A node K in the fringe lies on an optimal  
 path:
 f(K) = g(K) + h(K) ≤ C* 

- So, G’ will not be selected for expansion

G’

31

Time Limit Issue
▪ When a problem has no solution, A* runs for ever if the

state space is infinite. In other cases, it may take a
huge amount of time to terminate

▪ So, in practice, A* is given a time limit. If it has not
found a solution within this limit, it stops. Then there is
no way to know if the problem has no solution, or if
more time was needed to find it

▪ When AI systems are “small” and solving a single search
problem at a time, this is not too much of a concern.

▪ When AI systems become larger, they solve many
search problems concurrently, some with no solution.
What should be the time limit for each of them?
More on this in the lecture on Motion Planning ...

32

8-Puzzle

0+4

1+5

1+5

1+3

3+3

3+4

3+4

3+2 4+1

5+2

5+0

2+3

2+4

2+3

f(N) = g(N) + h(N)  
 with h(N) = number of misplaced tiles

33

Robot Navigation

34

Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal  
(not A*)

35

Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

7

0

36

Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

57+0

6+1

6+1

8+1

7+0

7+2

6+1

7+2

6+1

8+1

7+2

8+3

7+2 6+36+3 5+45+4 4+54+5 3+63+6 2+7

8+3 7+47+4 6+5

5+6

6+3 5+6

2+7 3+8

4+7

5+6 4+7

3+8

4+7 3+83+8 2+92+9 3+10

2+9

3+8

2+9 1+101+10 0+110+11

37

Best-First Search

▪ An evaluation function f maps each node N of the
search tree to a real number  
f(N) ≥ 0  

▪ Best-first search sorts the OpenList in
increasing f  

38

A* Search

1) f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function  

2) for all arcs: c(N,N’) ≥ ε > 0  

3) SEARCH#2 algorithm is used

➔ Best-first search is then called A* search

39

Result #1

 A* is complete and optimal

 [This result holds if nodes revisiting
states are not discarded]

40

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1 The heuristic h is
clearly admissible

41

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

104

4+90

f = 1+100 2+1

?
If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

42

1

100

21

2

100

0

90

1

104

4+90

1+100 2+1

2+90

102

Instead, if we do not discard nodes revisiting  
states, the search terminates with an optimal  
solution

What to do with revisited states?

43

▪ It is not harmful to discard a node revisiting a
state if the cost of the new path to this state is ≥
cost of the previous path 
[so, in particular, one can discard a node if it re-visits a
state already visited by one of its ancestors]

▪ A* remains optimal, but states can still be re-
visited multiple times  
[the size of the search tree can still be exponential in the
number of visited states]

▪ Fortunately, for a large family of admissible
heuristics – consistent heuristics – there is a much
more efficient way to handle revisited states

44

Consistent Heuristic
 An admissible heuristic h is consistent (or

monotone) if for each node N and each child
N’ of N:

 h(N) ≤ c(N,N’) + h(N’)

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ C*(N) ≤ c(N,N’) + h*(N’)
h(N) − c(N,N’) ≤ h*(N’)
h(N) − c(N,N’) ≤ h(N’) ≤ h*(N’)

45

Consistent Heuristic
 An admissible heuristic h is consistent (or

monotone) if for each node N and each child
N’ of N:

 h(N) ≤ c(N,N’) + h(N’)

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

! Intuition: a consistent heuristics becomes
more precise as we get deeper in the search tree

h(N) ≤ C*(N) ≤ c(N,N’) + h*(N’)
h(N) − c(N,N’) ≤ h*(N’)
h(N) − c(N,N’) ≤ h(N’) ≤ h*(N’)

46

Consistency Violation

N

N’ h(N)  
=100

h(N’) 
=10

c(N,N’) 
=10

(triangle inequality)

If h tells that N is 100 units
from the goal, then moving
from N along an arc costing 10
units should not lead to a node
N’ that h estimates to be 10
units away from the goal

47

Consistent Heuristic 
(alternative definition)

 Any heuristic h is consistent (or monotone) if
 1) for each node N and each child N’ of N:
 h(N) ≤ c(N,N’) + h(N’)

 2) for each goal node G:

 h(G) = 0
(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

A consistent heuristic  
is also admissible

48

▪ A consistent heuristic is also admissible 

▪ An admissible heuristic may not be
consistent, but many admissible heuristics
are consistent

▪ Proof?

Admissibility and Consistency

49

8-Puzzle

1 2 3

4 5 6

7 8

12

3

4

5

67

8

STATE(N) goal

▪ h1(N) = number of misplaced tiles
▪ h2(N) = sum of the (Manhattan) distances  
 of every tile to its goal position
are both consistent (why?)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)

50

Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y)

h2(N) = |xN-xg| + |yN-yg|
is consistent

is consistent if moving along
diagonals is not allowed, and
not consistent otherwise

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)

51

 If h is consistent, then whenever A*
expands a node, it has already found
an optimal path to this node’s state

Result #2

52

Proof (1/2)
1) Consider a node N and its child N’  

Since h is consistent: h(N) ≤ c(N,N’)+h(N’)  
 
f(N) = g(N)+h(N) ≤ g(N)+c(N,N’)+h(N’) = f(N’) 
So, f is non-decreasing along any path

