
Predicate logic, situation calculus

Jǐŕı Kléma

Department of Computer Science,
Czech Technical University in Prague

http://cw.felk.cvut.cz/doku.php/courses/a4b33zui/start

pLogic as a knowledge representation tool

� What convenient characteristics has propositional logic shown?

− declarative nature

∗ knowledge and reasoning naturally separated,

∗ procedural languages – miss a general inference mechanism,

− ability to represent uncertain information

∗ with the aid of disjunction (and negation),

∗ “Tomorrow afternoon I will go to the cinema or do sports.”

∗ cannot be taken for granted (see databases, data structures).

− compositional and context-independent language

∗ sentence semantics is a function of semantics of its parts,

∗ semantics of A ∧B related to validity of A and B,

∗ unlike natural language: “She saw it then.”

� �

pPredicate logic

� Propositional logic with limited expressivity

− problems: no mechanism for generalization and scaling (see wumpus world)

∗ All the rooms that adjoining wumpus’ room stench.

∗ W1,2 ⇒ (S1,1 ∧ S2,2 ∧ S1,3), W2,1 ⇒ (S1,1 ∧ S2,2 ∧ S3,1) etc.

− also relationships between objects, time, syllogisms,

� predicate logic introduces objects and relations among them

− inspired by the strength of natural language, but preserves unambiguity.

� first-order predicate logic (first-order logic, FOL)

− intentional restrictions in expressive power:

∗ relations cannot be seen as objects,

∗ general assertions about relations not allowed,

� higher-order logic systems

− higher expressivity, more complex theory and typically lower efficiency.

� �

pFOL – syntax, language elements

� constants refer to particular objects

− peter, paul, scotland, ai-foundations (Prolog notation),

� predicates represent object properties and relationships among objects

− man(peter), father(peter,paul), lives(peter,scotland),

� functions as indirect object references

− father(peter), lives(peter) (functions can replace predicates and vice versa),

� variables refer to sets of objects,

− X, Y, Z (Prolog notation: start with capitals),

� quantifiers determine variable interpretation

− ∀ – for any substitution of object for variable the sentence holds,

− ∃ – we can find an object for which the sentence holds,

− ∀ X ∃ Y teaches(X,Y) – each course has at least one teacher,

� logical operators and parentheses – identical with propositional logic.

� �

pFOL – syntax

� Syntax – definition of correct/well-formed formulae

− term is each constant, variable or function applied to them

∗ refers to an object, nothing else cannot be term (i.e., predicates are not
terms),

− well-formed formulas (WFFs) are

∗ atomic formulas p(t1, . . . , tn),

∗ where p is a predicate symbol and ti terms,

∗ formulas ¬p and p⇒ q, provided that p and q are WFFs,

∗ formula ∀Xp, provided that X is a variable and p WFF.

� Syntax, notes

− WFF may contain free variables (not quantified)

∗ this may cause difficulties when evaluating WFFs,

∗ sentence is a WFF if all the variables are bound (also closed formula),

− the logical operators ∨,∧,⇔ and quantifier ∃ are derived.

� �

pFOL – semantics, interpretation

� How to determine the truth value of FOL formulas/sentences?

− given by context, but ...

� can we check validity for all interpretations?

− we work with large or infinite domains (e.g., real numbers),

− as a consequence, an infinite number of models may exist.

� Interpretation defines:

− objects, predicates and functions corresponding to symbols including their
meaning

∗ domain ∆ = {Jǐŕı Kléma, Michal Pěchouček, STM Y33ZUI, OI A4B33ZUI},
∗ constant interpretation: lC : C → ∆,

jirka refers to Jǐŕı Kléma, zui1 to course STM Y33ZUI, etc.

∗ predicate interpretation (arity n): lP : P → P (∆n),
teaches refers to teacher-course relationship,
teaches/2 = {{jirka,zui1},{michal,zui2}}.

