Rational decisions under uncertainty

Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

http://cw.felk.cvut.cz/doku.php/courses/a4b33zui/start

Outline

- Artificial agents with deliberate and effective decision making = rational
- how to define them,
- how to cope with uncertain action results,
- decision theory + utility theory,
- concepts: prize, lottery, utility function, preference,
- rational and deliberate human decision making
- do we behave rationally when making decisions?
- money as an example of ordinal utility measure,
- multiattribute utility
- each and every state cannot be separately assessed,
- preference and utility derived from its attributes,
- value of information
- when does it pay off to make an effort to obtain a piece of information?

Task formalization, basic terms

- agent chooses among possible states of the world $\left\{s_{1}, \ldots, s_{n}\right\}$,
- every state can be assigned a prize $\{A, B, \ldots\}$,
- agent reaches states by performing actions $\left\{a_{1}, \ldots, a_{m}\right\}$
- actions are stochastic, the outcome=state is not certain,
- action a leading with prob p to state s_{1} with prize A and with prob $p-1$ to state s_{2} with prize B can be defined as lottery $L_{a}=[p, A ;(1-p), B]$,
- a deterministic lottery (no random element) is equal to a prize,
- rationality: the agent's goal is to apply action resulting in the highest prize.

Preferences

- How can we define prizes?
- in general, they do not have to be numerical,
- it suffices to define symbolic prizes with preference relations
$A \succ B \ldots A$ preferred to B,
$A \sim B \ldots A$ and B indifferent,
$A \succeq B \ldots B$ not preferred to A,
- a rational agent has to implement preferences with certain constraints
- orderability: $(A \succ B) \vee(B \succ A) \vee(A \sim B)$,
- transitivity: $(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$,
- continuity: $A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$,
- substitutability: $A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$,
- monotonicity: $A \succ B \Rightarrow(p>q \Leftrightarrow[p, A ; 1-p, B] \succ[q, A ; 1-q, B])$,
- decomposability: $[p, A ; 1-p,[q, B ; 1-q, C]] \sim[p, A ;(1-p) q, B ;(1-$ $p)(1-q), C]$.

Transitivity as necessary condition of rationality

- Violating the constraints leads to irrationality,
- example: intransitive agent can give away all his money
- assume an agent with preferences $A \succ B, B \succ C, C \succ A$,
- it is willing to pay (say) 1 cent to exchange its C for somebody else's B,
- consequently, it pays 1 cent to exchange its B for somebody else's A,
- finally, it exchanges A for C and pays 1 extra cent again,
- it owns C again, but has got 3 cents less.

Maximizing expected utility

- von Neumann-Morgenstern theorem
- given constrained preferences there exists a real-valued function U s.t.

$$
U(A) \geq U(B) \Leftrightarrow A \succeq B
$$

(we keep the preferences in prizes),
$U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)$
(lottery utility computed as expected utility of the individual outcomes),

- maximizing expected utility, the principle
- take an action (corresponding lottery) that maximizes expected utility,
- introduction of (explicit) utility is not a necessary condition of rationality
- ex.: agent has its strategy in the form of look-up table.

From preferences towards utility function

- utility function maps prizes (and thus states) on real numbers
- the linear ordering given by preferences must be preserved,
- there is an infinite number of functions with the identical behavior of agent,
- in deterministic environments (without lotteries) it is the only condition $A \prec B \sim C \preceq D$ agrees both with U_{1} and U_{2}, the behavior of agent does not change.

	A	B	C	D
U_{1}	1	2	2	3
U_{2}	-1	2	2	1000

From preferences towards utility function

- with lotteries there is one more condition,
- behavior does not change with linear utility function transformations only,

$$
\forall k_{1}>0 \quad U_{2}(x)=k_{1} U_{1}(x)+k_{2}
$$

	A	B	C	D
U_{1}	1	2	2	3
U_{2}	-1	2	2	1000

$-U_{1}$ and U_{2} interchange preferences in lotteries $[0.5, A ; 0.5, B]$ and $[0.9, A ; 0.1, D]$,