N

N’

2) If a node K is selected for expansion, then any other node N in
the OpenList verifies f(N) ≥ f(K)

 If one node N lies on another path to the state of K, the cost
of this other path is no smaller than that of the path to K:

 f(N’) ≥ f(N) ≥ f(K) and h(N’) = h(K)
 So, g(N’) ≥ g(K) 53

Proof (2/2)

K N

N’S

54

2) If a node K is selected for expansion, then any other node N in
the fringe verifies f(N) ≥ f(K)

 If one node N lies on another path to the state of K, the cost
of this other path is no smaller than that of the path to K:

 f(N’) ≥ f(N) ≥ f(K) and h(N’) = h(K)
 So, g(N’) ≥ g(K)

Proof (2/2)

K N

N’S

 If h is consistent, then whenever A* expands a
node, it has already found an optimal path to this
node’s state

Result #2

55

Implication of Result #2

N N1
S S1

The path to N  
is the optimal
path to S

N2

N2 can be  
discarded

56

Revisited States with Consistent
Heuristic

▪ When a node is expanded, store its state
into CLOSED

▪ When a new node N is generated:
• If STATE(N) is in CLOSED, discard N
• If there exists a node N’ in the

OpenList such that STATE(N’) =
STATE(N), discard the node – N or N’ –
with the largest f (or, equivalently, g)

57

Is A* with some consistent heuristic all
that we need?

No !
 There are very dumb consistent heuristic

functions

58

For example: h ≡ 0

▪ It is consistent (hence, admissible) !
▪ A* with h≡0 is uniform-cost search
▪ Breadth-first and uniform-cost are

particular cases of A*

59

Heuristic Accuracy
 Let h1 and h2 be two consistent heuristics such that for all

nodes N:
 

 h1(N) ≤ h2(N)

 h2 is said to be more accurate (or more informed) than h1

▪ h1(N) = number of misplaced tiles
▪ h2(N) = sum of distances of

every tile to its goal position

▪ h2 is more accurate than h1

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

60

Result #3

▪ Let h2 be more accurate than h1

▪ Let A1* be A* using h1  
and A2* be A* using h2

▪ Whenever a solution exists, all the nodes
expanded by A2*, except possibly for some
nodes such that  
 f1(N) = f2(N) = C* (cost of optimal solution)  

are also expanded by A1*

61

Proof
▪ C* = h*(initial-node) [cost of optimal solution]

▪ Every node N such that f(N) < C* is eventually expanded. No
node N such that f(N) > C* is ever expanded

▪ Every node N such that h(N) < C*−g(N) is eventually
expanded. So, every node N such that h2(N) < C*−g(N) is
expanded by A2*. Since h1(N) ≤ h2(N), N is also expanded by
A1*

▪ If there are several nodes N such that f1(N) = f2(N) = C*
(such nodes include the optimal goal nodes, if there exists a
solution), A1* and A2* may or may not expand them in the
same order (until one goal node is expanded)

62

Effective Branching Factor

▪ It is used as a measure the effectiveness
of a heuristic

▪ Let n be the total number of nodes
expanded by A* for a particular problem
and d the depth of the solution

▪ The effective branching factor b* is
defined by n = 1 + b* + (b*)2 +...+ (b*)d

63

Experimental Results 
(see R&N for details)

▪ 8-puzzle with:
▪ h1 = number of misplaced tiles
▪ h2 = sum of distances of tiles to their goal positions

▪ Random generation of many problem instances
▪ Average effective branching factors:

d IDS A1* A2*

2 2.45 1.79 1.79

6 2.73 1.34 1.30

12 2.78 (3,644,035) 1.42 (227) 1.24 (73)

16 -- 1.45 1.25

20 -- 1.47 1.27

24 -- 1.48 (39,135) 1.26 (1,641)

64

▪ By solving relaxed problems at each node
▪ In the 8-puzzle, the sum of the distances of each tile to its

goal position (h2) corresponds to solving 8 simple problems:

▪ It ignores negative interactions among tiles

How to create good heuristics?

14

7

5

2

63

8

64

7

1

5

2

8

3

5

5

di is the length of the
shortest path to move
tile i to its goal position,
ignoring the other tiles,
e.g., d5 = 2

h2 = Σi=1,...8 di

65

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3

3

2 14 4

1 2 3

d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions,
ignoring the other tiles

6

7

5

87

5

6

8

d5678

▪For example, we could consider two more complex relaxed problems:

66

▪ For example, we could consider two more complex relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3

3

2 14 4

1 2 3

6

7

5

87

5

6

8

d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions,
ignoring the other tiles

d5678

! Several order-of-magnitude speedups  
for the 15- and 24-puzzle (see R&N)

67

On Completeness and Optimality
▪ A* with a consistent heuristic function has nice

properties: completeness, optimality, no need to
revisit states

▪ Theoretical completeness does not mean
“practical” completeness if you must wait too long
to get a solution (remember the time limit issue)

▪ So, if one can’t design an accurate consistent
heuristic, it may be better to settle for a non-
admissible heuristic that “works well in practice”,
even through completeness and optimality are no
longer guaranteed

