
A4B36ZUI - Introduction to  
ARTIFICIAL INTELLIGENCE 
https://cw.fel.cvut.cz/wiki/courses/
Michal Pechoucek & Jiri Klema
Department of Computer Science  
Czech Technical University in Prague

In parts based on cs121.stanford.edu & S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. 3rd edition, Prentice Hall, 2010

https://cw.fel.cvut.cz/wiki/courses/a4b33zui/start
http://cs121.stanford.edu

2

What is Artificial Intelligence?

3

What is Artificial Intelligence?

Artificial Intelligence is family of technologies and
scientific field that allows/studies:

• automation, acceleration and scalability of

• human (i) perception, (ii) reasoning and (iii)

decision making

4

Why Artificial Intelligence Matters?

5

Why Artificial Intelligence Matters?

6

Why Artificial Intelligence Matters?

7

Why Artificial Intelligence Matters?

8

Types of Artificial Intelligence?

WEAK AI 𝕏 STRONG AI

Types of Artificial Intelligence?

• Strong AI:

– Searle's strong AI hypothesis: The appropriately programmed

computer with the right inputs and outputs would thereby have a mind
in exactly the same sense human beings have minds.

– Artificial general intelligence is a hypothetical artificial intelligence that
demonstrates the intelligence of a machine that could successfully
perform any intellectual task that a human being can.

• Weak AI:

– Turing’s hypothesis: If a machine behaves as intelligently as a human

being, then it is as intelligent as a human being = passes the Turing
Test

• AI according to Smith:

– The machine shall exhibit indistinguishable behaviour (according to

the weak AI definition) by means of the knowledge structures and
reasoning process identical to those used by human

9

10

Types of Artificial Intelligence?

WEAK AI 𝕏 STRONG AI

11

Types of Artificial Intelligence?

WEAK AI 𝕏 STRONG AI

11

Turing Test

12

• Test proposed by Alan Turing in 1950

• The computer is asked questions by a human interrogator. It passes

the test if the interrogator cannot tell whether the responses come
from a person

• Required capabilities: natural language  
processing, knowledge representation,  
automated reasoning, learning,…

• CAPTCHA: Completely Automatic  
Public Turing tests to tell Computers  
and Humans Apart

13

Types of Artificial Intelligence?

WEAK AI 𝕏 STRONG AI

14

Types of Artificial Intelligence?

WEAK AI 𝕏 STRONG AI

Narrow AI→Extended AI→General AI→Super AI

15

Artificial Intelligence Approaches

1. Statistical AI: Machine Learning  
(Computational Statistics, Mathematical Optimisation) 
perception, understanding, prediction, classification

2. Symbolic AI: Automated Reasoning  
(Symbolic AI, Search based AI) 
problem solving, decision making, planning

3. Sub-symbolic AI: (Control theory, Computational intelligence,
Softcomputing)  
robotics, alternative problem solving, alternative understanding

4. Collective AI: Multiagent systems  
(Agent Architectures, Game Theory, Mechanism Design,
Combinatorial Auctions) 
robotics, distributed systems, market mechanisms, AI
simulations

16

Artificial Intelligence Approaches

1. Statistical AI: Machine Learning  
(Statistics, Optimisation, Neural Networks, Deep Learning) 
perception, understanding, prediction, classification

2. Symbolic AI: Automated Reasoning  
(Symbolic AI, Search based AI) 
problem solving, decision making, planning

3. Sub-symbolic AI: (Control theory, Computational intelligence,
Softcomputing)  
robotics, alternative problem solving, alternative understanding

4. Collective AI: Multiagent systems  
(Agent Architectures, Game Theory, Mechanism Design,
Combinatorial Auctions) 
robotics, distributed systems, market mechanisms, AI
simulations

17

Artificial Intelligence Approaches

1. Statistical AI: Machine Learning  
(Computational Statistics, Mathematical Optimisation) 
perception, understanding, prediction, classification

