

Two-player Games – Part 2

ZUI 2018/2019

Branislav Bošanský

bosansky@fel.cvut.cz

Previously ... on Two-Player Games

- minimax search
- alpha-beta pruning
- extensive-form games

... and now

- Negascout
- Monte Carlo Tree Search
- Game Theory

Alpha-Beta Pruning

return β

function alphabeta(node, depth, α , β , Player) if (depth = 0 or node is a terminal node) return evaluation value of node if (Player = MaxPlayer) for each child of node $\alpha := \max(\alpha, \text{ alphabeta(child, depth-1, } \alpha, \beta, \text{ switch(Player) }))$ **if** (β ≤ α) break return α else for each child of node $\beta := \min(\beta, \text{ alphabeta(child, depth-1, } \alpha, \beta, \text{ switch(Player) }))$ **if** (β ≤ α) break

Negamax

- function negamax(node, depth, α, β, Player)
- **if** (depth = 0 or node is a terminal node) **return** the heuristic value of node
- if (Player = MaxPlayer)
- for each child of node
- $\alpha := \max(\alpha, -\text{negamax}(\text{child}, \text{depth-1}, -\beta, -\alpha, \text{switch}(\text{Player})))$
- **if** (β≤α) break
- return α
- else
- for each child of node
- $\beta := \min(\beta, \text{ alphabeta(child, depth-1, } \alpha, \beta, \text{ not(Player) }))$
- **if** (β≤α) break
- return β

CENTER

Aspiration Search

- $[\alpha, \beta]$ interval window
- alphabeta initialization $[-\infty, +\infty]$

CENTER

Aspiration Search

- $[\alpha, \beta]$ interval window
- alphabeta initialization $[-\infty, +\infty]$
- what if we use $[\alpha_0, \beta_0]$
 - $x = alphabeta(node, depth, \alpha_0, \beta_0, player)$
 - $\alpha_0 \le x \le \beta_0$ we found a solution
 - $x \le \alpha_0$ failing low (run again with $[-\infty, x]$)
 - $x \ge \beta_0$ failing high (run again with $[x, +\infty]$)

NegaScout – Main Idea

- enhancement of alpha-beta algorithm
- assume some heuristic that determines move ordering
 - the algorithm assumes that the first action is the best one
 - after evaluating the first action, the algorithm checks whether the remaining actions are worse
 - the "test" is performed via null-window search

Scout -Test

what we really need at that moment is a bound (not the precise value)

CENTER

Scout -Test

- what we really need at that moment is a bound (not the precise value)
- Remember Aspiration Search?
 - $x \le \alpha_0$ failing low (we know, that solution is $\le x$)
 - $x \ge \beta_0$ failing high (we know, that solution is $\ge x$)
- What if we use a null-window $[\alpha, \alpha+1]$ (or $[\alpha,\alpha]$)?
 - we obtain a bound ...

NegaScout

function negascout(node, depth, α , β , Player)

```
    if ((depth = 0) or (node is a terminal node)) return eval(node)
    b := β
    for each child of node
    v := -negascout(child, depth-1, -b, -α, switch(Player)))
    if ((α < ν) and (child is not the first child))</li>
    v := -negascout(child, depth-1, -β, -α, switch(Player)))
    α := max(α, ν)
    if (β≤α) break
    b := α + 1
    return α
```

Alpha-Beta vs. Negascout

Alpha-Beta vs. Negascout

Alpha-Beta vs. Negascout

NegaScout

- also termed Principal Variation Search (PVS)
- dominates alpha-beta
 - never evaluates more different nodes than alpha-beta
 - can evaluate some nodes more than once
- depends on the move ordering
- can benefit from transposition tables (cache)
- generally 10-20% faster compared to alpha-beta

MTD

Memory-enhanced Test Driver

• Best-first fixed-depth minimax algorithms. Plaat et. al., In *Artificial Intelligence*, Volume 87, Issues 1-2, November 1996, Pages 255-293

Further Topics

- more complex games
 - games with uncertainty
 - chance (Nature player), calculating expected utilities

Other Games - Chance nodes

Towards more scalable algorithms ...

