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What is Artificial Intelligence? 
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What is Artificial Intelligence? 

Artificial Intelligence is family of technologies and 
scientific field that allows/studies:

• automation, acceleration and scalability of

• human (i) perception, (ii) reasoning and (iii) 

decision making
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Why Artificial Intelligence Matters? 
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Types of Artificial Intelligence? 

WEAK AI   𝕏   STRONG AI 



Types of Artificial Intelligence? 

• Strong AI: 

– Searle's strong AI hypothesis: The appropriately programmed 

computer with the right inputs and outputs would thereby have a mind 
in exactly the same sense human beings have minds.


– Artificial general intelligence is a hypothetical artificial intelligence that 
demonstrates the intelligence of a machine that could successfully 
perform any intellectual task that a human being can.


• Weak AI: 

– Turing’s hypothesis: If a machine behaves as intelligently as a human 

being, then it is as intelligent as a human being = passes the Turing 
Test


• AI according to Smith:

– The machine shall exhibit indistinguishable behaviour (according to 

the weak AI definition) by means of the knowledge structures and 
reasoning process identical to those used by human 

9
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Types of Artificial Intelligence? 

WEAK AI   𝕏   STRONG AI 
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Types of Artificial Intelligence? 

WEAK AI   𝕏   STRONG AI 
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Turing Test
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• Test proposed by Alan Turing in 1950

• The computer is asked questions by a human interrogator. It passes 

the test if the interrogator cannot tell whether the responses come 
from a person


• Required capabilities: natural language  
processing, knowledge representation,  
automated reasoning, learning,…


• CAPTCHA: Completely Automatic  
Public Turing tests to tell Computers  
and Humans Apart
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Types of Artificial Intelligence? 

WEAK AI   𝕏   STRONG AI 
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Types of Artificial Intelligence? 

WEAK AI   𝕏   STRONG AI 

Narrow AI→Extended AI→General AI→Super AI
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Artificial Intelligence Approaches

1. Statistical AI: Machine Learning  
(Computational Statistics, Mathematical Optimisation) 
perception, understanding, prediction, classification


2. Symbolic AI: Automated Reasoning  
(Symbolic AI, Search based AI) 
problem solving, decision making, planning


3. Sub-symbolic AI: (Control theory, Computational intelligence, 
Softcomputing)  
robotics, alternative problem solving, alternative understanding


4. Collective AI: Multiagent systems  
(Agent Architectures, Game Theory, Mechanism Design, 
Combinatorial Auctions) 
robotics, distributed systems, market mechanisms, AI 
simulations 
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Artificial Intelligence Approaches

1. Statistical AI: Machine Learning  
(Statistics, Optimisation, Neural Networks, Deep Learning) 
perception, understanding, prediction, classification


2. Symbolic AI: Automated Reasoning  
(Symbolic AI, Search based AI) 
problem solving, decision making, planning


3. Sub-symbolic AI: (Control theory, Computational intelligence, 
Softcomputing)  
robotics, alternative problem solving, alternative understanding


4. Collective AI: Multiagent systems  
(Agent Architectures, Game Theory, Mechanism Design, 
Combinatorial Auctions) 
robotics, distributed systems, market mechanisms, AI 
simulations 
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Artificial Intelligence Approaches

1. Statistical AI: Machine Learning  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2. Symbolic AI: Automated Reasoning  
(Symbolic AI, Search based AI) 
problem solving, decision making, planning


3. Sub-symbolic AI: (Control theory, Computational intelligence, 
Softcomputing, Neural Networks, Deep Learning)  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simulations 
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Artificial Intelligence in OI

1. Statistical AI: Machine Learning.  
(Computational Statistics, Mathematical Optimisation) 
perception, understanding, prediction, classification


2. Symbolic AI: Automated Reasoning  
(Symbolic AI, Search based AI) 
problem solving, decision making, planning


3. Sub-symbolic AI: (Control theory, Computational 
intelligence, Softcomputing, Neural Networks, Deep Learning)  
robotics, alternative problem solving, alternative 
understanding


4. Collective AI: Multiagent systems  
(Agent Architectures, Game Theory, Mechanism Design, 
Combinatorial Auctions) 
robotics, distributed systems, market mechanisms,  
AI simulations 

