Sequential decision making under uncertainty

Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

http://cw.felk.cvut.cz/doku.php/courses/a4b33zui/start

Agenda

- Previous lecture: individual rational decisions under uncertainty
 - uncertainty = stochastic action outcomes lottery, expected utility,
- how to optimally choose whole sequences of actions?
 - repeated decisions based on uncertain or incomplete information,
 - prizes/rewards typically delayed,
 - world does not have to be fully observable,
- Markov decision process
 - introduces Markov assumption/property process with a limited memory,
 - works with stationarity and observability assumptions too,
 - world/environment well defined by its transition and reward functions,
- generalization
 - POMDP the world is partially observable only,
 - reinforcement learning no environment model available, no state-transition and reward functions.

Markov process

- random process, prob of visiting future states given by recent states only,
- distant past is irrelevant provided that we know the recent past,
- Markov chain
 - discrete random process with Markov property,
 - chain order m gives how many past states we need to concern

$$P(X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_1 = x_1) = P(X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_{n-m} = x_{n-m})$$

- most often 1st order models,
- commonly together with stationarity assumption (time invariance)

$$Pr(X_{n+1} = x | X_n = y) = Pr(X_n = x | X_{n-1} = y)$$

- examples of Markov chains
 - coin tosses HTHHHT . . .
 - * degenerate (zero order) Markov chain,
 - weather observed every day at noon SSSCRRCSRR . . .
 - * categorized (S)unny, (C)loudy, (R)ain, the order is unknown.

Markov chain – weather example

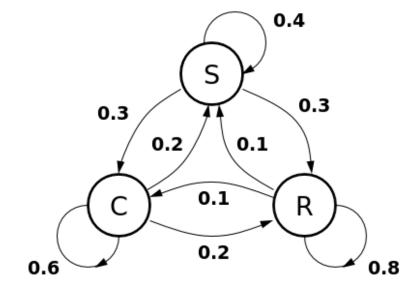
- How to build a model based on the observed sequence?
 - let us have a sequence of length 41, assume 1st order,
 SSCCRRRRRRRSSSCRRRRRRRCCCSCSSRRSRRRCSCCC
 - model = transition matrix.

$$S_{t+1}C_{t+1}R_{t+1}$$

$$S_{t} \begin{bmatrix} 4 & 3 & 3 \\ 2 & 6 & 2 \\ R_{t} \end{bmatrix}$$

$$R_{t} \begin{bmatrix} 2 & 6 & 2 \\ 2 & 2 & 16 \end{bmatrix}$$

$$A = \{a_{ij}\} = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$



Markov chain – weather example

- Which questions can be answered with the Markov model of the sequence?
 - 1. sunny today, probability that weather will be SSRRSCS for next 7 days?
 - 2. model in a known state, prob that the state will not change for d days?
 - 3. what is the expected value d in the individual states?

Markov chain – weather example

- Which questions can be answered with the Markov model of the sequence?
 - 1. sunny today, probability that weather will be SSRRSCS for next 7 days?
 - 2. model in a known state, prob that the state will not change for d days?
 - 3. what is the expected value d in the individual states?
- Solution

1.
$$P(O|M) = P(S, S, S, R, R, S, C, S|M) =$$

= $P(S) P(S|S) P(S|S) P(R|S) P(R|R) P(S|R) P(C|S) P(S|C) =$
= $1 \times 0.4 \times 0.4 \times 0.3 \times 0.8 \times 0.1 \times 0.3 \times 0.2 = 2.3 \times 10^{-4}$

2.
$$O = \{\underbrace{Q_i, Q_i, \dots, Q_i}_{d}, Q_j \neq Q_i\}, P(O|M, q_1 = Q_i) = a_{ii}^{d-1}(1 - a_{ii}) = p_i(d),$$

3.
$$\bar{d}_i = \sum_{d=1}^{\infty} dp_i(d) = \sum_{d=1}^{\infty} da_{ii}^{d-1}(1 - a_{ii}) = \frac{1}{1 - a_{ii}}$$
, (sum of arithmetic-geometric series: $\sum_{k=0}^{\infty} kr^{k-1} = \frac{1}{(1-r)^2}$), $d_S = 1.67, d_C = 2.5, d_R = 5.$

