
Two-player Games – Part 2

ZUI 2018/2019

Branislav Bošanský
bosansky@fel.cvut.cz

Previously … on Two-Player Games

 minimax search

 alpha-beta pruning

 extensive-form games

… and now

 Negascout

 Monte Carlo Tree Search

 Game Theory

 function alphabeta(node, depth, α, β, Player)
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, alphabeta(child, depth-1, α, β, switch(Player)))

 if (β≤α) break

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, switch(Player)))

 if (β≤α) break

 return β

Alpha-Beta Pruning

 function negamax(node, depth, α, β, Player)
 if (depth = 0 or node is a terminal node) return the heuristic value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, -negamax(child, depth-1, -β, -α, switch(Player)))

 if (β≤α) break

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player)))

 if (β≤α) break

 return β

Negamax

 [α, β] interval – window

 alphabeta initialization [-∞, +∞]

Aspiration Search

 [α, β] interval – window

 alphabeta initialization [-∞, +∞]

 what if we use [α0, β0]

 x = alphabeta(node, depth, α0, β0,player)

 α0 ≤ x ≤ β0 - we found a solution

 x ≤ α0 - failing low (run again with [-∞, x])

 x ≥ β0 - failing high (run again with [x, +∞])

Aspiration Search

 enhancement of alpha-beta algorithm

 assume some heuristic that determines move ordering

 the algorithm assumes that the first action is the best one

 after evaluating the first action, the algorithm checks whether the
remaining actions are worse

 the “test” is performed via null-window search

NegaScout – Main Idea

 what we really need at that moment is a bound (not the
precise value)

Scout –Test

 what we really need at that moment is a bound (not the
precise value)

 Remember Aspiration Search?

 x ≤ α0 - failing low (we know, that solution is ≤ x)

 x ≥ β0 - failing high (we know, that solution is ≥ x)

 What if we use a null-window [α, α+1] (or [α,α])?

 we obtain a bound …

Scout –Test

function negascout(node, depth, α, β, Player)

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := -negascout(child, depth-1, -b, -α, switch(Player)))

 if ((α < v) and (child is not the first child))

 v := -negascout(child, depth-1, -β, -α, switch(Player)))

 α := max(α, v)

 if (β≤α) break

 b := α + 1

 return α

NegaScout

Alpha-Beta vs. Negascout

MAX

MAX

MIN

4 2 0 5 7 2 3 0

[-∞, +∞]

[-∞, +∞]

[-∞, +∞]

[4, +∞]

[-∞, 4]

[-∞, 4]
[0, 4][5, 4]

[4, +∞]

[4, +∞]

[4, +∞][7, +∞]

[4, 7]

[4, 7]4 5

4

4

7 3

3 [4, 3]

Scout idea and the change of intervals are demonstrated, the values are not multiplied by -1 in this example.

Alpha-Beta vs. Negascout

MAX

MAX

MIN

4 2 0 5 7 2 3 0

[4, +∞]

[-∞, 4]

[3, 4]

[5, 4]

[4, +∞]

[4, 5]

[4, 5]
[7, 5] [4, 5]4 5

4

4

7 3

3

X

Scout idea and the change of intervals are demonstrated, the values are not multiplied by -1 in this example.

Alpha-Beta vs. Negascout

MAX

MAX

MIN

4 2 0 5 7 2 9 0

[4, +∞]

[-∞, 4]

[3, 4]

[5, 4]

[4, +∞]

[4, 5]

[4, 5]
[7, 5] [4, 5]4 5

4

7

7 9

7

Re-search needed

Scout idea and the change of intervals are demonstrated, the values are not multiplied by -1 in this example.

 also termed Principal Variation Search (PVS)

 dominates alpha-beta

 never evaluates more different nodes than alpha-beta

 can evaluate some nodes more than once

 depends on the move ordering

 can benefit from transposition tables (cache)

 generally 10-20% faster compared to alpha-beta

NegaScout

 Memory-enhanced Test Driver

 Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial Intelligence,
Volume 87, Issues 1-2, November 1996, Pages 255-293