- standardize by normalized utility
- best possible prize $u_{\top}=1.0$, worst possible catastrophe $u_{\perp}=0.0$,
- any intermediate prize A matches p set such that

$$
A \sim\left[p, u_{\top} ;(1-p), u_{\perp}\right] .
$$

People as "rational" money-driven agents

- St. Petersburg paradox (Bernoulli, 1738)
- how much would you pay as an entry fee for the following game?
* adversary repeatedly tosses a (standard) coin until the first head, * the number of coin tosses $n \rightarrow$ your gain 2^{n} Kč \rightarrow game over,

People as "rational" money-driven agents

- St. Petersburg paradox (Bernoulli, 1738)
- how much would you pay as an entry fee for the following game?
* adversary repeatedly tosses a (standard) coin until the first head,
* the number of coin tosses $n \rightarrow$ your gain 2^{n} Kč \rightarrow game over,
- provided that money directly represent utility function, you shall be willing to pay an arbitrary finite fee
* let us apply von Neumann-Morgenstern theorem

$$
\begin{aligned}
U(p b g h) & =U\left(\left[p\left(h_{1}\right), U\left(h_{1}\right) ; p\left(h_{2}\right), U\left(h_{2}\right) ; \ldots\right]\right)= \\
& =\sum_{i=1}^{\infty} \frac{1}{2^{i}} 2^{i}=1+1+\cdots=\infty
\end{aligned}
$$

- this conclusion does not seem to be truly rational
* Bernoulli solved the paradox by log transform of money utility

$$
\begin{aligned}
& U(k)=\log _{2} k \\
& U(p b g h)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \log _{2} 2^{i}=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\cdots=2
\end{aligned}
$$

* reverse transformation gives the real game fee: $2=\log _{2} k \Rightarrow k=4$ Kč.

People as "rational" money-driven agents

- Tversky and Kahneman experiment (1982)
- choose one of the lotteries L_{1} and L_{2}, then one of the lotteries L_{3} and L_{4}

Choice 1	Choice 2
$L_{1}=[0.8,80000 K c ; 0.2,0]$	$L_{3}=[0.2,80000 K c ; 0.8,0]$
$L_{2}=[1,60000 K c]$	$L_{4}=[0.25,60000 K c ; 0.75,0]$

People as "rational" money-driven agents

- Tversky and Kahneman experiment (1982)
- choose one of the lotteries L_{1} and L_{2}, then one of the lotteries L_{3} and L_{4}

Choice 1	Choice 2
$L_{1}=[0.8,80000 K c ; 0.2,0]$	$L_{3}=[0.2,80000 K c ; 0.8,0]$
$L_{2}=[1,60000 K c]$	$L_{4}=[0.25,60000 K c ; 0.75,0]$

- most people prefer lottery L_{2} to L_{1} and L_{3} to L_{4}
* does not seem rational, provided that $U(0 K c)=0$ it holds choice 1: $0.8 U(80000 K c)<U(60000 K c)$, choice 2: $0.8 U(80000 K c)>U(60000 K c)$,
* there is no utility function consistent with both choices,
- possible explanations
* people are irrational,
* the analysis disregards regret when loosing a very likely reward ad L_{2},
* that is why people avoid/take risk in probable/unlikely events.

People as "rational" money-driven agents

- money is not the direct utility function
- people often do not maximize monetary expected utility,

$$
U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right) \neq \sum_{i} p_{i} U\left(S_{i}\right)
$$

- and tend to avoid the risk, i.e., lotteries,

$$
U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)<\sum_{i} p_{i} U\left(S_{i}\right)
$$

- utility curve non-linearly transforms money to utility
- we search for probability p, for which a given person does not distinguish prize x and lottery $[p, \$ M ;(1-p), \$ 0], \$ M$ is large

Multiattribute utility functions

- Often we cannot assign a prize to every state
- too many states or infinite state space,
- states usually described by features (airport locality selection - safety, noise level, land prize),
- utility function has several parameters then
$-U\left(X_{1}, \ldots, X_{n}\right)$ (parameters resp. attributes instead of state),
$-n$ attributes with m distinct values define m^{n} states,
- utility function can be simplified by assumption of preference regularity
* preference monotonicity when changing single attribute

$$
x \geq y \Rightarrow U\left(X_{1}, \ldots, X_{i}=x, \ldots, X_{n}\right) \geq U\left(X_{1}, \ldots, X_{i}=y, \ldots, X_{n}\right)
$$