Sequential decision making under uncertainty

- commonly it is more steps/actions needed to reach the goal,
- let us assume
 - non-deterministic environment (actions with uncertain outcomes),
 - the goal state replaced by the aim of maximizing cumulative reward,
- the sequence of actions cannot be found by classical planning
 - rational agent re-examines its steps during the process of solution (execution of actions),
 - next action depends on current observations,
 - current observations depend on current state (= previous actions),
- solution
 - agent evaluates states instead of direct creation of action sequences,
 - in each state we take the action leading to successor states with highest value.

Basic concepts, problem definition

lacktriangle Reward R_t

— simple sum of immediate rewards obtained per episode:

$$R_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots + r_T$$

- discounted sum for infinite processes (γ is discount rate, $0 \le \gamma \le 1$): $R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$

- Policy $\pi_t(s, a)$
 - is a mapping between states and actions,
 - it gives probability that action a will be executed in state s,
 - optimal policy π^* maximizes the total reward R_t ,

Basic concepts, problem definition

- State value $V^{\pi}(s)$
 - expected (cumulative) reward for following policy π starting from state s

$$V^{\pi}(s) = E_{\pi}\{R_t \mid s_t = s\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right\}$$

- Action value $Q^{\pi}(s,a)$
 - expected (cumulative) reward starting from state s, taking action a and thereafter following π

$$Q^{\pi}(s, a) = E_{\pi}\{R_t | s_t = s, a_t = a\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}$$

• Goal: find π^* (altogether with V^* , Q^* that serve as means).

Sequential decision making as finite MDP

- Finite Markov Decision Process (MDP)
 - Markov assumption + the sets of states S and actions A are finite,
 - $-MDP = \{S,A,P,R\}$, can be written as a transition graph,
 - -P transition probability, R reward function,

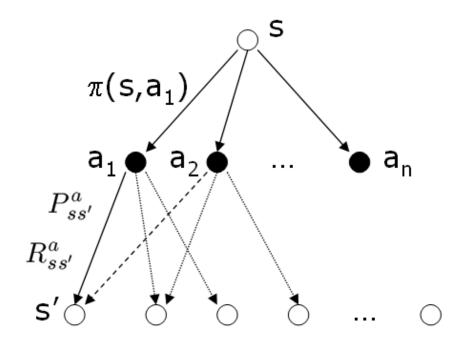
$$P_{ss'}^{a} = Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\}$$

$$R_{ss'}^{a} = E\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\}$$

- this definition leads to particular values of V and Q,
- implicit assumptions
 - environment is observable (the current state is always known),
 - environment is describable (P and R known),
 - counter example: blackjack card game (reaching P and R a part of solution).

Sequential decision making as finite MDP

- How to obtain state values from known environment and policy?
 - by transition to the recursive V definition,
 - state value = immediate reward for action execution + expected reward for development of possible successor states.



Sutton, Barto: Reinforcement Learning: An Introduction.

Recursive V definition (Bellman equation)

$$V^{\pi}(s) = E_{\pi} \{ R_{t} \mid s_{t} = s \} =$$

$$= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right\} =$$

$$= E_{\pi} \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t} = s \right\} =$$

$$= \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[R_{ss'}^{a} + \gamma E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t+1} = s' \right\} \right] =$$

$$= \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[R_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

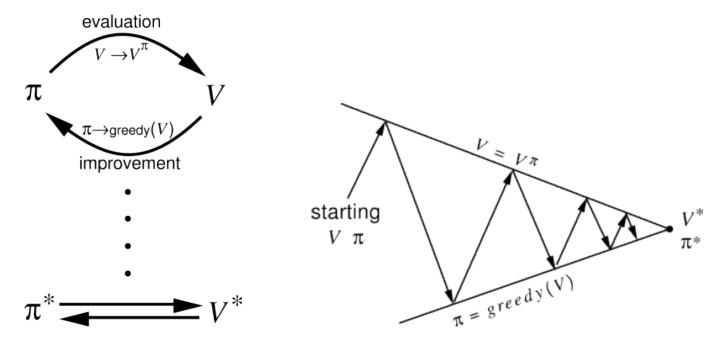
- lacktriangle in the beginning $V^\pi(s)$, $V^\pi(s')$ and $\pi(s,a)$ unknown
 - iterative calculation/improvement,
 - bootstrapping effort analogous to one who would lift himself by his own bootstraps.

