
Partially observable Markov decision processes

Jǐŕı Kléma

Department of Computer Science,
Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky

pAgenda

� Previous lecture: Markov decision processes (MDPs)

− stochastic process with a limited memory,

− world/environment well defined by its transition and reward functions,

− goal to find the optimal policy,

− dynamic programming most frequently used,

� partially observable Markov decision processes (POMDPs)

− the world is partially observable only, states are not available,

− define a new stochastic process that generalizes MDP,

− policy changes, complexity grows, theoretical and real solutions.

� reinforcement learning,

� generalization towards large/infinite state spaces.

� http://cw.felk.cvut.cz

pChanges in our running example – a robot in a grid world

� The grid, task and stochastic actions remain unchanged,

� the major change

− the state in which the robor currently is remains hidden,

− the robot only obtains a stochastic wall signal

∗ the number of surrounding walls in the current state,

∗ the wall sensor is wrong in 10% situations.

� http://cw.felk.cvut.cz

pChanges in our running example – a robot in a grid world

� The major consequences of the change

− policy cannot map between states and actions,

− the state information maintained in the form of a probability distribution

∗ the robot only has a state belief (vector),

− policy is a mapping between state beliefs and actions.

Belief 1: a clear MDP like case, go east. Belief 2: no state info, action selection difficult.

� http://cw.felk.cvut.cz

pPartial observability

� MDPs work with the assumption of complete observability

− assumption that the actual state s is always known is often non realistic,

− examples

∗ physical processes such as a nuclear reactor, complex machines,

∗ we do know the physical laws that underlie the process,

∗ we know the structure and characteristics of the machine and its parts,

∗ however, do not know the initial state and subsequent states, can only
measure temperature,

∗ or have signals from various (unreliable) sensors.

� http://cw.felk.cvut.cz

pPOMDP – motivation

� industrial: machine maintenance

� business: power distribution systems

� http://cw.felk.cvut.cz

pPartial observability

� partially observable Markov decision process (POMDP)

− MDP generalization, states guessed from observations coupled with them,

− POMDP = {S,A, P,R,O,Ω},
∗ O is a set of observations,

∗ Ω is a sensoric model that defines conditional observation probs

Ωa
s′o = Pr{ot+1 = o | st+1 = s′, at = a}

− instead of s agent internally keeps prob distribution b (belief) across states

∗ we perform a in unknown s (knowing b(s) only) and observe o,

∗ then we update our belief

b′(s′) = η Ωa
s′o

∑
s∈S

P a
ss′b(s)

∗ η is a normalization constant such that
∑

s′∈S b
′(s′) = 1.

� http://cw.felk.cvut.cz

pPartial observability

� consequences of partial observability

− it makes no sense to concern policy π : S → A, shift to π : B → A,

− commonly computationally intractable, approximate solutions only

∗ for n states, b is an n-dimensional real vector,

∗ PSPACE-hard, worse than NP.

a) MDP b) POMDP

� http://cw.felk.cvut.cz

pPartial observability – example

:: S = {0, 1}, A = {Stay,Go}, O = {o0, o1},
P (st+1 = x|st = x, Stay) = .9, P (st+1 = x|st = x,Go) = .1,
Pr(o0|0) = .6, Pr(o1|1) = .6, R(0) = 0, R(1) = 1, γ = 1,

:: Goal: determine V ∗(b) (the main step for finding a = π∗(b))

� http://cw.felk.cvut.cz

pPartial observability – example

� b space is 1D → V (b) is a real function of one variable,

� assumed that in near points of b space will be

− very similar utility and identical policy,

� policy is equivalent to a conditional plan dependent on future observations

− example, plan of length 2: [Stay, if O = o0 then Go else Stay],

� let αp(s) be the utility of plan p starting from state s

− then the same plan executed from b has the utility∑
s

b(s)αp(s) = b · αp

− αp is a linear function of b (hyperplane for complex spaces),

− optimal policy follows the plan with highest expected utility

V (b) = V π∗(b) = max
p
b · αp

− V (b) is a partially linear function of b.

� http://cw.felk.cvut.cz

pPartial observability – example

:: there are two plans of length 1, for them it holds

α[Stay](0) = R(0) + γ(.9R(0) + .1R(1)) = 0.1
α[Stay](1) = R(1) + γ(.9R(1) + .1R(0)) = 1.9
α[Go](0) = R(0) + γ(.9R(1) + .1R(0)) = 0.9
α[Go](1) = R(1) + γ(.9R(0) + .1R(1)) = 1.1

α[Stay](b(1) = 0.3) = .7α[Stay](0) + .3α[Stay](1) = 0.64

� http://cw.felk.cvut.cz

pPartial observability – example

:: there are 8 plans of length 2 (4 dotted plans dominated by other plans)

[Stay, if O = o0 then Go else Stay] encoded as [SGS]

