Partially observable Markov decision processes

Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/b4b36zui/prednasky

Agenda

- Previous lecture: Markov decision processes (MDPs)
 - stochastic process with a limited memory,
 - world/environment well defined by its transition and reward functions,
 - goal to find the optimal policy,
 - dynamic programming most frequently used,
- partially observable Markov decision processes (POMDPs)
 - the world is partially observable only, states are not available,
 - define a new stochastic process that generalizes MDP,
 - policy changes, complexity grows, theoretical and real solutions.
- reinforcement learning,
- generalization towards large/infinite state spaces.

Changes in our running example – a robot in a grid world

- The grid, task and stochastic actions remain unchanged,
- the major change
 - the state in which the robor currently is remains hidden,
 - the robot only obtains a stochastic wall signal
 - * the number of surrounding walls in the current state,
 - * the wall sensor is wrong in 10% situations.

Changes in our running example – a robot in a grid world

- The major consequences of the change
 - policy cannot map between states and actions,
 - the state information maintained in the form of a probability distribution
 * the robot only has a state belief (vector),
 - policy is a mapping between state beliefs and actions.

Belief 1: a clear MDP like case, go east.

Belief 2: no state info, action selection difficult.

Partial observability

- MDPs work with the assumption of complete observability
 - assumption that the actual state s is always known is often non realistic,
 - examples
 - * physical processes such as a nuclear reactor, complex machines,
 - * we do know the physical laws that underlie the process,
 - * we know the structure and characteristics of the machine and its parts,
 - * however, do not know the initial state and subsequent states, can only measure temperature,
 - * or have signals from various (unreliable) sensors.

POMDP – motivation

industrial: machine maintenance

business: power distribution systems

- partially observable Markov decision process (POMDP)
 - MDP generalization, states guessed from observations coupled with them,
 - $\mathsf{POMDP} = \{S, A, P, R, O, \Omega\},\$
 - $\ast \ O$ is a set of observations,
 - $\ast \ \Omega$ is a sensoric model that defines conditional observation probs

$$\Omega^a_{s'o} = Pr\{o_{t+1} = o \mid s_{t+1} = s', a_t = a\}$$

- instead of s agent internally keeps prob distribution b (belief) across states * we perform a in unknown s (knowing b(s) only) and observe o, * then we update our belief

$$b'(s') = \eta \ \Omega^a_{s'o} \sum_{s \in S} P^a_{ss'} b(s)$$

 η is a normalization constant such that $\sum_{s' \in S} b'(s') = 1$.

*

Partial observability

- consequences of partial observability
 - it makes no sense to concern policy $\pi: S \to A$, shift to $\pi: B \to A$,
 - commonly computationally intractable, approximate solutions only
 - * for n states, b is an n-dimensional real vector,
 - * PSPACE-hard, worse than NP.

::
$$S = \{0, 1\}, A = \{Stay, Go\}, O = \{o_0, o_1\},$$

 $P(s_{t+1} = x | s_t = x, Stay) = .9, P(s_{t+1} = x | s_t = x, Go) = .1,$
 $Pr(o_0|0) = .6, Pr(o_1|1) = .6, R(0) = 0, R(1) = 1, \gamma = 1,$

:: Goal: determine $V^*(b)$ (the main step for finding $a = \pi^*(b)$)

- b space is $1D \rightarrow V(b)$ is a real function of one variable,
- \hfill assumed that in near points of b space will be
 - very similar utility and identical policy,
- policy is equivalent to a conditional plan dependent on future observations
 - example, plan of length 2: $[Stay, if O = o_0 \text{ then } Go \text{ else } Stay]$,
- $\hfill\blacksquare$ let $\alpha_p(s)$ be the utility of plan p starting from state s
 - then the same plan executed from \boldsymbol{b} has the utility

$$\sum_{s} b(s)\alpha_p(s) = b \cdot \alpha_p$$

 $- \alpha_p$ is a linear function of b (hyperplane for complex spaces), - optimal policy follows the plan with highest expected utility

$$V(b) = V^{\pi^*}(b) = \max_p b \cdot \alpha_p$$

-V(b) is a partially linear function of b.

:: there are two plans of length 1, for them it holds

$$\begin{array}{ll} \alpha_{[Stay]}(0) & = R(0) + \gamma(.9R(0) + .1R(1)) = 0.1 \\ \alpha_{[Stay]}(1) & = R(1) + \gamma(.9R(1) + .1R(0)) = 1.9 \\ \alpha_{[Go]}(0) & = R(0) + \gamma(.9R(1) + .1R(0)) = 0.9 \\ \alpha_{[Go]}(1) & = R(1) + \gamma(.9R(0) + .1R(1)) = 1.1 \end{array}$$

 $\alpha_{[Stay]}(b(1) = 0.3) = .7\alpha_{[Stay]}(0) + .3\alpha_{[Stay]}(1) = 0.64$

:: there are 8 plans of length 2 (4 dotted plans dominated by other plans) $[Stay, if O = o_0 \text{ then } Go \text{ else } Stay] \text{ encoded as } [SGS]$

Partial observability – plans of length d

 $\hfill\blacksquare$ generalized formula to evaluate plans of length d

$$\alpha_p(s) = R(s) + \gamma \left(\sum_{s'} P^a_{ss'} \sum_o \Omega^a_{s'o} \alpha_{p.o}(s')\right)$$

- recursive formula,
- plan p with length d,
- -p.o is its subplan with length d-1 without observation o,
- pruning of dominated plans helps,
- still, worst-case time complexity $\mathcal{O}(|A|^{|O|^{d-1}})$.