Dynamic programming

- The basic approach to solve MDP (find π^*)
 - dynamic = iterative procedure
 - * to find V(s) in step k+1 use V(s') from step k,
 - programming = searching for an acceptable sequence of actions,
- lacktriangle polynomial complexity in the number of states |S| and actions |A|
 - despite the space of policies with cardinality $|A|^{|S|}$,
 - state space search necessarily performs worse,
 - still often intractable for real problems
 - * unknown process parameters (see reinforcement learning),
 - * computationally intractable
 - · often too many states,
 - \cdot we cannot iterate systematically asynchronous DP.

Dependency between policy and value functions

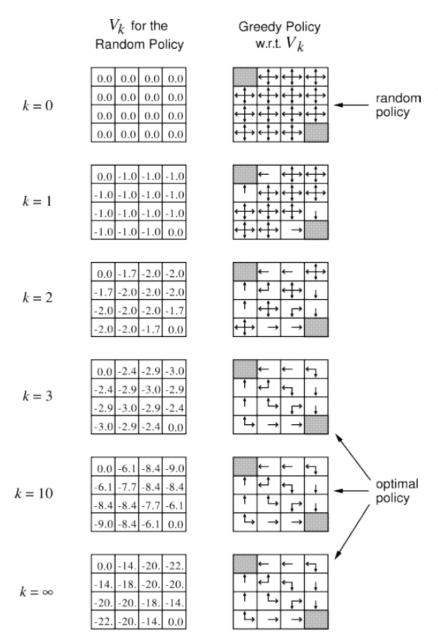
- When solving MDP, one simultaneously and interactively
 - adapts state/action values top the current policy,
 - adapts the policy to maximize reward given the current state/action values.



Sutton, Barto: Reinforcement Learning: An Introduction.

Policy iteration – PI

- Key idea: $\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \dots \xrightarrow{I} \pi^* \xrightarrow{E} V^{\pi^*}$
- 1. policy π evaluation (E step):
 - find state values $V^{\pi}(s)$,
 - start: $V(s) = 0 \ \forall$ non-terminal states (V known in them),
 - iteration: until V(s) gets steady $(\max_S |V_{k+1}(s) V_k(s)| < \varepsilon)$,
- 2. policy improvement $\pi \to \pi'$ (I step):
 - adapt to the new state values,
 - deterministic π : in every state takes single action, if $Q^{\pi}(s,\pi'(s)) \geq V^{\pi}(s)$ for $\forall s,\,\pi'$ is not worse than π , obviously $\pi'(s) = \arg\max_a Q^{\pi}(s,a)$, chooses the currently best action,
 - stochastic π : action selection is driven by a probability distribution, the same logic except for $Q^{\pi}(s,\pi'(s))=\sum_a \pi'(s,a)Q^{\pi}(s,a)$,
- 3. if π and π' differ in at least one state, go to step 1 with π' .



r = -1 on all transitions

:: Random policy evaluation:

actions

(greedy deterministic to illustrate only)

- $V(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$, $\pi(s, a) = 1/4$, $R^{a}_{ss'} = -1$, $P^{a}_{ss'} = 1$, $\gamma = 1$
- k=0: $\forall sV(s) = 0$, no change in terminal states
- k=1: $V(1) = V(2) = \dots = V(14) = \sum_{a} \pi(s, a) \sum_{s'} P^a_{ss'} \left[R^a_{ss'} + \gamma V^\pi(s') \right] = 4(1/4 * 1(-1 + 1 * 0)) = -1$
- k=2: V(1) = 1/4(3*1*(-1+1(-1))+1*1(-1+1*0)) = -7/4 = -1.75
- k=3: V(1) = 1/4(2*1*(-1+1(-2)) + 1*1(-1+1(-1.75)) + 1*1(-1+1*0)) = -9.75/4 = -2.44