� �

pFOL – semantics, interpretation

� Is formula ∀X(p(X) ∨ q(X))⇒ (∀Xp(X) ∨ ∀Xq(X)) tautology?

− to disprove we only need to find an interpretation for which is the formula
false,

− e.g., interpretation ∆={a,b}, pD = {a}, qD = {b},
− the left hand side of the implication holds:

∗ X=a: p(a) ∨ q(a) = T ∨ F = T , X=b: p(b) ∨ q(b) = F ∨ T = T ,

− the right hand side does not hold:

∗ X=b: p(b) = F , ∀Xp(X) = F similarly for X=a and ∀Xq(X) = F .

� �

pInference in FOL – unification

� How to substitute for free variables or terms when unifying terms?

− KB1: Jirka knows Filip. Vaclav is known by everybody. Everybody knows
his/hers mother.

Monika knows someone.

− question: Who knows Jirka?

− return all the correct substitutions for the free variable considering KB,

− KB2: knows(jirka, filip), ∀Y knows(Y, vaclav), ∀Zknows(Z,mother(Z)),
∃Wknows(monika,W),

− KB3: knows(jirka, filip), knows(Y, vaclav), knows(Z,mother(Z)),
knows(monika, s1),

− query: ?knows(jirka,X)

− substitution: θ1 = {X|filip}, θ2 = {jirka|Y,X|vaclav},
θ3 = {jirka|Z,X|mother(jirka)},

− we search for the most general substitution to keep the terms unifiable.

� �

pInference in FOL – unification

� Substitution and unification needed for any inference

− see generalized modus ponens

A,A⇒ B

B
→ p′1, . . . , p

′
n, (p1 ∧ p2 ∧ · · · ∧ pn ⇒ q)

Subst(θ, q)

Subst(θ, p′i) = Subst(θ, pi)

− When two persons know each other, they greet each other.

∗ ∀X, Y (knows(X, Y)⇒ greets(X, Y)).,

− MP application on KB (KB ` α)

∗ greets(jirka, filip), greets(Y, vaclav),

∗ greets(U,mother(U)), greets(monika, s1).

� �

pResolution in FOL – conversion into CNF (1)

� More difficult than in propositional logic – variables and quantifiers,

� E.g.: All Romans who know Marcus either hate Caesar or think that anyone
who hates anyone is crazy.

∀X
[
(roman(X) ∧ knows(X,markus))⇒
(hates(X, caesar) ∨ ∀Y ∃Z(hates(Y, Z)⇒ thinkscrazy(X, Y)))

]
� general steps of the conversion:

1. eliminate implications

∀X
[
¬(roman(X) ∧ knows(X,markus)) ∨ (hates(X, caesar)∨

∨ ∀Y ¬(∃Zhates(Y, Z)) ∨ thinkscrazy(X, Y)))
]

2. move negations into atomic formulae, reduce their scope

∀X
[
¬roman(X) ∨ ¬knows(X,markus) ∨ hates(X, caesar)∨

∨ ∀Y ∀Z(¬hates(Y, Z) ∨ thinkscrazy(X, Y))
]

� �

pResolution in FOL – conversion into CNF (2)

4. skolemization – eliminate existential quantifiers

− no occurrence, let us try: ∀X∃Y father(Y,X)→ ∀Xfather(s1(X), X)

− s1 is in the given context a Skolem function (assigns a father to each
instantiation of X),

5. bind each quantifier to a unique variable

∀Xroman(X) ∨ ∀Xgreek(X)→ ∀Xroman(X) ∨ ∀Y greek(Y)

6. move universal quantifiers to the left of formula – prenex form,

∀X, Y, Z
[
¬roman(X) ∨ ¬knows(X,markus)∨
hates(X, caesar) ∨ ¬hates(Y, Z) ∨ thinkscrazy(X, Y)

]
7. distribute disjunctions inwards over conjunctions

− apply distributive laws a ∨ (b ∧ c)→ (a ∨ b) ∧ (a ∨ c)
8. drop the prefix = all universal quantifiers

¬roman(X) ∨ ¬knows(X,markus)∨
hates(X, caesar) ∨ ¬hates(Y, Z) ∨ thinkscrazy(X, Y)

� �

pMotivation example 3 – Does Zuzana lay eggs?