B4B33RPZ

B4B36ZUI

B4B36FUP

B4M33SSU

B4M33MAS

B4M33PUI
B4M33LUP

B4M33UIR

B4M33SMU



B4B36ZUI Content

1. Introduction to AI. Search-based AI, Uninformed search 
2. Informed A* search  
3. Advanced A*: RBFS, SMA* 
4. Local search, Online search 
5. Constrain Satisfaction Problem 
6. Two players games 
7. Monte Carlo Tree Search 
8. Knowledge representation - Introduction 
9. Knowledge representation in FOL  
10. Rational Decisions under Uncertainty 
11. Sequential Decisions under Uncertainty 
12. Knowledge in Multi-agent Systems 
13. AI Applications



http://aima.cs.berkeley.edu

http://aima.cs.berkeley.edu
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Introduction to AI  
Uninformed Search  

 
R&N: Chap. 3, Sect. 3.1–3.6  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Example: 8-Puzzle
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Initial state Goal state

State: any arrangement of 8 numbered tiles and an empty tile
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8-Puzzle: Successor Function
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search is about the exploration of alternatives

SUCC(state) → subsetofstates 
The successor function is knowledge 
about the 8-puzzle game, but it does 

not tell us which outcome to use, nor to

which state of the board to apply it.
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(n2-1)-puzzle
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15-Puzzle
	 Sam Loyd offered $1,000 of his own money to the 

first person who would solve the following 
problem:
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Stating a Problem as a Search Problem

▪ State space S 
▪ Successor function: 
    x ∈ S → SUCCESSORS(x) ∈ 2S 

▪ Initial state s0 
▪ Goal test:  
    x∈S → GOAL?(x) =T or F  
▪ Arc cost 

S
1

3 2
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State Graph

▪ Each state is represented 
by a distinct node 

▪ An arc (or edge) 
connects a node s  
to a node s’ if  
s’ ∈ SUCC(s) 
  

▪ The state graph may 
contain more than one 
connected component



29

Solution to the Search Problem
▪ A solution is a path connecting the initial node to 

a goal node (any one)

I

G
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Solution to the Search Problem
▪ A solution is a path connecting the initial node to 

a goal node (any one) 
▪ The cost of a path is the sum of the arc costs 

along this path 
▪ An optimal solution is a solution path of minimum 

cost 
▪ There might be  

no solution ! I

G
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How big is the state space  
of the (n2-1)-puzzle?

▪ 8-puzzle → 9! = 362,880 states 
▪ 15-puzzle → 16! ~ 2.09 x 1013 states 
▪ 24-puzzle → 25! ~ 1025 states 

	 But only half of these states are reachable from 
any given state 
(but you may not know that in advance)
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            8-puzzle ! 362,880 states 

            15-puzzle ! 2.09 x 1013 states 

24-puzzle ! 1025 states

100 millions states/sec

0.036 sec

~ 55 hours

> 109 years

8-, 15-, 24-Puzzles
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Searching the State Space

▪ Often it is not 
feasible (or too 
expensive) to 
build a complete 
representation of 
the state graph 

▪ A problem solver 
must construct a 
solution by 
exploring a small 
portion of the 
graph 
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Searching the State Space

Search tree
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Searching the State Space

Search tree
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Searching the State Space

Search tree
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Searching the State Space

Search tree



38

Searching the State Space

Search tree
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Searching the State Space

Search tree
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Other examples
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8-Queens Problem
Place 8 queens in a chessboard so that no two 
queens are in the same row, column, or diagonal.

A solution Not a solution
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Formulation #1

▪ States: all arrangements of 0, 1, 
2, ..., 8 queens on the board 

▪ Initial state: 0 queens on the 
board 

▪ Successor function: each of the 
successors is obtained by adding 
one queen in an empty square 

▪ Arc cost: irrelevant 
▪ Goal test: 8 queens are on the 

board, with no queens attacking 
each other

! ~ 64x63x...x57 ~ 3x1014 states
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Formulation #2

▪ States: all arrangements of k = 0, 1, 
2, ..., 8 queens in the k leftmost 
columns with no two queens 
attacking each other 

▪ Initial state: 0 queens on the board 
▪ Successor function: each 

successor is obtained by adding one 
queen in any square that is not 
attacked by any queen already in the 
board, in the leftmost empty column  

▪ Arc cost: irrelevant 
▪ Goal test: 8 queens are on the 

board! 2,057 states
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n-Queens Problem
▪ A solution is a goal node, not a path to this node 

(typical of design problem) 
▪ Number of states in state space: 

8-queens → 2,057 
100-queens → 1052 

▪ But techniques exist to solve n-queens problems 
efficiently for large values of n 

	 They exploit the fact that there are many 
solutions well distributed in the state space
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Path Planning