Value iteration - VI

- is it necessary to evaluate/know the state values for the given policy perfectly?
 - late iterations often leave policy unchanged,
 - and may spend most of the time of the whole dynamic algorithm,

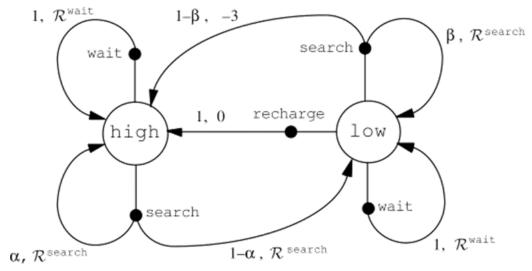
value iteration

- policy evaluation stopped after first iteration,
- more frequent policy changes,
- in some tasks faster convergence, but does not outperform PI in general,
- in terms of Bellman equation, a new iteration rule originates

$$V^{\pi}(s) = \max_{a} \sum_{s'} P_{ss'}^{a} [R_{ss'}^{a} + \gamma V^{\pi}(s')]$$

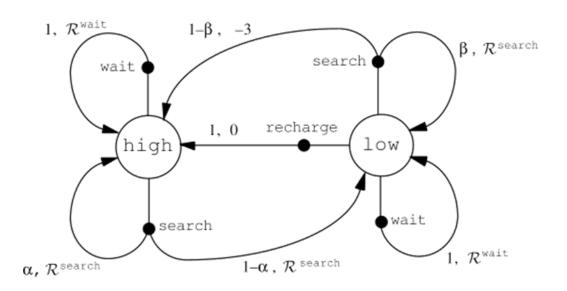
MDP – recycling robot

- :: Mobile robot that cleans up/collects cans
 - two internal states battery low or high,
 - three actions search for cans, remain stationary, go to home base to recharge,
 - positive reward for each can, negative reward when depleted needing rescue.
- :: Logical goal: collect as many cans as possible without any external aid.
- :: Technical goal: develop a policy that maximizes long term reward.



Sutton, Barto: Reinforcement Learning: An Introduction.

Recycling robot – DP solution



- Bellman equation: $V^\pi(s) = \sum_a \pi(s,a) \sum_{s'} P^a_{ss'} \left[R^a_{ss'} + \gamma V^\pi(s') \right]$
- Iteration equations for particular deterministic action (policy) choices high=h, wait=w, etc.:

$$\begin{split} \pi(h,w) &= 1: & V(h) = Q(h,w) = R^w + \gamma V(h) \\ \pi(h,s) &= 1: & V(h) = Q(h,s) = R^s + \gamma \left[\alpha V(h) + (1-\alpha)V(l)\right] \\ \pi(l,r) &= 1: & V(l) = Q(l,r) = \gamma V(h) \\ \pi(l,w) &= 1: & V(l) = Q(l,w) = R^w + \gamma V(l) \\ \pi(l,s) &= 1: & V(l) = Q(l,s) = \beta R^s - 3(1-\beta) + \gamma \left[\beta V(l) + (1-\beta)V(h)\right] \end{split}$$

Recycling robot – DP solution

- :: Parameters: $\alpha=0.95$, $\beta=0.9$, $R^s=2$, $R^w=1$, $\gamma=0.9$, $\varepsilon=0.01$
- :: Method: policy iteration (El cycle)
- 1. Randomly choose a deterministic policy:

$$\pi(low, wait) = \pi(high, wait) = 1$$
,

- 2. set V(low) = V(high) = 0,
- 3. use the iteration equations until V values get steady,
- 4. use evaluations in V to determine optimal actions:

$$V(s) = \max_a Q^{\pi}(s, a), \ \pi'(s) \approx \arg\max_a Q^{\pi}(s, a)$$

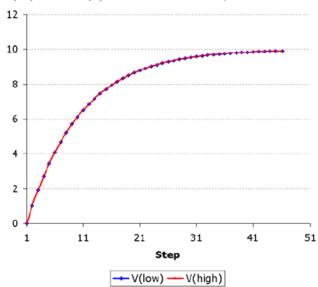
5. in the case of no policy change stop, go to step 2 otherwise.