:: If I tell you that:

� (S1) Platypus and echidna are the only mammals that lay eggs.

� (S2) Only birds and mammals are warm-blooded.

� (S3) Zuzana, my armadillo, is warm-blooded and has no feathers.

� (S4) Every bird has feathers.

:: and ask: (D) Does Zuzana lay eggs?

� �

pMotivation example 3 – Does Zuzana lay eggs?

:: If I tell you that:

� (S1) Platypus and echidna are the only mammals that lay eggs.

� (S2) Only birds and mammals are warm-blooded.

� (S3) Zuzana, my armadillo, is warm-blooded and has no feathers.

� (S4) Every bird has feathers.

:: and ask: (D) Does Zuzana lay eggs?

:: Inference in natural language:

� Zuzana has no feathers and thus it is not a bird.

� Zuzana is warm-blooded and it is not a bird, it must be a mammal.

� Zuzana is mammal and armadillo, not platypus/echidna, it cannot lay eggs.

:: How to implement automatically? Strings difficult for inference ...

� �

pDoes Zuzana lay eggs? – resolution proof (1)

� (S1) ∀X(mammal(X) ∧ eggs(X)⇒ echidna(X) ∨ platypus(X))

� (S2) ∀X(warm blooded(X)⇒ bird(X) ∨mammal(X))

� (S3) armadillo(zuzana)∧warm blooded(zuzana)∧¬feathers(zuzana)

� (S4) ∀X(bird(X)⇒ feathers(X))

� (F) ∀X(armadillo(X)⇒ ¬(platypus(X) ∨ echidna(X)))

� (D) eggs(zuzana)

� �

pDoes Zuzana lay eggs? – resolution proof (1)

� (S1) ∀X(mammal(X) ∧ eggs(X)⇒ echidna(X) ∨ platypus(X))

� (S2) ∀X(warm blooded(X)⇒ bird(X) ∨mammal(X))

� (S3) armadillo(zuzana)∧warm blooded(zuzana)∧¬feathers(zuzana)

� (S4) ∀X(bird(X)⇒ feathers(X))

� (F) ∀X(armadillo(X)⇒ ¬(platypus(X) ∨ echidna(X)))

� (D) eggs(zuzana)

� (C1) ¬mammal(X) ∨ ¬eggs(X) ∨ echidna(X) ∨ platypus(X)

� (C2) ¬warm blooded(X) ∨ bird(X) ∨mammal(X)

� (C3,4,5) armadillo(zuzana)∧warmblooded(zuzana)∧¬feathers(zuzana)

� (C6) ¬bird(X) ∨ feathers(X)

� (C7,8) (¬armadillo(X)∨¬platypus(X))∧(¬armadillo(X)∨¬echidna(X))

� (C9) eggs(zuzana)

� �

pDoes Zuzana lay eggs? – resolution proof (2)

:: Resolution proof tree:

:: The assertion that Zuzana lays eggs contradicts the theory.
:: Zuzana does not lay eggs.