What is the state space?
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Formulation #1

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step = √2 
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Optimal Solution

This path is the shortest in the discretized state  
space, but not in the original continuous space
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Formulation #2
sweep-line
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Formulation #2
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States
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Successor Function
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Solution Path

A path-smoothing post-processing step is  
usually needed to shorten the path further
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Formulation #3

Cost of one step: length of segment
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Formulation #3

Cost of one step: length of segment

Visibility graph
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Solution Path

The shortest path in this state space is also the  
shortest in the original continuous space 
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Simple Problem-Solving-Agent

1. s0 ← sense/read initial state 
2. GOAL? ← select/read goal test 
3. Succ ← read successor function 
4. solution ← search(s0, GOAL?, Succ)  

5. perform(solution)
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Search Nodes and States
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If states are allowed to be revisited, 
the search tree may be infinite even 

when the state space is finite
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Data Structure of a Node

PARENT-NODESTATE

Depth of a node N   
        = length of path from root to N  

(depth of the root = 0) 

BOOKKEEPING

5Path-Cost

5Depth
RightAction

Expanded yes
...

CHILDREN
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Node expansion
	 The expansion of a node N consists of:


1) Evaluating the successor 
function on STATE(N) 

2) Generating a child of N for 
each state returned by the 
function  

node generation ≠ node expansion
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▪ The Open-List is the set of all search nodes that 
haven’t been expanded yet  
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Open-List of Search Tree
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Search Strategy

▪ The Open-List is the set of all search nodes that 
haven’t been expanded yet  

▪ The Open-List is implemented as a priority queue 
INSERT(node,Open-List) 
REMOVE(Open-List) 
▪ The ordering of the nodes in Open-List defines 

the search strategy
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Search Algorithm #1
SEARCH#1 
1. If GOAL?(initial-state) then return initial-state 
2. INSERT(initial-node,Open-List) 
3. Repeat: 

a. If empty(Open-List) then return failure 
b. N ← REMOVE(Open-List) 
c. s ← STATE(N) 
d. For every state s’ in SUCCESSORS(s) 

i. Create a new node N’ as a child of N 
ii. If GOAL?(s’) then return path or goal state 
iii.INSERT(N’,Open-List)

Expansion of N
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Performance Measures

▪ Completeness 
A search algorithm is complete if it finds a 
solution whenever one exists 
[What about the case when no solution exists?] 

▪ Optimality 
A search algorithm is optimal if it returns a 
minimum-cost path whenever a solution exists 

▪ Complexity 
It measures the time and amount of memory 
required by the algorithm
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Blind vs. Heuristic Strategies

▪ Blind (or un-informed) strategies do not exploit 
state descriptions to order Open-List. They only 
exploit the positions of the nodes in the search 
tree 

▪ Heuristic (or informed) strategies exploit state 
descriptions to order Open-List (the most 
“promising” nodes are placed at the beginning of 
Open-List)
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Example
For a blind strategy, N1 and 
N2 are just two nodes (at 
some position in the search 
tree)

Goal state

N1

N2STATE

STATE1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8
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Example
For a heuristic strategy 
counting the number of 
misplaced tiles,  N2 is more 
promising than N1

Goal state

1
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5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8

N1

N2STATE

STATE
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Remark

▪ Some search problems, such as the (n2-1)-puzzle, 
are NP-hard 

▪ One can’t expect to solve all instances of such 
problems in less than exponential time (in n)  

▪ One may still strive to solve each instance as 
efficiently as possible  
 
! This is the purpose of the search strategy
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Blind Strategies

▪ Breadth-first 
- Bidirectional 

▪ Depth-first 
- Depth-limited 

- Iterative deepening


▪ Uniform-Cost 
(variant of breadth-first) 

Arc cost = 1

Arc cost  
= c(action) ≥ ε 
> 0 
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Breadth-First Strategy

New nodes are inserted at the end of Open-List

2 3

4 5

1

6 7

Open-List = (1)
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Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List = (2, 3)2 3

4 5

1

6 7
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Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List = (3, 4, 5)2 3

4 5

1

6 7
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Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List = (4, 5, 6, 7)2 3

4 5

1

6 7



73

Important Parameters

1) Maximum number of successors of any state 
 
! branching factor b of the search tree 

2) Minimal length (≠ cost) of a path between the 
initial and a goal state 
 
! depth d of the shallowest goal node in the 
    search tree
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Evaluation

▪ b: branching factor 
▪ d: depth of shallowest goal node 
▪ Breadth-first search is:  

- Complete? Not complete? 
- Optimal? Not optimal?
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Evaluation

▪ b: branching factor 
▪ d: depth of shallowest goal node 
▪ Breadth-first search is:


- Complete 
- Optimal if step cost is 1 

▪ Number of nodes generated: 
	 ??? 
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Evaluation

▪ b: branching factor 
▪ d: depth of shallowest goal node 
▪ Breadth-first search is:  

- Complete 
- Optimal if step cost is 1 

▪ Number of nodes generated: 
 
1 + b + b2 + … + bd    =  ??? 
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Evaluation

▪ b: branching factor 
▪ d: depth of shallowest goal node 
▪ Breadth-first search is:  

- Complete 
- Optimal if step cost is 1 

▪ Number of nodes generated: 
  
1 + b + b2 + … + bd.  = (bd+1-1)/(b-1) = O(bd)  

▪ Time and space complexity is O(bd) 
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Big O Notation

  g(n) = O(f(n)) if there exist two positive 
constants a and N such that: 

	 for all n > N:    g(n) ≤ a × f(n)



Time and Memory Requirements

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node
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Remark
If a problem has no solution, breadth-first may run 
for ever (if the state space is infinite or states can 
be revisited arbitrary many times)
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Bidirectional Strategy
two Open-List queues: Open-List1 and Open-List2

s

Time and space complexity is O(bd/2) << O(bd) if both 
trees have the same branching factor b
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Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

Open-List = (1)
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Depth-First Strategy

 New nodes are inserted at the front of Open-List

1
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4 5

Open-List = (2, 3)
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Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

Open-List = (4, 5, 3)
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Depth-First Strategy

 New nodes are inserted at the front of Open-List
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Depth-First Strategy

 New nodes are inserted at the front of Open-List
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Depth-First Strategy

 New nodes are inserted at the front of Open-List
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Depth-First Strategy

 New nodes are inserted at the front of Open-List
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Depth-First Strategy

 New nodes are inserted at the front of Open-List
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Depth-First Strategy

 New nodes are inserted at the front of Open-List
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4 5
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Depth-First Strategy

 New nodes are inserted at the front of Open-List
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Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5
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Evaluation
▪ b: branching factor 
▪ d: depth of shallowest goal node  
▪ m: maximal depth of a leaf node 
▪ Depth-first search is: 

- Complete?

- Optimal?



Evaluation
▪ b: branching factor 
▪ d: depth of shallowest goal node  
▪ m: maximal depth of a leaf node 
▪ Depth-first search is: 

- Complete only for finite search tree

- Not optimal 

▪ Number of nodes generated (worst case): 
 1 + b + b2 + … + bm = O(bm)  

▪ Time complexity is O(bm)  
▪ Space complexity is O(bm) [or O(m)] 
[Reminder: Breadth-first requires O(bd) time and space]
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Depth-Limited Search

▪ Depth-first with depth cutoff k (depth at which 
nodes are not expanded) 

▪ Three possible outcomes: 
- Solution 
- Failure (no solution) 
- Cutoff (no solution within cutoff)
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Iterative Deepening Search

   the best of both breadth-first and depth-first search 

 IDS: for k = 0,1,2, … d  
   do: Depth-first search with depth cutoff k 
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Iterative Deepening
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Iterative Deepening
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Iterative Deepening
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Performance

▪ Iterative deepening search is: 
- Complete 
- Optimal if step cost =1 

▪ Time complexity is: 
 
(d+1)(1) + db + (d-1)b2 + … + (1) bd = O(bd) 

▪ Space complexity is: O(bd) or O(d)
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d = 5 and b = 2BF ID
1 1 x 6 = 6
2 2 x 5 = 10
4 4 x 4 = 16
8 8 x 3 = 24
16 16 x 2 = 32
32 32 x 1 = 32
63 120

120/63 ~ 2

Number of Generated Nodes  
(Breadth-First & Iterative Deepening)



102

d = 5 and b = 10BF ID
1 6
10 50
100 400
1,000 3,000
10,000 20,000
100,000 100,000
111,111 123,456

123,456/111,111 ~ 1.111

Number of Generated Nodes  
(Breadth-First & Iterative Deepening)
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Comparison of Strategies

▪ Breadth-first is complete and optimal, but has 
high space complexity 

▪ Depth-first is space efficient, but is neither 
complete, nor optimal 

▪ Iterative deepening is complete and optimal, with 
the same space complexity as depth-first and 
almost the same time complexity as breadth-first
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Revisited States

