A4B36ZUI - Introduction to
ARTIFICIAL INTELLIGENCE

https://cw.fel.cvut.cz/wiki/courses/

Michal Pechoucek & Jiri Klema

Department of Computer Science
Czech Technical University in Prague

O' OTEVRENA
INFORMATIKA

In parts based on cs|2|.stanford.edu & S. Russell and P. Norvig, Artificial Intelligence:A Modern Approach. 3rd edition, Prentice Hall, 2010

https://cw.fel.cvut.cz/wiki/courses/a4b33zui/start
http://cs121.stanford.edu

What is Artificial Intelligence?

What is Artificial Intelligence?

Artificial Intelligence is family of technologies and
scientific field that allows/studies:

- automation, acceleration and scalability of
« human (i) perception, (ii) reasoning and (iii)
decision making

Why Artificial Intelligence Matters?

Why Artificial Intelligence Matters?

- T 'R
!l(!y 'l J
| BIE BIN

Py oo JIBS ; SHue : : ii E"
Y 111 HER S il " 21 ‘ !
14 llmun.n":,'“‘ ; -u:.!.:g":_ -4 ‘psitinib EAst
pinsm) ~ » :

. M T

"‘-ﬁhw r';hl..!‘u‘t'-., -
il B¥ ""wﬁr;s‘?ﬂf‘ -
RE=Y /. - Ry
11011 ot | L1 1]
&

.

Why Artificial Intelligence Matters?

=Y I L A

|"||u|nlmxlll
T AR

oAl
\“:a& - .'“
-’Q e

et %

P/ L
T \i!ﬂ

IDC

-
ww Analyze the Future

Why Artificial Intelligence Matters?

- T 'R
!l(!y 'l J
| BIE BIN

Py oo JIBS ; SHue : : ii E"
Y 111 HER S il " 21 ‘ !
14 llmun.n":,'“‘ ; -u:.!.:g":_ -4 ‘psitinib EAst
pinsm) ~ » :

. M T

"‘-ﬁhw r';hl..!‘u‘t'-., -
il B¥ ""wﬁr;s‘?ﬂf‘ -
RE=Y /. - Ry
11011 ot | L1 1]
&

.

Types of Artificial Intelligence?

WEAK Al X STRONG Al

Types of Artificial Intelligence?

Strong Al:

— Searle's strong Al hypothesis: The appropriately programmed
computer with the right inputs and outputs would thereby have a mind
in exactly the same sense human beings have minds.

— Artificial general intelligence is a hypothetical artificial intelligence that
demonstrates the intelligence of a machine that could successfully
perform any intellectual task that a human being can.

Weak Al
— Turing’s hypothesis: If a machine behaves as intelligently as a human
being, then it is as intelligent as a human being = passes the Turing
Test

Al according to Smith:

— The machine shall exhibit indistinguishable behaviour (according to
the weak Al definition) by means of the knowledge structures and

reasoning process identical to those used by human
9

Types of Artificial Intelligence?

WEAK Al X STRONG Al

10

Types of Artificial Intelligence?

WEAK Al X STRONG Al

11

12

Turing Test

Test proposed by Alan Turing in 1950

The computer is asked questions by a human interrogator. It passes
the test if the interrogator cannot tell whether the responses come
from a person

Required capabilities: natural language
processing, knowledge representation,
automated reasoning, learning,...

CAPTCHA: Completely Automatic
Public Turing tests to tell Computers
and Humans Apart

IRy

OxvarlgORs
Type the two words: ()
o RE CAPTCHA
o .

Types of Artificial Intelligence?

WEAK Al X STRONG Al

13

Types of Artificial Intelligence?

WEAK Al X STRONG Al

Narrow Al—- Extended Al—General Al Super Al

14

Artificial Intelligence Approaches

1. Statistical Al: Machine Learning

(Computational Statistics, Mathematical Optimisation)
perception, understanding, prediction, classification

2. Symbolic Al: Automated Reasoning

(Symbolic Al, Search based Al)
problem solving, decision making, planning

3. Sub-symbolic Al: (Control theory, Computational intelligence,
Softcomputing)
robotics, alternative problem solving, alternative understanding

4. Collective Al: Multiagent systems
(Agent Architectures, Game Theory, Mechanism Design,
Combinatorial Auctions)

robotics, distributed systems, market mechanisms, Al
simulations

15

Artificial Intelligence Approaches

1. Statistical Al: Machine Learning

(Statistics, Optimisation, Neural Networks, Deep Learning)
perception, understanding, prediction, classification