Initialize:

$$\begin{split} \pi(l,w) &= \pi(h,w) = 1 \\ V(h) &= R^w + \gamma V(h), \ V(l) = R^w + \gamma V(l) \end{split}$$

Evaluation 1:

$$V(h)=V(l)=10$$
, 46 steps



Improvement 1:

$$\begin{split} \pi(l,s) &= \pi(h,s) = 1 \\ V(h) &= R^s + \gamma [\alpha V(h) + (1-\alpha)V(l)] \\ V(l) &= \beta R^s - 3(1-\beta) + \gamma [\beta V(l) + (1-\beta)V(h)] \end{split}$$

Evaluation 2:

$$V(h) = 19, V(l) = 16.8, 52 \text{ steps}$$

Improvement 2:

$$\pi(l,r) = \pi(h,s) = 1$$

$$V(h) = R^s + \gamma [\alpha V(h) + (1-\alpha)V(l)]$$

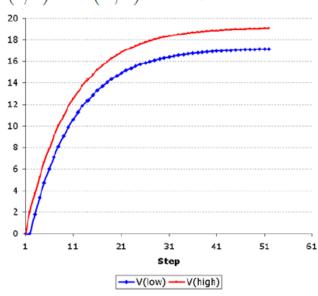
$$V(l) = \gamma V(h)$$

Evaluation 3:

$$V(h) = 19.1, V(l) = 17.1, 52 \text{ steps}$$

Improvement 3:

$$\pi(l,r)=\pi(h,s)=1\to \mathsf{STOP}$$



SUMMARY:

policy: low \rightarrow recharge, high \rightarrow search $V(h) = 19.1, \ V(l) = 17.1, \ 150$ iterations

Recycling robot – DP solution

- **::** Parameters: $\alpha = 0.95$, $\beta = 0.9$, $R^s = 2$, $R^w = 1$, $\gamma = 0.9$, $\varepsilon = 0.01$,
- :: Method: value iteration
- 1. Set V(low) = V(high) = 0.
- 2. Use evaluations in V to determine optimal actions:

$$V(s) = max_aQ^{\pi}(s, a), \ \pi'(s) \approx \arg\max_a Q^{\pi}(s, a).$$

- 3. apply once the current best actions and recompute values in V(s),
- 4. in the case of no state value change larger than ε stop, go to step 2 otherwise.

http://cw.felk.cvut.cz

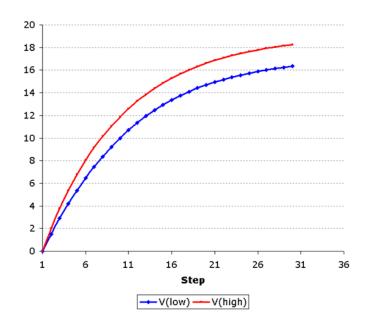
Recycling robot – DP solution

step 0: V(l) = V(h) = 0, $\pi(l, s) = \pi(h, s) = 1$

step 1: V(l) = 1.5, V(h) = 2, $\pi(l, s) = \pi(h, s) = 1$

step 9: V(l) = 9.2, V(h) = 11.1, $\pi(l,r) = \pi(h,s) = 1$, policy change

step 52: V(l)=17.1, V(h)=19.1, $\pi(l,r)=\pi(h,s)=1$, all V perturbations smaller than ε , STOP



SUMMARY:

policy: low \rightarrow recharge, high \rightarrow search V(h)=19.1, V(l)=17.1, 52 iterations

Why does value iteration certainly converge?

 $lue{}$ contraction c(x)

$$-\exists k \ \forall x_1 x_2 : d(c(x_1) - c(x_2)) \le k d(x_1 - x_2),$$

- -d is a metric (distance function), constant $0 \le k < 1$,
- fixed point b_c : $c(b_c) = b_c$, $c(c(\ldots c(x))) = b_c$,
- each contraction has only one fixed point,
- example: $c(x) = \frac{x}{2}$, d(x, y) = |x y|, $b_c = 0$,
- value iteration equation

$$-V_{i+1}(s) = \max_{a} \sum_{s'} P_{ss'}^{a} [R_{ss'}^{a} + \gamma V_{i}(s')]$$

- can be simplified as $V_{i+1} \leftarrow BV_i$,
- as d we employ max norm $||V|| = max_s|V(s)|$,
- the above defined B is wrt || || contraction (without proof)
 - $-||BV_i BV_i'|| \le \gamma ||V_i V_i'||.$

■ □ □ □ □ □ □ □ □ □ □ □ http://cw.felk.cvut.cz

Why does value iteration certainly converge?

- lacktriangle provided that B is a contraction wrt $||\ ||$
 - for any pair of state utility vectors it holds

$$||BV_i - BV_i'|| \le \gamma ||V_i - V_i'|| \Rightarrow ||V_{i+1} - V_i|| \le \gamma ||V_i - V_{i-1}||,$$

- * value iteration converges for $\gamma < 1$,
- the fixed point is the actual state utility vector V^st
 - $* ||BV_i V^*|| \le \gamma ||V_i V^*||,$
 - * converges exponentially with γ .

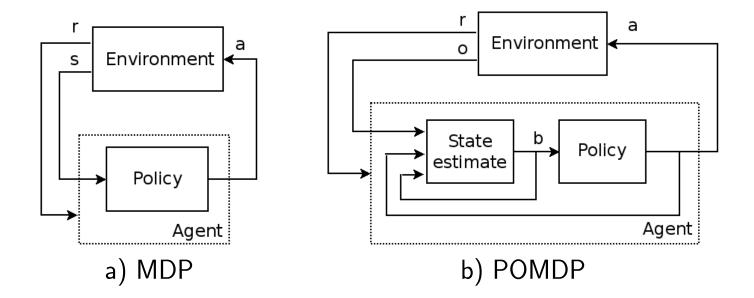
Partial observability

- MDPs work with the assumption of complete observability
 - assumption that the actual state s is always known is strong and often non realistic,
- partially observable Markov decision process (POMDP)
 - MDP generalization, states can be guessed from observations coupled with them,
 - $POMDP = \{S, A, P, R, O, \Omega\},\$
 - * O is a set of observations,
 - * Ω is a sensoric model defines conditional observation probs, $\Omega^a_{s'o} = Pr\{o_{t+1} = o \mid s_{t+1} = s', a_t = a\}$
 - instead of s agent internally keeps prob distribution b (belief) across states
 - * we perform a in unknown s (knowing b(s) only) and observe o then $b'(s') = \eta \ \Omega^a_{s'o} \sum_{s \in S} P^a_{ss'} b(s)$,
 - * η is a normalization constant such that $\sum_{s' \in S} b'(s') = 1$.

■ □ □ □ □ □ □ □ □ □ lattp://cw.felk.cvut.cz

Partial observability

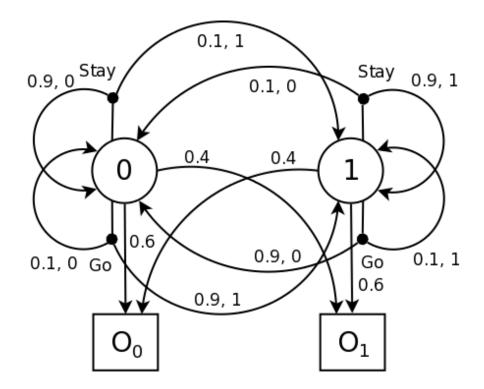
- consequences of partial observability
 - it makes no sense to concern policy $\pi: S \to A$, shift to $\pi: B \to A$,
 - commonly computationally intractable, approximate solutions only
 - * for n states, b is an n-dimensional real vector,
 - * PSPACE-hard, worse than NP.