What happens if the world/environment model is unknown?

- We assume that the world is a Markov decision process
 - however, neither its transition model nor reward function is known,
- the goal is to learn the optimal policy again
 - agent needs to **interact** with the environment
 - * it cannot purely use the model and compute the optimal policy,
 - agent explores (many) different actions in (many) different states,
 - analogous to learning and solving the underlying MDP
 - * must be done simultaneously and thus iteratively,
- solved in terms of reinforcement learning.

Active adaptive dynamic programming

• Active adaptive dynamic programming is one of the RL approaches

- the agent interacts with the environment
 - * it executes actions and obtains percepts (= states and rewards),
 - * single interaction = read a percept and execute an action,
- after each interaction (step)
 - * it updates its model = P and R,
 - * it solves the underlying MDP for the current P and R = learns V,
 - * executes an action based on the known state values,
- a new important issue is how to select the action
 - * criteria: optimal policy reached?, learning time, reward during learning,
 - * a bad option: greedy action selection,
 - \cdot the agent exploits its current model but does not sufficiently explore,
 - \cdot the true model does not have to be learned,
 - * a better option: ϵ -greedy action selection
 - \cdot only in ϵ situations random action, otherwise greedy,

The algorithm of active adaptive dynamic programming

function ACTIVE_ADP_AGENT(percept) returns an action inputs: percept, the current state s' and reward signal r' static: V, a table of utilities, initially empty mdp, an MDP with model P, rewards R, discount γ Nsa, a state-action frequency table, initially zero Nsas', a state-action-state frequency table, initially zero s, a the previous state and action, initially null if s' is new then do V[s'] = r'; R[s'] = r'if s is not null, then do increment Nsa[s,a] and Nsas'[s,a,s'] for each t such that Nsas'[s,a,t] is nonzero do P[s,a,t] = Nsas'[s,a,t] / Nsa[s,a] $V = VALUE_ITERATION(mdp)$ if TERMINAL?[s'] then s,a=null else s,a = s',GET_ ϵ _GREEDY(s',V) return a

Generalization and approximation

- up to now trivial demonstrations with limited state and action sets,
- for large state spaces, necessary approximation of value functions
 - learning from examples can be employed,
 - generalization assumes continuous and "reasonable" value functions,
 - states characterized by a parameter/attribute vector ϕ_s ,

- linear approximation with parameters heta(t): $V_t(s) = heta_t^T \phi_s = \sum_i heta_t(i) \phi_s(i)$,
- non linear optimization by a neural network,
- error function to be minimized: $MSE(\theta_t) = \sum_s P_s [V_t^{\pi}(s) V_t(s)]^2$, P_s distribution of state weights, $V_t^{\pi}(s)$ real value, $V_t(s)$ its approximation,
- regression, gradient optimization, back propagation etc.

Summary

- MDPs allow to search stochastic state spaces
 - computational complexity is increased due to stochasticity,
- problem solving = policy finding
 - policy assigns each state the optimal action, can be stochastic too,
 - basic approaches are policy iteration and value iteration,
 - other choices can be modified iteration approaches, possibly asynchronous,
- techniques similar to MDP
 - POMDP for partially observable environments,
 - RL for environments with unknown models,
- applications
 - agent technology in general, robot control and path planning in robotics,
 - network optimization in telecommunication, game playing.

Recommended reading, lecture resources

:: Reading

Russell, Norvig: AI: A Modern Approach, Making Complex Decisions

- chapter 17,

- online on Google books: http://books.google.com/books?id=8jZBksh-bUMC,
- Sutton, Barto: Reinforcement Learning: An Introduction
 - MIT Press, Cambridge, 1998,
 - http://www.cs.ualberta.ca/~sutton/book/the-book.html.

Demo

RL simulator

- $-% \left(f_{\mathrm{r}}^{2}\right) =0$ find the optimal path in a maze
- implemented in Java
- http://www.cs.cmu.edu/~awm/rlsim/

	35,0	35,0	51,0	50,1	35,0	35,0
35,0	4,5 4,5	51,1 35,0	<u>3,0</u> _3,2	2,62,0	2,4 2,0	35,1
	5,0	4,7	3,4	2,8	35,0	1,9
	4,9	4,9	3,5	2,8	35,0	1,9
51,5	<u> </u>	4,3.4,5	3,5 3,8	2,82,2	<u>1,9</u> _1,5	45,:
	5,5	4,6	3,9	2,8	2,0	1,0
	\$,1	5,0	4,1	2,7	2,3	
47,1	5,4 5,1	<u>4,5</u> 4,3	48,1 34,9	2,02,6	1.0	
	35,0	35,0	35,0	34,9	34,9	

©Kelkar, Mehta: Robotics Institute, Carnegie Mellon University