* relationships of independence among attributes wrt preferences state defs: $A \sim\left(x_{1}, y_{1}\right), B \sim\left(x_{2}, y_{1}\right), C \sim\left(x_{1}, y_{2}\right), D \sim\left(x_{2}, y_{2}\right)$ preference independence: $(A \succ B \Rightarrow C \succ D) \wedge(A \succ C \Rightarrow B \succ D)$
- preference regularities correspond to a simplified utility function $* U\left(x_{1}, \ldots, x_{n}\right)=f\left[f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right], f$ is simple, e.g., addition.

Strict dominance

- assumption: U monotonously increasing in all attributes,
- choice B strictly dominates choice A iff
$-\forall i X_{i}(B) \geq X_{i}(A) \Rightarrow f_{i}\left(X_{i}(B)\right) \geq f_{i}\left(X_{i}(A)\right) \Rightarrow U(B) \geq U(A)$
- one airport location safer, less noisy with cheaper land than others,
- rarely applicable in practice
- utility further decreased by uncertainty in estimation of attribute values.

Deterministic attributes

Uncertain attributes

Stochastic dominance

- do not compare the worst possible attribute value in the first state with the best possible in the second,
- rather compare cumulative distribution functions of the attributes,
- distribution p_{1} stochastically dominates distribution p_{2} if

$$
-\forall t \int_{-\infty}^{t} p_{1}(x) d x \leq \int_{-\infty}^{t} p_{2}(x) d x
$$

- for U monotonously increasing with x it necessarily holds

$$
-\int_{-\infty}^{\infty} p_{1}(x) U(x) d x \geq \int_{-\infty}^{\infty} p_{2}(x) U(x) d x
$$

- for multiple attributes require stochastic dominance of a state in all attributes,

Stochastic dominance - example

- S1: the airport cost at location $13.7 \pm 0.4 \mathrm{mld}$,
- S2: the airport cost at location $24.0 \pm 0.35 \mathrm{ml}$,
- choose S1.

Value of information

- Agent rarely has complete information at its disposal
- what questions shall it ask?
- question \rightarrow information with both value and costs (for test, time of an expert, etc.),
- agent sorts questions by the difference between value and costs,
- negatively valued questions not asked, actions taken based on the current information,
- agent typically myopic - greedy decisions, disregards interactions between questions.
- How to compute the value of information?
- has the given piece of information potential to change the current plan?
- can be a modified plan significantly better than the current one?

Value of information - qualitative distinctions

- 3 examples: actions A_{1} and A_{2}, their expected utility U_{1} and U_{2},
- the utility distributions known a priori, E_{j} will bring the precise action utility,
(a) choice is obvious, information worth little,
(b) choice is unclear, information worth a lot,
(c) choice is unclear, information worth little.

Value of information - general description

- current evidence E, current best action α possible outcomes of the action S_{i}, possible future observation E_{j}
- expected utility without knowing the value of E_{j} :
$E U(\alpha \mid E)=\max _{a} \sum_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a\right)$
- if we knew that $E_{j}=e_{j k}$, then we would choose a different action $\alpha_{e_{j k}}$
- expected utility when knowing the value of E_{j} :

$$
E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)=\max _{a} \sum_{i} U\left(S_{i}\right) P\left(S_{i} \mid E, a, E_{j}=e_{j k}\right)
$$

- when assessing the value of information, the value of E_{j} is unknown expected utility must aggregate over all possible values of E_{j} $V P I_{E}\left(E_{j}\right)=\left(\sum_{k} P\left(E_{j}=e_{j k} \mid E\right) E U\left(\alpha_{e_{j k}} \mid E, E_{j}=e_{j k}\right)\right)-E U(\alpha \mid E)$
- $\mathrm{VPI}=$ value of perfect information
- exact evidence about E_{j} can be obtained.