Partial observability – example

::
$$S = \{0, 1\}$$
, $A = \{Stay, Go\}$, $O = \{o_0, o_1\}$, $P(s_{t+1} = x | s_t = x, Stay) = .9$, $P(s_{t+1} = x | s_t = x, Go) = .1$, $Pr(o_0|0) = .6$, $Pr(o_1|1) = .6$, $R(0) = 0$, $R(1) = 1$, $\gamma = 1$,

:: Goal: determine $V^*(b)$ (the main step for finding $a = \pi^*(b)$)



■ □ □ □ □ □ □ □ http://cw.felk.cvut.cz

Partial observability - example

- lacksquare b space is $1{
 m D} o V(b)$ is a real function of one variable,
- assumed that in near points of b space will be
 - very similar utility and identical policy,
- policy is equivalent to a conditional plan dependent on future observations
 - example, plan of length 2: [Stay], if $O = o_0$ then Go else Stay,
- let $\alpha_p(s)$ be the utility of plan p starting from state s
 - then the same plan executed from b has the utility

$$\sum_{s} b(s)\alpha_p(s) = b \cdot \alpha_p$$

- $-\alpha_p$ is a linear function of b (hyperplane for complex spaces),
- optimal policy follows the plan with highest expected utility

$$V(b) = V^{\pi^*}(b) = \max_{p} b \cdot \alpha_p$$

-V(b) is a partially linear function of b.

□ □ □ □ □ □ http://cw.felk.cvut.cz

Partial observability - example

:: there are two plans of length 1, for them it holds

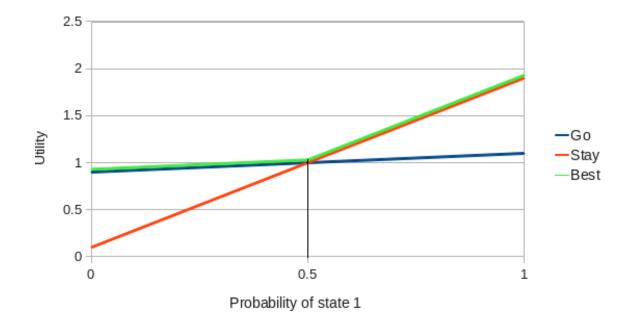
$$\alpha_{[Stay]}(0) = R(0) + \gamma(.9R(0) + .1R(1)) = 0.1$$

$$\alpha_{[Stay]}(1) = R(1) + \gamma(.9R(1) + .1R(0)) = 1.9$$

$$\alpha_{[Go]}(0) = R(0) + \gamma(.9R(1) + .1R(0)) = 0.9$$

$$\alpha_{[Go]}(1) = R(0) + \gamma(.9R(0) + .1R(1)) = 1.1$$

$$\alpha_{[Stay]}(b(1) = 0.3) = .7\alpha_{[Stay]}(0) + .3\alpha_{[Stay]}(1) = 0.64$$



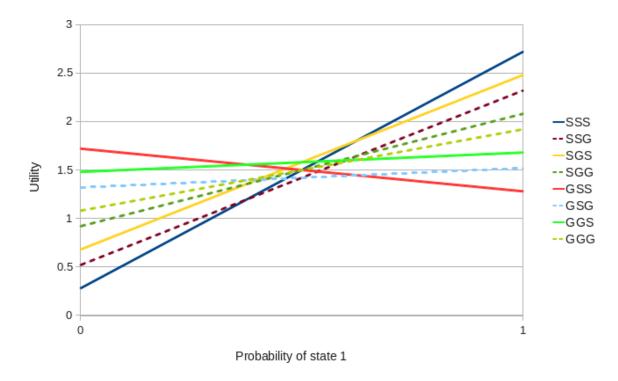
■ □ □ □ □ http://cw.felk.cvut.cz

Partial observability – example

:: there are 8 plans of length 2 (4 dotted plans strictly dominated by other plans)

 $[Stay, if O = o_0 then Go else Stay]$ encoded as [SGS]

$$\begin{array}{lll} \alpha_{[SSS]}(0) &= R(0) + \gamma(.9\alpha_{[S]}(0) + .1\alpha_{[S]}(1)) &= 0.28 \\ \alpha_{[SSS]}(1) &= R(1) + \gamma(.9\alpha_{[S]}(1) + .1\alpha_{[S]}(0)) &= 2.72 \\ \alpha_{[SGS]}(0) &= R(0) + \gamma(.9(.6\alpha_{[G]}(0) + .4\alpha_{[S]}(0)) + .1(0.4\alpha_{[G]}(1) + .6\alpha_{[S]}(1)) &= 0.68 \\ \alpha_{[SGS]}(1) &= R(1) + \gamma(.9(.4\alpha_{[G]}(1) + .6\alpha_{[S]}(1)) + .1(0.6\alpha_{[G]}(0) + .4\alpha_{[S]}(0)) &= 2.48 \end{array}$$