� �

pFOL in wumpus world

� FOL is expressive enough to describe wumpus world and for inference in it,

� environment description

− adjacency of cave rooms

∀X, Y,A,B
[
adjacent([X, Y], [A,B])⇔

[A,B] ∈ {[X + 1, Y], [X − 1, Y], [X, Y + 1], [X, Y − 1]}
]

− diagnostic rules

∗ infer cause from effect – for breeze:
∀S (breeze(S)⇒ ∃R (adjacent(R, S) ∧ pit(R))),
∀S (¬breeze(S)⇒ ¬∃R (adjacent(R, S) ∧ pit(R))),

− causal rules

∗ infer effect from cause – for cave rooms:
∀R (pit(R)⇒ ∀S (adjacent(R, S)⇒ breeze(S))),
∀S [∀R (adjacent(R, S)⇒ ¬pit(R))⇒ ¬breeze(S)],

− the above written diagnostic and causal rules equivalent to formula:

∀S (breeze(S)⇔ ∃R (adjacent(R, S) ∧ pit(R))) .

� �

pFOL in wumpus world

� it turns out more difficult to represent perception, reflexes and environment
modifications

− perception (T denotes time, resp. the number of step)

∀T, S,B (sensors([S,B, glitter], T)⇒ glitter(T))

− reflex

∀T (glitter(T))⇒ best action(grab, T))

� �

pKeeping track of change

� facts hold in particular situations, rather than eternally,

� situation calculus is one way to represent change in FOL

− predicates either rigid (eternal) or fluent (changing)

∗ with or without possibility to change during time,

− adds a situation argument to each fluent predicate

∗ e.g. holds(gold, now), term now denotes a situation,

− rigid predicates e.g. pit(R), adjacent(R, S),

− situations connected by the result function,

∗ s is a situation, result(a, s) is a situation too,

∗ result(a, s) reached by doing action a in situation s.

� �

pKeeping track of change

Russell, Norvig: AIMA, 3rd edition, 2010.

� �

pDescription and application of actions

� “effect” axiom – defines changes corresponding to the outcome of action

− ∀S withGold(S)⇒ holds(gold, result(grab, S))

� “frame” axiom – defines all that remains the same

− ∀S hasArrow(S)⇒ hasArrow(result(grab, S))

� frame problem: how to cope with the unchanged facts smartly

(a) representational

avoid the frame axioms in the local world,

F fluent predicates, A actions → O(FA) frame axioms,

(b) inferential

avoid copying of unchanged to keep the state information complete,

� �

pDescription and application of actions

� qualification problem

− precise description of real actions requires infinite care,

− what if gold is slippery or nailed to the ground or . . . ?

� ramification problem

− real actions have many secondary/hidden consequences,

− agent moves with all that he holds,

− when the gold is dusty, the dust moves with it,

− gloves needed to grab get worn out.

� �

pDescription and application of actions

� “successor-state” axioms diminish the representational frame problem,

� each axiom attached to one predicate (instead of an action)

P holds after execution of action ⇐ [action caused P

∨ P held before and action did not touch P]

� for gold handling

∀A, S holds(gold, result(A, S))⇐
[(A = grab∧withGold(S))∨(holds(gold, S)∧A 6= release)]

� we obtain F axioms

− the total number of literals is O(AE)
(E is the number of effects per action),

� alternative notation for holds with frame and effect axioms?

� �

pFrame problem and (human) brain

� Sherlock Holmes and the dog that did not bark

Is there any point to which you would wish to draw my attention?

To the curious incident of the dog in the night-time.

The dog did nothing in the night-time.

That was the curious incident, remarked Sherlock Holmes.

� What can human brain and memory do?

− even human memory does not store everything,

− but often it pretends so,

− people do not realize the simplification tricks,

− focus on action and its results,

− frame gets reconstructed,

− that is why people have difficulties to notice the
events, that did not happen.

� �

pFrame problem and (human) brain

� �

pWumpus: formal and efficient solution, comparison

� formal solution

− modular knowledge,

− extendable,

− easy to maintain,

� efficient solution

− minimizes the number of
predicates,

− the ultimate case is 1,

− implicit search space pruning,

� demo.

� �

pMaking plans

� initial facts in the knowledge base

− position(agent, [1, 1], s0), position(gold, [1, 2], s0),

� query:

− Ask(KB, ∃S holds(gold, S)),

− i.e., in which situation will the agent hold gold?