2. Symbolic Al: Automated Reasoning

(Symbolic Al, Search based Al)
problem solving, decision making, planning

3. Sub-symbolic Al: (Control theory, Computational intelligence,
Softcomputing)
robotics, alternative problem solving, alternative understanding

4. Collective Al: Multiagent systems
(Agent Architectures, Game Theory, Mechanism Design,
Combinatorial Auctions)

robotics, distributed systems, market mechanisms, Al
simulations

16

Artificial Intelligence Approaches

1. Statistical Al: Machine Learning

(Computational Statistics, Mathematical Optimisation)
perception, understanding, prediction, classification

2. Symbolic Al: Automated Reasoning

(Symbolic Al, Search based Al)
problem solving, decision making, planning

3. Sub-symbolic Al: (Control theory, Computational intelligence,
Softcomputing, Neural Networks, Deep Learning)
robotics, alternative problem solving, alternative understanding

4. Collective Al: Multiagent systems
(Agent Architectures, Game Theory, Mechanism Design,
Combinatorial Auctions)

robotics, distributed systems, market mechanisms, Al
simulations

17

Artificial Intelligence in Ol

Statistical Al: Machine Learning. B4B33RPZ
(Computational Statistics, Mathematical Optimisation) B4M33SS5U
perception, understanding, prediction, classification B4M33SMU
Symbolic Al: Automated Reasoning B4B367ZUI
(Symbolic Al, Search based Al)

problem solving, decision making, planning B4M33PUI
Sub-symbolic Al: (Control theory, Computational B4M33LUP

intelligence, Softcomputing, Neural Networks, Deep Learning) B4B36FUP
robotics, alternative problem solving, alternative
understanding

Collective Al: Multiagent systems B4M33UIR
(Agent Architectures, Game Theory, Mechanism Design,

Combinatorial Auctions)

robotics, distributed systems, market mechanisms, B4A4M33MAS
Al simulations

18

B4B36ZUIl Content

Introduction to Al. Search-based Al, Uninformed search
Informed A* search

Advanced A*: RBFS, SMA*

Local search, Online search

Constrain Satisfaction Problem

Two players games

Monte Carlo Tree Search

Knowledge representation - Introduction
Knowledge representation in FOL

10. Rational Decisions under Uncertainty
11. Sequential Decisions under Uncertainty
12. Knowledge in Multi-agent Systems

13. Al Applications

NSO O~

©

Artificial
Intelligence

2
%
1

Artificial Intelligence" ” e Artificial Intelligencgwﬁ:c,,

A Modern Approach

R H | R D E D LT 1 QN

Byt o A Modern Approach
Artificial Intelligence g

AIMODERNAREROACH b~ StuartJ. Russell
Third Edition Peter Norvig

Stuart Russell
Peter Norvig

Stuart Russell » Peter Norvig Russell
‘ PEARSON |

PEARSON

http://aima.cs.berkeley.edu

Introduction to Al
Uninformed Search

R&N: Chap. 3, Sect. 3.1-3.6

21

N
AN

4R O|m oW =
7] w | < wic|in
[+ 4 Wi > =<
< o O 0|
w %] O|0|=|a
o ZWwnln
n w - > Q|- |»n
w - <(O|W Z|—=|n|—-
Y3 [=] = x|z —-|x|—=|®»
< I w Ww|x || Z(W
= o (7] T | <2
(7] > [l o<W | < Z—
= [+ (7] <|a <=0«
< z w O|x|m
I Wwidf— < 2 z w o <o
N = S|=Z| = o [=1K%] ~lg|2Z2|0(Ww
| X| W w42 w m|®» — oW =
Z|=|0fl=- S|<| <|Z|—-|Z|0 “J|lwjo
Hxoczl<»< BB B

Example: 8-Puzzle

8 | 2
3 | 4 |7
5 |1 |6

Initial state

1 2 3
4 5 6
4 8

Goal state

State: any arrangement of 8 numbered tiles and an empty tile

23

8-Puzzle: Successor Function

SUCC(state) -+ subsetofstates

The successor function is knowledge

3 4 about the 8-puzzle game, but it does
not tell us which outcome to use, nor to
5 1 |6 which state of the board to apply it.

8 | 2 8 | 2 |7 8 | 2|7
3 |4 |7 3 |4 |6 3 4
5 |1 |6 5 | 1 5|16

search is about the exploration of alternatives

(n2-1)-puzzle

112 | 3| 4
5 |6 | 7| 8
9 10| 11 | 12
13|14 | 15

25

15-Puzzle

Sam Loyd offered $1,000 of his own money to the
first person who would solve the following
problem:

1 2 3 4 1 2 3 4
5|6 | 7| 8 5 5|6 | 7| 8
>
9 | 10 | 11 | 12 9 | 10 | 11 | 12

13 | 14 | 15 13 | 15 | 14

26

Stating a Problem as a Search Problem

S = State space S
m Successor function:
X €S — successors(x) & 2s

« Initial state s,

m Goal test:
xES —coa?(x) =T or F

m Arc cost

27

State Graph

= Each state is represented
by a distinct node

= An arc (or edge)
connects a node s

to a node s’ if ’.' "‘ > \| 1

s’ € succ(s)

= The state graph may I W@
contain more than one

connected component

Solution to the Search Problem

= A solution is a path connecting the initial node to
a goal node (any one)

Solution to the Search Problem

= A solution is a path connecting the initial node to
a goal node (any one)

= The cost of a path is the sum of the arc costs
along this path

= An optimal solution is a solution path of minimum
cost

= There might be
no solution !

30

How big is the state space
of the (n2-1)-puzzie?

= 8-puzzle - 9! = 362,880 states
= 15-puzzle» 16! =~ 2.09 x 1013 states
» 24-puzzle - 25! T 1025 states

But only half of these states are reachable from
any given state
(but you may not know that in advance)

31

8-, 15-, 24-Puzzles

8-puzzle > 362,880 states

0.036 sec

15-puzzle 2> 2.09 x 10t

~ bb hours

states

> 109 years

24-puzzle > 1025 sta

100 millions states/sec

32

Searching the State Space

= Oftenitis not
feasible (or too
expensive) to
build a complete
representation of
the state graph

= A problem solver
must construct a
solution by
exploring a small
portion of the
graph

33

Searching the State Space

Searching the State Space

Searching the State Space

/(\

Search tree

Searching the State Space

AN

A\

Search tree

Searching the State Space

SR E AN

O
pa
O -@ ®
= Search tree
®
®

Searching the State Space

Other examples

40

8-Queens Problem

Place 8 queens in a chessboard so that no two
queens are in the same row, column, or diagonal.

+ +
+ +
+ +

+ +
+ +
+ +
+ +

A solution Not a solution

Formulation #1

¥ = States: all arrangements of 0, 1,

B B 2, ..., 8 queens on the board

= |Initial state: O queens on the

board

= Successor function: each of the

H successors is obtained by adding

+ - P9 one queen in an empty square

m = Arc cost: irrelevant

I F = Goal test: 8 queens are on the

- - board, with no queens attacking

each other

- ~ 64x63x...x57 ~ 3x1014 states 1

Formulation #2

+

- 2,057 states

States: all arrangements of k =0, 1,
2, ..., 8 queens in the k leftmost
columns with no two queens
attacking each other

Initial state: 0 queens on the board

Successor function: each
successor is obtained by adding one
queen in any square that is not
attacked by any queen already in the
board, in the leftmost empty column

Arc cost: irrelevant

Goal test: 8 queens are on the
board

43

n-Queens Problem

= A solution is a goal node, not a path to this node
(typical of design problem)

= Number of states in state space:
8-queens =+ 2,057
100-queens -+ 10°%2

= But techniques exist to solve n-queens problems
efficiently for large values of n

They exploit the fact that there are many
solutions well distributed in the state space

44

Path Planning

What 1s the state space?

45

Formulation #1

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = V2

46

Optimal Solution

This path 1is the shortest in the discretized state
space, but not in the original continuous space 47

sweep-line

- Formulation #2

48

Formulation #2

49

States

Successor Function

51

Solution Path

—

A path-smoothing post-processing step is
usually needed to shorten the path further

52

Formulation #3

Cost of one step: length of segment

53

Formulation #3

Visibility graph

Cost of one step: length of segment

54

Solution Path

The shortest path in this state space 1s also the
shortest in the original continuous space 56

Simple Problem-Solving-Agent

s, + sense/read initial state

GOAL? + select/read goal test

Succ + read successor function

solution ¢« search(s,, GOAL?, Succ)

OO S WO DN =

perform(solution)

56

Search Nodes and States

8| 2

3147

5/ 1|6

8 (2|7 /‘

3 | 4 If states are allowed to be revisited,

5 6 | the search tree may be infinite even
when the state space 1is finite

8 2 8 | 2 8 |4 |2 €

347 347 3 7 3147

5|16 5|16 516 S g

o7

Data Structure of a Node

8
3| a|7|—STATE PARENT-NODE
5 6
OOKKEEPING
CHILDREN

Action Right
Depth 5

S ‘ Path-Cost |5

Expanded| ye€S

Depth of a node N
= length of path from root to N

(depth of the root = 0) 58

Node expansion

The expansion of a node N consists of:

1) Evaluating the successor
function on STATE(N)

2) Generating a child of N for
each state returned by the
function

node generation # node expansior

Open-List of Search Tree

= The Open-List is the set of all search nodes that
haven’t been expanded yet

8 2 8| 2 814 |2 Bl
3/4|7 3|47 3 7 3147
5|16 |516 5|16 5116 60

Search Strategy

= The Open-List is the set of all search nodes that
haven’t been expanded yet
= The Open-List is Implemented as a priority queue

INSERT (node,Open-List)
REMOVE (Open-List)

= The ordering of the nodes in Open-List defines
the search strategy

61

Search Algorithm #1

SEARCH#1

1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,Open-List)

3. Repeat:

a. If empty(Open-List) then return failure

b. N « REMOVE(Open-List)

c. s + STATE(N)

d. For every state s’ in SUCCESSORS(s) Expansion of N
1. Create a new node N’ as a child of N
ii. If GOAL?(s’) then return path or goal state
iii.INSERT(N’,Open-List)

62

Performance Measures

= Completeness

A search algorithm is complete if it finds a
solution whenever one exists

[What about the case when no solution exists?]

= Optimality
A search algorithm is optimal if it returns a
minimum-cost path whenever a solution exists

= Complexity
It measures the time and amount of memory
required by the algorithm

63

Blind vs. Heuristic Strategies

= Blind (or un-informed) strategies do not exploit
state descriptions to order Open-List. They only
exploit the positions of the nodes in the search
tree

= Heuristic (or informed) strategies exploit state
descriptions to order Open-List (the most
“promising” nodes are placed at the beginning of
Open-List)

64

Example

For a blind strategy, N, and

N, are just two nodes (at

some position in the search

O

STATE N,

tree)

STATE N,

Goal state

65

Example

For a heuristic strategy
counting the number of

misplaced tiles, N, 1s more
@ promising than N,

STATE N,

STATE N,

Goal state

66

Remark

= Some search problems, such as the (n2-1)-puzzle,
are NP-hard

= One can’t expect to solve all instances of such
problems in less than exponential time (in n)

= One may still strive to solve each instance as
efficiently as possible

- This is the purpose of the search strategy

67

Blind Strategies

= Breadth-first \

- Bidirectional

_ >Arc cost =1
= Depth-first

- Depth-limited
- lterative deepening

» Uniform-Cost Arc cost
(variant of breadth-first) .

= c(action) = ¢
> 0

68

Breadth-First Strategy

New nodes are inserted at the end of Open-List

1@

/

2 3 Open-List = (1)
4/3‘6 7

69

Breadth-First Strategy

New nodes are inserted at the end of Open-List

1@

/

» 2 3 Open-List = (2, 3)
4A 6@ 7

70

Breadth-First Strategy

New nodes are inserted at the end of Open-List

1@

/

2 » 3 Open-List = (3, 4, 5)
4A@ 6@ 7

71

Breadth-First Strategy

New nodes are inserted at the end of Open-List

1@

/

2 3 Open-List = (4, 5, 6, 7)
4A@6 7

72

Important Parameters

1) Maximum number of successors of any state

- branching factor b of the search tree

2) Minimal length (= cost) of a path between the
initial and a goal state

- depth d of the shallowest goal node in the
search tree

73

Evaluation

= b: branching factor
= d: depth of shallowest goal node
= Breadth-first search is:

- Complete? Not complete?
- Optimal? Not optimal?

74

Evaluation

b: branching factor
d: depth of shallowest goal node
Breadth-first search is:

- Complete
- Optimal if step cost is 1

Number of nodes generated:
27?77

75

Evaluation

b: branching factor
d: depth of shallowest goal node
Breadth-first search is:

- Complete
- Optimal if step cost is 1

Number of nodes generated:

1+ b+ b2+ .. + bd = 777

76

Evaluation

b: branching factor
d: depth of shallowest goal node
Breadth-first search is:

- Complete
- Optimal if step cost is 1

Number of nodes generated:

1 +b+ b2+ .. + bd = (bd*1-1)/(b-1) = 0(bd)
Time and space complexity is 0 (bd)

77

Big O Notation

g(n) = 0(f(n)) if there exist two positive
constants a and N such that:

foralln > N: g(n) £ a x f(n)

78

Time and Memory Requirements

d |# Nodes |Time Memory

2 111 .01 msec |11 Kbytes

4 111,111 1 msec 1 Mbyte

6 |7106 1 sec 100 Mb

8 17108 100 sec 10 Gbytes

10 {71010 2.8 hours |1 Tbyte

12 171012 11.6 days |100 Tbytes

14 171014 3.2 years (10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Remark

If a problem has no solution, breadth-first may run

for ever (if the state space is infinite or states can

be revisited arbitrary many times)

1 2 3 4 1 2 3 4
5 6 | 7 | 8 5 5 6 | 7 | 8
>
9 |10 | 11 | 12 9 |10 | 11 | 12

13 | 14 | 15 13 | 15 | 14

80

Bidirectional Strategy

twO Open-List QUEUES: Open-List1 and Open-List2

Time and space complexity is 0(bd/2) << 0(bd) if both
trees have the same branching factor b

81

Depth-First Strategy

New nodes are inserted at the front of Open-List

82

Depth-First Strategy

New nodes are inserted at the front of Open-List

25

83

Depth-First Strategy

New nodes are inserted at the front of Open-List

1

\ Open-List = (4, 5, 3
.5

84

Depth-First Strategy

New nodes are inserted at the front of Open-List

85

Depth-First Strategy

New nodes are inserted at the front of Open-List

86

Depth-First Strategy

New nodes are inserted at the front of Open-List

87

Depth-First Strategy

New nodes are inserted at the front of Open-List

88

Depth-First Strategy

New nodes are inserted at the front of Open-List

89

Depth-First Strategy

New nodes are inserted at the front of Open-List

90

Depth-First Strategy

New nodes are inserted at the front of Open-List

91

Depth-First Strategy

New nodes are inserted at the front of Open-List

92

Evaluation

b: branching factor

d: depth of shallowest goal node
m: maximal depth of a leaf node
Depth-first search is:

- Complete?
- Optimal?

93

Evaluation

= b: branching factor
= d: depth of shallowest goal node
= m: maximal depth of a leaf node

= Depth-first search is:
- Complete only for finite search tree
- Not optimal

= Number of nodes generated (worst case):
1 +b+ b2+ ..+ br = 0(bm)

= Time complexity is 0 (bm)

= Space complexity is 0(bm) [or 0(m)]
[Reminder: Breadth-first requires 0(bd) time and space]

Depth-Limited Search

= Depth-first with depth cutoff k (depth at which
nodes are not expanded)

= Three possible outcomes:
- Solution
- Failure (no solution)
- Cutoff (no solution within cutoff)

95

Ilterative Deepening Search

the best of both breadth-first and depth-first search

IDS: for k = 0,1,2, .. d
do: Depth-first search with depth cutoff k

96

Ilterative Deepening

e

97

Ilterative Deepening

T
AN AN

Ilterative Deepening

Performance

= |terative deepening search is:
- Complete
- Optimal if step cost =1

= Time complexity Is:

(d+1) (1) + db + (d-1)b2 + .. + (1) bd = 0(ba)

= Space complexity is: 0(bd) or 0(d)

100

Number of Generated Nodes
(Breadth-First & lterative Deepening)

BF ID
1 x6 =6

2 2 x5 =10
4 4 x 4 = 16
3 3 x 3 =24
16 16 x 2 = 32
32 32 x 1 = 32
63 120

d =5 and b = 2

120/63 ~ 2
101

Number of Generated Nodes
(Breadth-First & lterative Deepening)

BF 1D

1 6

10 50

100 400
1,000 3,000
10,000 20,000
100,000 100,000
111,111 123,456

d =5 and b = 10

123,456/111,111 ~ 1162111

Comparison of Strategies

= Breadth-first is complete and optimal, but has
high space complexity

= Depth-first is space efficient, but is neither
complete, nor optimal

= |[terative deepening is complete and optimal, with
the same space complexity as depth-first and
almost the same time complexity as breadth-first

103

Revisited States

No Few Many

[— A 3

search tree 1s finiisearch tree is infinite

7|8|6
4]
+ ®

+ L1 [1]

8-queens assembly 8-puzzle and robot navigation
planning

104

Avoiding Revisited States

= Requires comparing state descriptions

= Breadth-first search:
- Store all states associated with generated
nodes in Closed-List

- |f the state of a new node is in Closed-List,
then discard the node

105

Avoiding Revisited States

= Depth-first search:

Solution 1:

- Store all states associated with nodes in current path
in Closed-List

- |f the state of a new node isin Closed-List, then
discard the node

106

Avoiding Revisited States

= Depth-first search:

Solution 1:

- Store all states associated with nodes in current path
in Closed-List

- |f the state of a new node isin Closed-List, then

discard the node
Only avoids loops

Solution 2:
- Store all generated states in Closed-List

- |f the state of a new node isin Closed-List, then

discard the node
Same space complexity as breadth-first ! 107

Uniform-Cost Search

= Each arc has some cost ¢ 2 £ > 0, The cost of the path
toeachnode N isg(N) = £ costs of arcs

= The goal is to generate a solution path of minimal cost

= The nodes in the Open-List are sorted in increasing g(N)

108
= Need to modify search algorithm

Search Algorithm #1

SEARCHi#1
1. If GOAL?(initial-state) then return initial-state

2. INSERT(initial-node,Open-List)

3. Repeat:
a. If empty(Open-List) then return failure
b. N « REMOVE(Open-List)
c. s + STATE(N)
d. For every state s’ in SUCCESSORS(s)
1. Create a new node N’ as a child of N
20 ii. If GOAL?(s’) then return path or goal state

iii.INSERT(N’,Open-List)

109

Search Algorithm #2

SEARCH#2
1. INSERT(initial-node,Open-List)

2. Repeat:

a. If empty(Open-List) then return failure

b. N « REMOVE(Open-List)

c. s + STATE(N)
> > d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

1. Create a node N’ as a successor of N

ii.INSERT (N’ ,Open-List)

110

Avoiding Revisited States in
Uniform-Cost Search

= For any state S, when the first node N such that
STATE(N) = S is expanded, the path to N is the best path

from the initial state to S

= SO:
- When a node is expanded, store its state into

CLOSED

- When a new node N is generated:
- If STATE(N) is in CLOSED, discard N
- If there exits a node N’ in the Open-List such that
STATE(N’) = STATE(N), discard the node (N or N’) with the
highest-cost path

111

Search Algorithm #3

SEARCH#3
1. INSERT(initial-node,Open-List)

2. Repeat:

a. If empty(Open-List) then return failure
. N « REMOVE (Open-List)
. s « STATE(IV)
. INSERT(N,Closed-List)
. If GOAL7(s) then return path or goal state
. For every state s’ in SUCCESSORS(s)

1. Create a node N’ as a successor of N
2 11.If N 1s not in Closed-List and

If N is not on Open-List with lower cost
then INSERT(N’,Open-List)

Hh ®© Q& O T

112

113

Homework

Permutation Inversions

A tile j appears after a tile i if either j appears on the same row
as i to the right of i, or on another row below the row of i.

Foreveryi=1,2,..,15, let n. be the number of tiles j < i that
appear after tile i (permutation inversions)

N =n, + n; + ... + s+ row humber of empty tile

n,=0n;=0n,=0

1|23/ 4 ;
c 10| 7| 8 ns=0n,=0n, =1 -
o| 6|11]12 hg=1ng=1ny,=4 9/10[11]12

Ny =0 s =0

>N=7+4 u

* Proposition: (N mod 2) is invariant under any
legal move of the empty tile

= Proof:

* Any horizontal move of the empty tile leaves N
unchanged

* A vertical move of the empty tile changes N by an
evenincrement (z1+1+1=+1)

112 3| 4 11 2| 3] 4
5|6 7 5|16 |11 7
S = s? = N(s’) = N(s) + 3 + 1
9 10/11| 8 910 8
13| 14| 15|12 13| 14| 15|12 18

* Proposition: (N mod 2) is invariant under any
legal move of the empty tile

= > For a goal state g to be reachable from a
state s, a necessary condition is that N(g) and
N(s) have the same parity

= [t can be shown that this is also a sufficient
condition

= = The state graph consists of two connected
components of equal size

19