MTD

 more complex games

 games with uncertainty

 chance (Nature player), calculating expected utilities

Further Topics

Other Games - Chance nodes

Towards more scalable algorithms …

 we do not want to evaluate all paths equally

 we want to search more deeply (thoroughly) more prospect
variants

 we do not want to spend time with bad variants

Towards more scalable algorithms …

 let’s start from the beginning

 what if we estimate that Qd3 is (right now) a better move than Qe2

 there is a dilemma

 either we want to get a better further plan (and thus also an
estimate) of the better move (Qd3)

 or we want to find a better continuation for the worse move (Qe2) –
maybe there is one and we’ve just missed it before

Qd3 Qe2

Exploration vs. Exploitation

Monte Carlo Methods

 what if we do not have evaluation function?

 we can estimate the value of the position with a Monte Carlo method

 from a given position we perform random samples until the terminal
position of the game

 the more samples we perform, the better estimate of the true value
we get

Monte Carlo Tree Search

putting it all together

Monte Carlo Tree Search

exploration / exploitation Monte Carlo simulation

Exploration vs. Exploitation

 bandit theory

 UCB – upper confidence bounds

 argmax𝑣′∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣)
𝑄(𝑣′)

𝑁(𝑣′)
+ 𝑐

2ln 𝑁(𝑣)

𝑁(𝑣′)

Qd3 Qe2

Exploration vs. Exploitation

 bandit theory

 UCB – upper confidence bounds

 argmax𝑣′∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣)
𝑄(𝑣′)

𝑁(𝑣′)
+ 𝑐

2ln 𝑁(𝑣)

𝑁(𝑣′)

Qd3 Qe2

average utility exploration factor

Exploration vs. Exploitation

 many existing variants for the bandit problem

 UCB1

 EXP3

 UCB-V

 …

 can have a very different performance in practice

MCTS and Parameter Tuning

 Different bandit methods can have different parameters

 Practical performance depends on the correct choice

 The choice is domain dependent

 The choice is opponent dependent (!)

MCTS and Parameter Tuning

Heuristics and MCTS

 there are several points where MCTS can benefit from
domain-specific heuristic

 progressive unpruning/widening

 standard MCTS adds all children

 heavy rollout simulations

 simulations do not have to be completely random

 tradeoff between bias and complexity vs. speed

 using evaluation function instead of simulation

 often combined with previous

Parallelization of MCTS

Variants of MCTS

 there are many improvements and variants of MCTS

 (see ``A Survey of Monte Carlo Tree Search Methods’’ by Browne et
al. 2012)

 one shot simultaneous-move games

 Rock-Paper-Scissors

 sequential games with simultaneous moves

 Tron, many card games, …

 alpha-beta algorithm can be generalized

 games with imperfect information

Games and Game Theory

 Game theory has many possible applications

 general algorithms for solving dynamic games with imperfect
information

 implementation of domain independent algorithms

Games and Game Theory in AIC

attacks

protects

Games and Game Theory in AIC

two-player games with
perfect information

Games and Game Theory (in AIC)

two-player games with
perfect information

two-player games with
imperfect information

games with infinite
horizon (stochastic games)

Game theory for
adversarial machine
learning (robust classifiers)

Multi-player games

Playing against human
opponents (bounded
rationality)

Games and Game Theory (in AIC)

two-player games with
perfect information

two-player games with
imperfect information

games with infinite
horizon (stochastic games)

Game theory for
adversarial machine
learning (robust classifiers)

B4M36MAS – Multiagent Systems

XEP36AGT – Algorithmic Game Theory

Multi-player games

Playing against human
opponents (bounded
rationality)

Bachelor’s project, Diploma thesis, … http://aic.fel.cvut.cz/gametheory