2. Symbolic AI: Automated Reasoning  
(Symbolic AI, Search based AI) 
problem solving, decision making, planning

3. Sub-symbolic AI: (Control theory, Computational intelligence,
Softcomputing, Neural Networks, Deep Learning)  
robotics, alternative problem solving, alternative understanding

4. Collective AI: Multiagent systems  
(Agent Architectures, Game Theory, Mechanism Design,
Combinatorial Auctions) 
robotics, distributed systems, market mechanisms, AI
simulations

18

Artificial Intelligence in OI

1. Statistical AI: Machine Learning.  
(Computational Statistics, Mathematical Optimisation) 
perception, understanding, prediction, classification

2. Symbolic AI: Automated Reasoning  
(Symbolic AI, Search based AI) 
problem solving, decision making, planning

3. Sub-symbolic AI: (Control theory, Computational
intelligence, Softcomputing, Neural Networks, Deep Learning)  
robotics, alternative problem solving, alternative
understanding

4. Collective AI: Multiagent systems  
(Agent Architectures, Game Theory, Mechanism Design,
Combinatorial Auctions) 
robotics, distributed systems, market mechanisms,  
AI simulations

B4B33RPZ

B4B36ZUI

B4B36FUP

B4M33SSU

B4M33MAS

B4M33PUI
B4M33LUP

B4M33UIR

B4M33SMU

B4B36ZUI Content

1. Introduction to AI. Search-based AI, Uninformed search
2. Informed A* search
3. Advanced A*: RBFS, SMA*
4. Local search, Online search
5. Constrain Satisfaction Problem
6. Two players games
7. Monte Carlo Tree Search
8. Knowledge representation - Introduction
9. Knowledge representation in FOL
10. Rational Decisions under Uncertainty
11. Sequential Decisions under Uncertainty
12. Knowledge in Multi-agent Systems
13. AI Applications

http://aima.cs.berkeley.edu

http://aima.cs.berkeley.edu

21

Introduction to AI  
Uninformed Search  

 
R&N: Chap. 3, Sect. 3.1–3.6  

22

23

Example: 8-Puzzle

1

2

3 4

5 6

7

8 1 2 3

4 5 6

7 8

Initial state Goal state

State: any arrangement of 8 numbered tiles and an empty tile

24

8-Puzzle: Successor Function

1

2

3 4

5 6

7

8

1

2

3 4

5

6

78

1

2

3 4

5 6

78

1

2

3 4

5 6

78

search is about the exploration of alternatives

SUCC(state) → subsetofstates
The successor function is knowledge 
about the 8-puzzle game, but it does

not tell us which outcome to use, nor to

which state of the board to apply it.

25

(n2-1)-puzzle

1

2

3 4

5 6

7

8

12

15

11

14

10

13

9

5 6 7 8

4321

26

15-Puzzle
	 Sam Loyd offered $1,000 of his own money to the

first person who would solve the following
problem:

12

14

11

15

10

13

9

5 6 7 8

4321

12

15

11

14

10

13

9

5 6 7 8

4321

?

27

Stating a Problem as a Search Problem

▪ State space S
▪ Successor function: 
 x ∈ S → SUCCESSORS(x) ∈ 2S

▪ Initial state s0
▪ Goal test:
 x∈S → GOAL?(x) =T or F
▪ Arc cost

S
1

3 2

28

State Graph

▪ Each state is represented
by a distinct node 

▪ An arc (or edge)
connects a node s  
to a node s’ if  
s’ ∈ SUCC(s) 

▪ The state graph may
contain more than one
connected component

29

Solution to the Search Problem
▪ A solution is a path connecting the initial node to

a goal node (any one)

I

G

30

Solution to the Search Problem
▪ A solution is a path connecting the initial node to

a goal node (any one)
▪ The cost of a path is the sum of the arc costs

along this path
▪ An optimal solution is a solution path of minimum

cost
▪ There might be  

no solution ! I

G

31

How big is the state space  
of the (n2-1)-puzzle?

▪ 8-puzzle → 9! = 362,880 states
▪ 15-puzzle → 16! ~ 2.09 x 1013 states
▪ 24-puzzle → 25! ~ 1025 states

	 But only half of these states are reachable from
any given state 
(but you may not know that in advance)

32

 8-puzzle ! 362,880 states

 15-puzzle ! 2.09 x 1013 states

24-puzzle ! 1025 states

100 millions states/sec

0.036 sec

~ 55 hours

> 109 years

8-, 15-, 24-Puzzles

33

Searching the State Space

▪ Often it is not
feasible (or too
expensive) to
build a complete
representation of
the state graph

▪ A problem solver
must construct a
solution by
exploring a small
portion of the
graph

34

Searching the State Space

Search tree

35

Searching the State Space

Search tree

36

Searching the State Space

Search tree

37

Searching the State Space

Search tree

38

Searching the State Space

Search tree

39

Searching the State Space

Search tree

40

Other examples

41

8-Queens Problem
Place 8 queens in a chessboard so that no two
queens are in the same row, column, or diagonal.

A solution Not a solution

42

Formulation #1

▪ States: all arrangements of 0, 1,
2, ..., 8 queens on the board

▪ Initial state: 0 queens on the
board

▪ Successor function: each of the
successors is obtained by adding
one queen in an empty square

▪ Arc cost: irrelevant
▪ Goal test: 8 queens are on the

board, with no queens attacking
each other

! ~ 64x63x...x57 ~ 3x1014 states

43

Formulation #2

▪ States: all arrangements of k = 0, 1,
2, ..., 8 queens in the k leftmost
columns with no two queens
attacking each other

▪ Initial state: 0 queens on the board
▪ Successor function: each

successor is obtained by adding one
queen in any square that is not
attacked by any queen already in the
board, in the leftmost empty column

▪ Arc cost: irrelevant
▪ Goal test: 8 queens are on the

board! 2,057 states

44

n-Queens Problem
▪ A solution is a goal node, not a path to this node

(typical of design problem)
▪ Number of states in state space:

8-queens → 2,057
100-queens → 1052

▪ But techniques exist to solve n-queens problems
efficiently for large values of n

	 They exploit the fact that there are many
solutions well distributed in the state space

45

Path Planning

What is the state space?

46

Formulation #1

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = √2

47

Optimal Solution

This path is the shortest in the discretized state  
space, but not in the original continuous space

48

Formulation #2
sweep-line

49

Formulation #2

50

States

51

Successor Function

52

Solution Path

A path-smoothing post-processing step is
usually needed to shorten the path further

53

Formulation #3

Cost of one step: length of segment

54

Formulation #3

Cost of one step: length of segment

Visibility graph

55

Solution Path

The shortest path in this state space is also the  
shortest in the original continuous space

56

Simple Problem-Solving-Agent

1. s0 ← sense/read initial state
2. GOAL? ← select/read goal test
3. Succ ← read successor function
4. solution ← search(s0, GOAL?, Succ)

5. perform(solution)

57

Search Nodes and States

1

2

3 4

5 6

7

8

1

2

3 4

5 6

7

8

1

2

3 4

5 6

78

1
3

5 6

8

1

3

4

5 6

7

82

4 7

2

1

2

3 4

5 6

7

8

If states are allowed to be revisited, 
the search tree may be infinite even

when the state space is finite

58

Data Structure of a Node

PARENT-NODESTATE

Depth of a node N  
 = length of path from root to N

(depth of the root = 0)

BOOKKEEPING

5Path-Cost

5Depth
RightAction

Expanded yes
...

CHILDREN

1

2

3 4

5 6

7

8

59

Node expansion
	 The expansion of a node N consists of:

1) Evaluating the successor
function on STATE(N)

2) Generating a child of N for
each state returned by the
function  

node generation ≠ node expansion

1

2

3 4

5 6

7

8

N

1

3

5 6

8

1

3

4

5 6

7
82

4 7

2

1

2

3 4

5 6

7

8

▪ The Open-List is the set of all search nodes that
haven’t been expanded yet

	

60

Open-List of Search Tree

61

Search Strategy

▪ The Open-List is the set of all search nodes that
haven’t been expanded yet

▪ The Open-List is implemented as a priority queue
INSERT(node,Open-List)
REMOVE(Open-List)
▪ The ordering of the nodes in Open-List defines

the search strategy

62

Search Algorithm #1
SEARCH#1
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,Open-List)
3. Repeat:

a. If empty(Open-List) then return failure
b. N ← REMOVE(Open-List)
c. s ← STATE(N)
d. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N
ii. If GOAL?(s’) then return path or goal state
iii.INSERT(N’,Open-List)

Expansion of N

63

Performance Measures

▪ Completeness 
A search algorithm is complete if it finds a
solution whenever one exists 
[What about the case when no solution exists?]

▪ Optimality 
A search algorithm is optimal if it returns a
minimum-cost path whenever a solution exists

▪ Complexity 
It measures the time and amount of memory
required by the algorithm

64

Blind vs. Heuristic Strategies

▪ Blind (or un-informed) strategies do not exploit
state descriptions to order Open-List. They only
exploit the positions of the nodes in the search
tree

▪ Heuristic (or informed) strategies exploit state
descriptions to order Open-List (the most
“promising” nodes are placed at the beginning of
Open-List)

65

Example
For a blind strategy, N1 and
N2 are just two nodes (at
some position in the search
tree)

Goal state

N1

N2STATE

STATE1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8

66

Example
For a heuristic strategy
counting the number of
misplaced tiles, N2 is more
promising than N1

Goal state

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8

N1

N2STATE

STATE

67

Remark

▪ Some search problems, such as the (n2-1)-puzzle,
are NP-hard

▪ One can’t expect to solve all instances of such
problems in less than exponential time (in n)

▪ One may still strive to solve each instance as
efficiently as possible  
 
! This is the purpose of the search strategy

68

Blind Strategies

▪ Breadth-first
- Bidirectional

▪ Depth-first
- Depth-limited

- Iterative deepening

▪ Uniform-Cost 
(variant of breadth-first)

Arc cost = 1

Arc cost
= c(action) ≥ ε
> 0

69

Breadth-First Strategy

New nodes are inserted at the end of Open-List

2 3

4 5

1

6 7

Open-List = (1)

70

Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List = (2, 3)2 3

4 5

1

6 7

71

Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List = (3, 4, 5)2 3

4 5

1

6 7

72

Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List = (4, 5, 6, 7)2 3

4 5

1

6 7

73

Important Parameters

1) Maximum number of successors of any state 
 
! branching factor b of the search tree 

2) Minimal length (≠ cost) of a path between the
initial and a goal state 
 
! depth d of the shallowest goal node in the 
 search tree

74

Evaluation

▪ b: branching factor
▪ d: depth of shallowest goal node
▪ Breadth-first search is:

- Complete? Not complete?
- Optimal? Not optimal?

75

Evaluation

▪ b: branching factor
▪ d: depth of shallowest goal node
▪ Breadth-first search is:

- Complete
- Optimal if step cost is 1

▪ Number of nodes generated: 
	 ???

76

Evaluation

▪ b: branching factor
▪ d: depth of shallowest goal node
▪ Breadth-first search is:

- Complete
- Optimal if step cost is 1

▪ Number of nodes generated: 
 
1 + b + b2 + … + bd = ???

77

Evaluation

▪ b: branching factor
▪ d: depth of shallowest goal node
▪ Breadth-first search is:

- Complete
- Optimal if step cost is 1

▪ Number of nodes generated: 
  
1 + b + b2 + … + bd. = (bd+1-1)/(b-1) = O(bd)

▪ Time and space complexity is O(bd)

78

Big O Notation

 g(n) = O(f(n)) if there exist two positive
constants a and N such that: 

	 for all n > N: g(n) ≤ a × f(n)

Time and Memory Requirements

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

80

Remark
If a problem has no solution, breadth-first may run
for ever (if the state space is infinite or states can
be revisited arbitrary many times)

12

14

11

15

10

13

9

5 6 7 8

4321

12

15

11

14

10

13

9

5 6 7 8

4321

?

81

Bidirectional Strategy
two Open-List queues: Open-List1 and Open-List2

s

Time and space complexity is O(bd/2) << O(bd) if both
trees have the same branching factor b

82

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

Open-List = (1)

83

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

Open-List = (2, 3)

84

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

Open-List = (4, 5, 3)

85

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

86

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

87

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

88

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

89

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

90

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

91

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

92

Depth-First Strategy

 New nodes are inserted at the front of Open-List

1

2 3

4 5

93

Evaluation
▪ b: branching factor
▪ d: depth of shallowest goal node
▪ m: maximal depth of a leaf node
▪ Depth-first search is: 

- Complete?

- Optimal?

Evaluation
▪ b: branching factor
▪ d: depth of shallowest goal node
▪ m: maximal depth of a leaf node
▪ Depth-first search is:

- Complete only for finite search tree

- Not optimal

▪ Number of nodes generated (worst case): 
 1 + b + b2 + … + bm = O(bm)

▪ Time complexity is O(bm)
▪ Space complexity is O(bm) [or O(m)]
[Reminder: Breadth-first requires O(bd) time and space]

95

Depth-Limited Search

▪ Depth-first with depth cutoff k (depth at which
nodes are not expanded)

▪ Three possible outcomes:
- Solution
- Failure (no solution)
- Cutoff (no solution within cutoff)

96

Iterative Deepening Search

 the best of both breadth-first and depth-first search 

 IDS: for k = 0,1,2, … d  
 do: Depth-first search with depth cutoff k

97

Iterative Deepening

98

Iterative Deepening

99

Iterative Deepening

100

Performance

▪ Iterative deepening search is:
- Complete
- Optimal if step cost =1 

▪ Time complexity is: 
 
(d+1)(1) + db + (d-1)b2 + … + (1) bd = O(bd) 

▪ Space complexity is: O(bd) or O(d)

101

d = 5 and b = 2BF ID
1 1 x 6 = 6
2 2 x 5 = 10
4 4 x 4 = 16
8 8 x 3 = 24
16 16 x 2 = 32
32 32 x 1 = 32
63 120

120/63 ~ 2

Number of Generated Nodes  
(Breadth-First & Iterative Deepening)

102

d = 5 and b = 10BF ID
1 6
10 50
100 400
1,000 3,000
10,000 20,000
100,000 100,000
111,111 123,456

123,456/111,111 ~ 1.111

Number of Generated Nodes  
(Breadth-First & Iterative Deepening)

103

Comparison of Strategies

▪ Breadth-first is complete and optimal, but has
high space complexity

▪ Depth-first is space efficient, but is neither
complete, nor optimal

▪ Iterative deepening is complete and optimal, with
the same space complexity as depth-first and
almost the same time complexity as breadth-first

104

Revisited States

8-queens

No

assembly  
planning

Few

1 2 3
4 5

67 8

8-puzzle and robot navigation

Many

search tree is finitesearch tree is infinite

105

Avoiding Revisited States

▪ Requires comparing state descriptions
▪ Breadth-first search:

• Store all states associated with generated
nodes in Closed-List

• If the state of a new node is in Closed-List,
then discard the node

106

Avoiding Revisited States

▪ Depth-first search:
 Solution 1:

– Store all states associated with nodes in current path
in Closed-List

– If the state of a new node is in Closed-List, then
discard the node

107

Avoiding Revisited States

▪ Depth-first search:
 Solution 1:

– Store all states associated with nodes in current path
in Closed-List

– If the state of a new node is in Closed-List, then
discard the node

 Only avoids loops

Solution 2:
– Store all generated states in Closed-List
– If the state of a new node is in Closed-List, then

discard the node
Same space complexity as breadth-first !

108

Uniform-Cost Search
▪ Each arc has some cost c ≥ ε > 0, The cost of the path 
 to each node N is g(N) = Σ costs of arcs
▪ The goal is to generate a solution path of minimal cost 

▪ The nodes in the Open-List are sorted in increasing g(N)

 

▪ Need to modify search algorithm

S
0

1
A

5
B

15
C

S G

A

B

C

5
1

15

10

5

5

G
11

G
10

109

Search Algorithm #1
SEARCH#1
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,Open-List)
3. Repeat:

a. If empty(Open-List) then return failure
b. N ← REMOVE(Open-List)
c. s ← STATE(N)
d. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N
ii. If GOAL?(s’) then return path or goal state
iii.INSERT(N’,Open-List)

110

Search Algorithm #2
SEARCH#2
1. INSERT(initial-node,Open-List)
2. Repeat:

a. If empty(Open-List) then return failure
b. N ← REMOVE(Open-List)
c. s ← STATE(N)
d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a node N’ as a successor of N
ii.INSERT(N’,Open-List)

111

Avoiding Revisited States in  
Uniform-Cost Search

▪ For any state S, when the first node N such that
STATE(N) = S is expanded, the path to N is the best path
from the initial state to S

▪ So:

• When a node is expanded, store its state into
CLOSED

• When a new node N is generated:

– If STATE(N) is in CLOSED, discard N

– If there exits a node N’ in the Open-List such that
STATE(N’) = STATE(N), discard the node (N or N’) with the
highest-cost path

112

Search Algorithm #3
SEARCH#3
1. INSERT(initial-node,Open-List)
2. Repeat:

a. If empty(Open-List) then return failure
b. N ← REMOVE(Open-List)
c. s ← STATE(N)
d. INSERT(N,Closed-List)
e. If GOAL?(s) then return path or goal state
f. For every state s’ in SUCCESSORS(s)

i. Create a node N’ as a successor of N
ii.If N is not in Closed-List and  

 If N is not on Open-List with lower cost  
 then INSERT(N’,Open-List)

113

114Homework

17

" A tile j appears after a tile i if either j appears on the same row
as i to the right of i, or on another row below the row of i.

" For every i = 1, 2, ..., 15, let ni be the number of tiles j < i that
appear after tile i (permutation inversions)

" N = n2 + n3 + … + n15 + row number of empty tile

Permutation Inversions

12
15
11

14
10

13
9
5 6 7 8

4321

12

15

11

14

6

13

9

5 10 7 8

4321
n2 = 0 n3 = 0 n4 = 0
n5 = 0 n6 = 0 n7 = 1
n8 = 1 n9 = 1 n10 = 4
n11 = 0 n12 = 0 n13 = 0
n14 = 0 n15 = 0

! N = 7 + 4

18

" Proposition: (N mod 2) is invariant under any
legal move of the empty tile

" Proof:

• Any horizontal move of the empty tile leaves N

unchanged
• A vertical move of the empty tile changes N by an

even increment (± 1 ± 1 ± 1 ± 1)

1215

11

14

10

13

9

5 6 7

8

4321

s =

1215

11

14

10

13

9

5 6 7

8

4321

s’ = N(s’) = N(s) + 3 + 1

19

" Proposition: (N mod 2) is invariant under any
legal move of the empty tile

" ! For a goal state g to be reachable from a
state s, a necessary condition is that N(g) and
N(s) have the same parity 

" It can be shown that this is also a sufficient
condition

" ! The state graph consists of two connected
components of equal size