� answer:

− {S/result(grab, result(go forward, s0))},
− i.e., go forward and then grab the gold,

� assumptions:

− agent is interested only in plans starting in s0,

− s0 is the only situation described in KB.

� �

pMaking plans: a better way

� make plans in the form of sequence of actions [a1, a2, . . . , an],

� planResult(P, S) is a result of execution of plan P in state S

− projection task – situation after application of sequence of actions?
position(agent, [1, 1], s0) ∧ position(gold, [1, 2], s0) ∧ ¬holds(O, s0)
position(gold, [1, 1], result([go([1, 1], [1, 2]), grab(gold), go([1, 2], [1, 1])], s0))

− planning task – which sequence of actions leads to the desired situations?

� query Ask(KB, ∃P holds(gold, planResult(P, s0)))

− has the solution {P/[go forward, grab]},
� definition of planResult in terms of result

− ∀S planResult([], S) = S,

− ∀A,P, S planResult([A|P], S) = planResult(P, result(A, S)),

� motivation for planning as a discipline

− specialized planners more efficient than general reasoning/search.

� �

pWhy specialized planners

� Find a suitable sequence of actions (a path) in graph below

Russell, Norvig: Artificial Intelligence: A Modern Approach.

� �

pSituation calculus: example

� Let us have a logical KB defining distances between Czech cities:

− dist(praha, brno, 209), dist(brno, zlin, 96),

� agent state determined by its position and the amount of gasoline in the tank

− position(City, State), tank(Gas, State),

− let fuel consumption be 6l/100km,

� define the predicate journeyLength(P,D)

− e.g. journeyLength([praha, brno, zlin], 305),

� define an effect axiom which specifies consequences of action takeJourney(P)

− consider the change of position and the amount of gasoline in the tank,

� do we need any frame axioms?

� �

pSituation calculus: example

� recursive definition of journeyLength(P,D):

∀X journeyLength([X], 0)

∀X, Y, L,D1, D2 dist(X, Y,D1) ∧ journeyLength([Y |L], D2) ⇒
journeyLength([X, Y |L], D1 + D2)

� the effects of action takeJourney(P) arrive only when its assumptions are
met

∀X, Y,B,D, P, S position(X,S) ∧ journeyLength(P,D)∧
tank(B,S) ∧ (B > D ∗ 6/100) ∧ first(P,X) ∧ last(P, Y)⇒

position(Y, result(takeJourney(P), S))∧
tank(B −D ∗ 6/100, result(takeJourney(P), S))

� action takeJourney(P) changes both the fluent predicates

− frame axioms not needed, needed e.g. for a hypothetical predicate:

roadworthyCar(Roadworthy, State).

� �

pSummary

� In a dynamic world it is more difficult to derive and maintain knowledge

− general bottlenecks – frame and ramification problems,

− even human memory reconstructs the frame only roughly,

− representation of fluent worlds in FOL → situation calculus,

� another KR systems

− production systems,

� practical utilization

− e.g. semantic web,

� where you can learn more?

− A4M33RZN – Advanced methods of knowledge representation,

− A4M33AU – Automated reasoning.

� �

pRecommended reading, lecture resources

:: Reading

� Russel, Norvig: AI: A Modern Approach, Logical Agents, chapter 7

− representation for intelligent agents,

− available in pdf – http://aima.cs.berkeley.edu/newchap07.pdf.

� Mǎŕık a kol. Umělá inteligence 1

− kapitola Reprezentace znalost́ı

∗ základńı formáty, logika, sémantické śıtě, rámce,

− kapitola Řešeńı úloh a dokazováńı vět

∗ predikátová logika a důkazńı prosťredky,

� Mǎŕık a kol. Umělá inteligence 2

− kapitola Znalostńı inženýrstv́ı

∗ praktická, znalostńı systémy v konkrétńıch aplikaćıch.

� �

