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Agenda

= Previous lecture: Markov decision processes (MDPs)

stochastic process with a limited memory,
world /environment well defined by its transition and reward functions,
goal to find the optimal policy,

dynamic programming most frequently used,
= partially observable Markov decision processes (POMDPs)

the world is partially observable only, states are not available,
define a new stochastic process that generalizes MDP,

policy changes, complexity grows, theoretical and real solutions.




POMDP — motivation

m industrial: machine maintenance

m business: power distribution systems
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Partial observability

s MDPs work with the assumption of complete observability

assumption that the actual state s is always known is often non realistic,

examples

x physical processes such as a nuclear reactor, complex machines,
x we do know the physical laws that underlie the process,
* we know the structure and characteristics of the machine and its parts,

* however, do not know the initial state and subsequent states, can only
measure temperature,

* or have signals from various (unreliable) sensors.




Partial observability

= partially observable Markov decision process (POMDP)

MDP generalization, states guessed from observations coupled with them,
POMDP = {S, A, P, R, O,€},

* () is a set of observations,

x () is a sensoric model that defines conditional observation probs

QY = Pr{iog1=o0|s41=5,a =a}
instead of s agent internally keeps prob distribution b ( ) across states

+ we perform a in unknown s (knowing b(s) only) and observe o,
* then we update our belief

=0 Q% > PLb(s)
SES

* 1) is a normalization constant such that > ,_.b'(s) = 1.
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Partial observability

m consequences of partial observability

it makes no sense to concern policy 7 : S — A, shiftton: B — A,
commonly computationally intractable, approximate solutions only

x for n states, b is an n-dimensional real vector,

* PSPACE-hard, worse than NP.
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Partial observability — example

: 5 =40,1}, A= {Stay, Go}, O ={0gy,01},
P(sti1 = x|sy = x, Stay) = .9, P(st11 = x|sy = x,Go) =
Pr(og|0) = .6, Pr(o1|1) = .6, R(0)=0, R(1) =1, y=1,

:: Goal: determine V*(b) (the main step for finding a = 7%(b))

1,




Partial observability — example

s b space is 1D — V(D) is a real function of one variable,

m assumed that in near points of b space will be
very similar utility and identical policy,

m policy is equivalent to a dependent on future observations
example, plan of length 2: [Stay,if O = o, then Go else Stay],

= let a(s) be the utility of plan p starting from state s

then the same plan executed from b has the utility
S bs)ayls) =b-ay

, is a linear function of b (hyperplane for complex spaces),

optimal policy follows the plan with highest expected utility
V(b) = V™ (b) = maxb -,
p

V(b) is a partially linear function of b.




Partial observability — example

:: there are two plans of length 1, for them it holds

[5tay)(0) = R(0) +7(9R(0) + .1R(1)) =
a[Stay](l) — R(l) + ”Y( 9R( ) + . 1R<O)>
() (0) = R(0)+~v(.9R(1) + .1R(0))
CM[GO](l) = R(l) + 7(.9R(O) + .1R<1)>

a[Stay](b<1) — OS) — '705[Stay](0> + 'Sa[Stay]<1>
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Partial observability — example

:: there are 8 plans of length 2 (4 dotted plans dominated by other plans)
[Stay, if O = oy then Go else Stay| encoded as [SGS]|
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Partial observability — plans of length d

m generalized formula to evaluate plans of length d

a,(s) = R(s) + 7(2 Z Q% ol

recursive formula,
plan p with length d,
p.o is its subplan with length d — 1 without observation o,

pruning of dominated plans helps,

still, worst-case time complexity (9(|A||O|d_1).




Generalization and approximation

m up to know trivial demonstrations with limited state and action sets,

m for large state spaces, necessary approximation of value functions

learning from examples can be employed,
generalization assumes continuous and “reasonable” value functions,

states characterized by a parameter/attribute vector ¢,

linear approximation with parameters 0(t): V(s) = 0/ ¢s = >_. 0,(1)ps(4),

non linear optimization by a neural network,

error function to be minimized: MSE(6;,) = > P, [Vi(s) — Vi(s)]’,
P; distribution of state weights, V/"(s) real value, V;(s) its approximation,

regression, gradient optimization, back propagation etc.




Summary

s MDPs allow to search stochastic state spaces
computational complexity is increased due to stochasticity,
m problem solving = policy finding
policy assigns each state the optimal action, can be stochastic too,

basic approaches are policy iteration and value iteration,

other choices can be modified iteration approaches, possibly asynchronous,
s techniques similar to MDP

POMDP for partially observable environments,

RL for environments with unknown models,
= applications

agent technology in general, robot control and path planning in robotics,

network optimization in telecommunication, game playing.




Recommended reading, lecture resources

:: Reading

= Russell, Norvig: Al: A Modern Approach, Making Complex Decisions
— chapter 17,

— online on Google books:
http://books.google.com/books?id=87jZBksh-bUMC,

= Sutton, Barto: Reinforcement Learning: An Introduction

— MIT Press, Cambridge, 1998,
— http://www.cs.ualberta.ca/ "sutton/book/the-book.html.
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Demo

m RL simulator

— find the optimal path in a maze
— implemented in Java

— http://www.cs.cmu.edu/ awm/rlsim/

(©Kelkar, Mehta: Robotics Institute, Carnegie Mellon University
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