8-queens

No

assembly  
planning

Few

1 2 3
4 5

67 8

8-puzzle and robot navigation

Many

search tree is finitesearch tree is infinite
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Avoiding Revisited States

▪  Requires comparing state descriptions  
▪  Breadth-first search:  

• Store all states associated with generated 
nodes in Closed-List 

• If the state of a new node is in Closed-List, 
then discard the node
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Avoiding Revisited States

▪  Depth-first search:  
 Solution 1: 

– Store all states associated with nodes in current path 
in Closed-List 

– If the state of a new node is in Closed-List, then 
discard the node
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Avoiding Revisited States

▪  Depth-first search:  
 Solution 1: 

– Store all states associated with nodes in current path 
in Closed-List 

– If the state of a new node is in Closed-List, then 
discard the node 

 Only avoids loops 

Solution 2: 
– Store all generated states in Closed-List 
– If the state of a new node is in Closed-List, then 

discard the node 
Same space complexity as breadth-first !
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Uniform-Cost Search
▪ Each arc has some cost c ≥ ε > 0, The cost of the path 
   to each node N is g(N) = Σ costs of arcs 
▪ The goal is to generate a solution path of minimal cost 
 

▪ The nodes in the Open-List are sorted in increasing g(N) 

 

▪ Need to modify search algorithm
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Search Algorithm #1
SEARCH#1 
1. If GOAL?(initial-state) then return initial-state 
2. INSERT(initial-node,Open-List) 
3. Repeat: 

a. If empty(Open-List) then return failure 
b. N ← REMOVE(Open-List) 
c. s ← STATE(N) 
d. For every state s’ in SUCCESSORS(s) 

i. Create a new node N’ as a child of N 
ii. If GOAL?(s’) then return path or goal state 
iii.INSERT(N’,Open-List)
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Search Algorithm #2
SEARCH#2 
1. INSERT(initial-node,Open-List) 
2. Repeat: 

a. If empty(Open-List) then return failure 
b. N ← REMOVE(Open-List) 
c. s ← STATE(N) 
d. If GOAL?(s) then return path or goal state 
e. For every state s’ in SUCCESSORS(s) 

i. Create a node N’ as a successor of N 
ii.INSERT(N’,Open-List)
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Avoiding Revisited States in  
Uniform-Cost Search

▪ For any state S, when the first node N such that 
STATE(N) = S is expanded, the path to N is the best path 
from the initial state to S 

▪ So: 

• When a node is expanded, store its state into 
CLOSED  

• When a new node N is generated: 

– If STATE(N) is in CLOSED, discard N 

– If there exits a node N’ in the Open-List such that 
STATE(N’) = STATE(N), discard the node (N or N’) with the 
highest-cost path
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Search Algorithm #3
SEARCH#3 
1. INSERT(initial-node,Open-List) 
2. Repeat: 

a. If empty(Open-List) then return failure 
b. N ← REMOVE(Open-List) 
c. s ← STATE(N) 
d. INSERT(N,Closed-List) 
e. If GOAL?(s) then return path or goal state 
f. For every state s’ in SUCCESSORS(s) 

i. Create a node N’ as a successor of N 
ii.If N is not in Closed-List and  

 If N is not on Open-List with lower cost        
   then INSERT(N’,Open-List)
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114Homework 
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" A tile j appears after a tile i if either j appears on the same row 
as i to the right of i, or on another row below the row of i. 

" For every i = 1, 2, ..., 15, let ni be the number of tiles j < i that 
appear after tile i (permutation inversions) 

" N = n2 + n3 + … + n15 + row number of empty tile

Permutation Inversions
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4321
n2 = 0 n3 = 0 n4 = 0 
n5 = 0 n6 = 0 n7 = 1 
n8 = 1 n9 = 1 n10 = 4 
n11 = 0 n12 = 0 n13 = 0 
n14 = 0 n15 = 0

! N = 7 + 4
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" Proposition: (N mod 2) is invariant under any 
legal move of the empty tile


" Proof:

• Any horizontal move of the empty tile leaves N 

unchanged 
• A vertical move of the empty tile changes N by an 

even increment (± 1 ± 1 ± 1 ± 1)
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s’ = N(s’) = N(s) + 3 + 1
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" Proposition: (N mod 2) is invariant under any 
legal move of the empty tile


" ! For a goal state g to be reachable from a 
state s, a necessary condition is that N(g) and 
N(s) have the same parity 

" It can be shown that this is also a sufficient 
condition


" ! The state graph consists of two connected 
components of equal size


