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What is intelligence

Intelligence is a provable ability to
e plan and reason,
e solve complex problems,
° make decisions under uncertainty,
® undestand the world,
and to learn and adapt.
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What is (machine) learning

Measurable change of behaviour acquired through
e instruction - supervised learning,
e experience - unsupervised learning,
e study - semi-supervised learning.
Simplifications:
e behaviour: obtain a set of observable features X and
perform a decision Y.
e given the knowledge of probability distributions p(F|S), p(S)

¢ and the reward function R(Y,S).
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Example:

Early retirement contract:
® Y: propose a retirement contract
e X: features of the person
® z:age <30
® 15: smoker
How many neurons are needed for such a decision?
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Bio-inspired computational model:

McCulloh, Pritts: A Logical Calculus of Ideas Immanent in
Nervous Activity. (1943)
1. The activity of the neuron is an all-or-none process.

2. A certain fixed number of synapses must be excited within
the period of latent addition in order to excite a neuron at
any time, and this number is independent of previous
activity and position on the neuron.

3. The only significant delay within the nervous sytem is
synaptic delay.

4. The activity of any inhibitory synapse absolutely prevents
excitation of the neuron at that time.

5. The structure of the net does not change with time.
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Towards learning of neurons

Tom Krajnik

Ronald Hebb: The Organization of Behavior. (1949)

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.
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Perceptron

Rosenblatt: Principles of Neurodynamics. American Journal of
Psychology (1969)

Step Function
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Perceptron training

while err do

err = false

foreach x in positive samples:
if(wix<0)w=w+x
err = true

foreach x in negative samples:
if(wix>0)w=w-x
err = true

Tom Krajnik Lecture on Bio-inspired Machine Learning

CTU, 2019

W

8/21



Tom Krajnik Foundations of Atrtificial Intelligence CTU, 2019

Perceptron limitations

Papert, Minski: Perceptrons: An Introduction to Computational
Geometry. (1967): Perceptron cannot do XOR, NXOR .... the
research based on perceptron is doomed

computational infeasibility to train large networks

- Little research done until 1980 (7).

- Solutions ?
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Perceptron and XOR problem
Perceptron cannot do XOR, NXOR

- projection into a higher-dimensional space
- additional feature x3 = x1 29
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Perceptron and XOR problem
Perceptron cannot do XOR, NXOR

- multiple layers
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How to train a multi-layered NN

Backpropagation
- same idea as perceptron training, but by layers (last to first)
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(Neo)cognitron

- Fukushima 1975: Cognitron: layered NN (unsupervised
learning)

- Fukushima 1980: Neocognitron: layered NN (unsupervised
learning) for text recognition
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(Neo)cognitron

- Fukushima 1975: Cognitron: layered NN (unsupervised

learning)
- Fukushima 1980: Neocognitron: layered NN (unsupervised

learning) for text recognition

stage 2
st £ge
recognized I
pattern v

age 1

Q 5!

Tom Krajnik Lecture on Bio-inspired Machine Learning 14/21

O

v

-




Tom Krajnik Foundations of Atrtificial Intelligence CTU, 2019

Convolutional neural networks

— CAR
— TRUCK
— VAN

|j |:| — BICYCLE

FULLY
INPUT CONVOLUTION + RELU ~ POOLING  CONVOLUTION + RELU  POOLING FLATTEN RO b SOFTMAX
FEATURE LEARNING CLASSIFICATION

Tom Krajnik Lecture on Bio-inspired Machine Learning 15/21



Tom Krajnik Foundations of Atrtificial Intelligence CTU, 2019

Convolutional neural networks
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The problem of good data

Data bias:
- google images for "person"
- why is that?

Dataset size:
- number of annotated data needed to teach a NN vs number of
NN weights?

Overfitting vs. accurracy:
- How well will my model work on non-trained data?
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What is overfitting and how to prevent it?

Neural network without regularisation (train acc: 0.89) Neural network with regularisation (train acc: 0.87)
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Public perception

What does convetional programmer do?
- Programming complex systems is overwhelmingly boring.
- ML gets us rid of programming, it works out of the box!

So what does Al specialist do instead of programming?
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Public perception

What does convetional programmer do?
- Programming complex systems is overwhelmingly boring.
- ML gets us rid of programming, it works out of the box!

So what does Al specialist do instead of programming?

- Dataset annotation
- Parameter tuning
- Trial-and-error testing
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Sources

Geoffrey Hinton materials:
http:
//www.cs.toronto.edu/ "hinton/coursera_lectures.html

Introduction to deep learning:
https://www.youtube.com/playlist?list=
PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
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Next lecture?

Chronorobotics vs. Al in robotics

Vote here https://doodle.com/poll/bubn6dfa772t7h8x
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