Value of information - characteristics

- VPI is always non-negative

$$
\forall j, E \quad V P I_{E}\left(E_{j}\right) \geq 0
$$

- even though it can lead into a state with a lower utility eventually,
- VPI is not additive

$$
V P I_{E}\left(E_{j}, E_{k}\right) \neq V P I_{E}\left(E_{j}\right)+V P I_{E}\left(E_{k}\right)
$$

- VPI is order-independent

$$
V P I_{E}\left(E_{j}, E_{k}\right)=V P I_{E}\left(E_{j}\right)+V P I_{E, E_{j}}\left(E_{k}\right)=V P I_{E}\left(E_{k}\right)+V P I_{E, E_{k}}\left(E_{j}\right)
$$

- the agent inquires information if: $\exists E_{j} V P I_{E}\left(E_{j}\right)>\operatorname{Cost}\left(E_{j}\right)$,
- consequence
- evidence gathering becomes a sequential decision problem.

Value of information - investment example

:: There are three types of investment opportunity (I): stocks (s), funds (f) and state bonds (b). Investment profit depends on whether markets (M) grow (\uparrow), stay at the same level (resp. grow with inflation, \rightarrow) or fall down (\downarrow). Based on the values in table below compute the value of information about future market change.

M	$\operatorname{Pr}(M)$	$\mathrm{U}(\mathrm{s}, \mathrm{M})$	$\mathrm{U}(\mathrm{f}, \mathrm{M})$	$\mathrm{U}(\mathrm{b}, \mathrm{M})$
\uparrow	0.5	1500	900	500
\rightarrow	0.3	300	600	500
\downarrow	0.2	-800	-200	500

Value of information - investment example

$$
\begin{aligned}
& E U(\alpha \mid\{ \})= \max _{I \in\{s, f, b\}} \sum_{M \in\{\uparrow, \rightarrow, \downarrow\}} U(I, M) \operatorname{Pr}(M)= \\
&= \max (.5 \times 1500+.3 \times 300-0.2 \times 800, \\
&=.5 \times 900+.3 \times 600-0.2 \times 200,500)= \\
&=\max (680,590,500)=680
\end{aligned}
$$

$$
E U\left(\alpha_{\uparrow} \mid\{\uparrow\}\right)=\max _{I \in\{s, f, b\}} U(I, \uparrow)=1500\left(E U\left(\alpha_{\rightarrow} \mid\{\rightarrow\}\right)=600, E U\left(\alpha_{\downarrow} \mid\{\downarrow\}\right)=500\right)
$$

$$
V P I_{\{ \}}(M)=\left[\sum_{M \in\{\uparrow, \rightarrow, \downarrow\}} \operatorname{Pr}(M) E U\left(\alpha_{M} \mid M\right)\right]-E U(\alpha \mid\{ \})=
$$

$$
=.5 \times 1500+.3 \times 600+0.2 \times 500-680=1030-680=350
$$

Summary

- rational agent takes action leading to the best expected result,
- its decisions can be based on three types of theory
- probability - how to cope with observations in uncertain world,
- utility - how to describe what to strive for, how to formulate goal,
- decision making - actions to take based on stochastic model and goals,
- how to define utility function, what it is good for
- complex worlds, states defined by attribute vectors, dominance decisions,
- pieces of information to prefer, when to ask for them,
- people are just "approximately" rational
- in complex worlds we must employ instincts and heuristics * automatic system that decides quickly, but imprecisely, * reflexive human system approaches the ideal view of rationality,
- AI - both ideally rational agents and agents behaving like people.

Recommended reading, lecture resources

:: Reading

- Russell, Norvig: AI: A Modern Approach, Rational Decisions
- chapter 16, http://aima.eecs.berkeley.edu/slides-pdf/chapter16.pdf
- book online on Google books (limited access): http://books.google.com/books?id=8jZBksh-bUMC.

Experimental ZUI utility curve

- For each x adjust p such that
- half the students chooses lottery $[p, 200000 K c ; 1-p, 0]$, half prefers x,
- what is the relationship between the curve and risk taking?

Utility and insurance

- On the concave curve the rational motivation for insurance can be shown.

> room for insurance company profit