■ □ □ □ http://cw.felk.cvut.cz

Partial observability – plans of length d

lacktriangle generalized formula to evaluate plans of length d

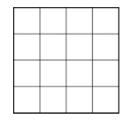
$$\alpha_p(s) = R(s) + \gamma \left(\sum_{s'} P_{ss'}^a \sum_o \Omega_{s'o}^a \alpha_{p.o}(s') \right)$$

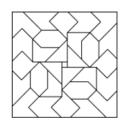
- recursive formula,
- plan p with length d, p.o is its subplan with length d-1 without observation o,
- pruning of dominated plans helps,
- still, worst-case time complexity $\mathcal{O}(|A|^{|O|^{d-1}})$.

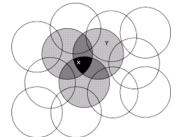
□ □ □ http://cw.felk.cvut.cz

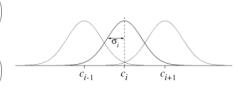
Generalization and approximation

- up to know trivial demonstrations with limited state and action sets,
- for large state spaces, necessary approximation of value functions
 - learning from examples can be employed,
 - generalization assumes continuous and "reasonable" value functions,
 - states characterized by a parameter/attribute vector ϕ_s ,









- linear approximation with parameters heta(t): $V_t(s) = heta_t^T \phi_s = \sum_i heta_t(i) \phi_s(i)$,
- non linear optimization by a neural network,
- error function to be minimized: $MSE(\theta_t) = \sum_s P_s \left[V_t^{\pi}(s) V_t(s)\right]^2$, P_s distribution of state weights, $V_t^{\pi}(s)$ real value, $V_t(s)$ its approximation,
- regression, gradient optimization, back propagation etc.

Summary

- MDPs allow to search stochastic state spaces
 - computational complexity is increased due to stochasticity,
- problem solving = policy finding
 - policy assigns each state the optimal action, can be stochastic too,
 - basic approaches are policy iteration and value iteration,
 - other choices can be modified iteration approaches, possibly asynchronous,
- techniques similar to MDP
 - POMDP for partially observable environments,
 - RL for environments with unknown models,
- applications
 - agent technology in general, robot control and path planning in robotics,
 - network optimization in telecommunication, game playing.

■ □ http://cw.felk.cvut.cz

Recommended reading, lecture resources

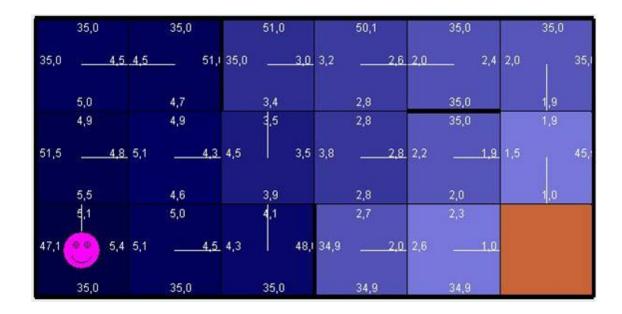
:: Reading

- Russell, Norvig: Al: A Modern Approach, Making Complex Decisions
 - chapter 17,
 - online on Google books:
 http://books.google.com/books?id=8jZBksh-bUMC,
- Sutton, Barto: Reinforcement Learning: An Introduction
 - MIT Press, Cambridge, 1998,
 - http://www.cs.ualberta.ca/~sutton/book/the-book.html.

http://cw.felk.cvut.cz

Demo

- RL simulator
 - find the optimal path in a maze
 - implemented in Java
 - http://www.cs.cmu.edu/~awm/rlsim/



©Kelkar, Mehta: Robotics Institute, Carnegie Mellon University

Http://cw.felk.cvut.cz