α[SSS](0) = R(0) + γ(.9α[S](0) + .1α[S](1)) = 0.28

α[SSS](1) = R(1) + γ(.9α[S](1) + .1α[S](0)) = 2.72

α[SGS](0) = R(0) + γ(.9(.6α[G](0) + .4α[S](0)) + .1(0.4α[G](1) + .6α[S](1)) = 0.68

α[SGS](1) = R(1) + γ(.9(.4α[G](1) + .6α[S](1)) + .1(0.6α[G](0) + .4α[S](0)) = 2.48

� http://cw.felk.cvut.cz

pPartial observability – plans of length d

� generalized formula to evaluate plans of length d

αp(s) = R(s) + γ
(∑

s′

P a
ss′

∑
o

Ωa
s′oαp.o(s

′)
)

− recursive formula,

− plan p with length d,

− p.o is its subplan with length d− 1 without observation o,

− pruning of dominated plans helps,

− still, worst-case time complexity O(|A||O|d−1).

� http://cw.felk.cvut.cz

pWhat happens if the world/environment model is unknown?

� We assume that the world is a Markov decision process

− however, neither its transition model nor reward function is known,

� the goal is to learn the optimal policy again

− agent needs to interact with the environment

∗ it cannot purely use the model and compute the optimal policy,

− agent explores (many) different actions in (many) different states,

− analogous to learning and solving the underlying MDP

∗ must be done simultaneously and thus iteratively,

� solved in terms of reinforcement learning.

� http://cw.felk.cvut.cz

pActive adaptive dynamic programming

� Active adaptive dynamic programming is one of the RL approaches

− the agent interacts with the environment

∗ it executes actions and obtains percepts (= states and rewards),

∗ single interaction = read a percept and execute an action,

− after each interaction (step)

∗ it updates its model = P and R,

∗ it solves the underlying MDP for the current P and R = learns V ,

∗ executes an action based on the known state values,

− a new important issue is how to select the action

∗ criteria: optimal policy reached?, learning time, reward during learning,

∗ a bad option: greedy action selection,

· the agent exploits its current model but does not sufficiently explore,

· the true model does not have to be learned,

∗ a better option: ε-greedy action selection

· only in ε situations random action, otherwise greedy,

� http://cw.felk.cvut.cz

pThe algorithm of active adaptive dynamic programming

function ACTIVE_ADP_AGENT(percept) returns an action

inputs: percept, the current state s’ and reward signal r’

static: V , a table of utilities, initially empty

mdp, an MDP with model P, rewards R, discount γ
Nsa, a state-action frequency table, initially zero

Nsas’, a state-action-state frequency table, initially zero

s, a the previous state and action, initially null

if s’ is new then do V [s’]= r’; R[s’]= r’

if s is not null, then do

increment Nsa[s,a] and Nsas’[s,a,s’]

for each t such that Nsas’[s,a,t] is nonzero do

P[s,a,t] = Nsas’[s,a,t] / Nsa[s,a]

V = VALUE_ITERATION(mdp)

if TERMINAL?[s’] then s,a=null else s,a = s’,GET_ε_GREEDY(s’,V)
return a

� http://cw.felk.cvut.cz

pGeneralization and approximation

� up to now trivial demonstrations with limited state and action sets,

� for large state spaces, necessary approximation of value functions

− learning from examples can be employed,

− generalization assumes continuous and “reasonable” value functions,

− states characterized by a parameter/attribute vector φs,

− linear approximation with parameters θ(t): Vt(s) = θTt φs =
∑

i θt(i)φs(i),

− non linear optimization by a neural network,

− error function to be minimized: MSE(θt) =
∑

s Ps [V π
t (s)− Vt(s)]2,

Ps distribution of state weights, V π
t (s) real value, Vt(s) its approximation,

− regression, gradient optimization, back propagation etc.

� http://cw.felk.cvut.cz

pSummary

� MDPs allow to search stochastic state spaces

− computational complexity is increased due to stochasticity,

� problem solving = policy finding

− policy assigns each state the optimal action, can be stochastic too,

− basic approaches are policy iteration and value iteration,

− other choices can be modified iteration approaches, possibly asynchronous,

� techniques similar to MDP

− POMDP for partially observable environments,

− RL for environments with unknown models,

� applications

− agent technology in general, robot control and path planning in robotics,

− network optimization in telecommunication, game playing.

� http://cw.felk.cvut.cz

pRecommended reading, lecture resources

:: Reading

� Russell, Norvig: AI: A Modern Approach, Making Complex Decisions

− chapter 17,

− online on Google books:
http://books.google.com/books?id=8jZBksh-bUMC,

� Sutton, Barto: Reinforcement Learning: An Introduction

− MIT Press, Cambridge, 1998,

− http://www.cs.ualberta.ca/~sutton/book/the-book.html.

� http://cw.felk.cvut.cz

pDemo

� RL simulator

− find the optimal path in a maze

− implemented in Java

− http://www.cs.cmu.edu/~awm/rlsim/

c©Kelkar, Mehta: Robotics Institute, Carnegie Mellon University

� http://cw.felk.cvut.cz