- we do not want to evaluate all paths equally
- we want to search more deeply (thoroughly) more prospect variants
- we do not want to spend time with bad variants

Towards more scalable algorithms ...

let's start from the beginning

- what if we estimate that Qd3 is (right now) a better move than Qe2
- there is a dilemma
 - either we want to get a better further plan (and thus also an estimate) of the better move (Qd3)
 - or we want to find a better continuation for the worse move (Qe2) –
 maybe there is one and we've just missed it before

Monte Carlo Methods

- what if we do not have evaluation function?
 - we can estimate the value of the position with a Monte Carlo method
 - from a given position we perform random samples until the terminal position of the game
 - the more samples we perform, the better estimate of the true value we get

Simulated paths of the value of an asset using Monte Carlo

Monte Carlo Tree Search

putting it all together

Monte Carlo Tree Search

bandit theory

• UCB – upper confidence bounds

•
$$\operatorname{arg\,max}_{v' \in children(v)} \frac{Q(v')}{N(v')} + c \sqrt{\frac{2\ln N(v)}{N(v')}}$$

bandit theory

• UCB – upper confidence bounds

- many existing variants for the bandit problem
 - UCB1
 - EXP3
 - UCB-V
 - ...
- can have a very different performance in practice

MCTS and Parameter Tuning

- Different bandit methods can have different parameters
- Practical performance depends on the correct choice
- The choice is domain dependent
- The choice is opponent dependent (!)

MCTS and Parameter Tuning

ĺ			$DO\alpha\beta$	OOS(0.6)	UCT(2)	EXP3(0.2)	RM(0.1)	Mean	
	OOS	0.5	35.3(2.9)	50.9(3.6)	28.5(3.3)	54.9(3.6)	43.7(3.5)	42.66	
	oos	0.4	35.0(2.9)	56.0(3.6)	26.6(3.2)	56.1(3.6)	42.6(3.6)	43.26	
	oos	0.3	36.5(3.0)	57.8(3.5)	27.7(3.2)	55.7(3.6)	44.8(3.6)	44.5	
	oos	0.2	35.0(2.9)	53.1(3.6)	26.8(3.2)	54.1(3.6)	41.4(3.5)	42.08	
	OOS	0.1	34.6(2.9)	55.6(3.6)	24.1(3.1)	56.2(3.6)	43.0(3.6)	42.7	
	UCT	1.5	83.2(2.2)	74.0(3.8)	79.1(2.9)	87.4(2.9)	70.6(3.9)	78.86	
	UCT	1	83.8(2.1)	74.8(3.7)	81.4(2.7)	89.8(2.6)	68.8(4.0)	79.72	
	UCT	0.8	86.5(2.0)	77.9(3.6)	77.1(3.0)	89.2(2.7)	74.1(3.8)	80.96	
	UCT	0.6	89.4(1.8)	75.7(3.7)	54.9(3.9)	90.0(2.6)	74.1(3.7)	76.82	
	UCT	0.4	75.8(2.6)	75.0(3.7)	31.4(3.7)	89.8(2.6)	70.6(3.9)	68.52	
	EXP3	0.9	47.8(3.1)	68.2(2.8)	23.1(2.4)	67.2(2.8)	55.2(2.8)	52.3	
	EXP3	0.8	46.9(3.1)	68.4(3.6)	23.0(3.1)	74.2(3.4)	61.5(3.7)	54.8	
	EXP3	0.6	42.5(3.1)	67.6(3.7)	20.4(3.1)	65.4(3.7)	59.4(3.8)	51.06	
	EXP3	0.5	38.7(3.0)	60.9(3.8)	15.1(2.7)	64.7(3.7)	52.9(3.9)	46.46	
	EXP3	0.4	35.9(3.0)	57.5(3.9)	17.5(3.0)	64.1(3.8)	54.9(3.9)	45.98	
	RM	0.5	44.5(3.0)	41.1(3.5)	31.7(3.3)	49.4(3.6)	34.3(3.3)	40.2	
	RM	0.3	42.8(3.0)	52.1(3.5)	33.8(3.4)	61.2(3.5)	43.7(3.5)	46.72	
	RM	0.2	41.8(3.0)	55.7(3.6)	30.7(3.3)	59.2(3.5)	46.4(3.6)	46.76	
	RM	0.1	37.0(2.9)	58.1(3.5)	34.9(3.4)	57.6(3.6)	54.1(3.6)	48.34	
	RM	0.05	36.4(3.0)	59.6(3.5)	29.7(3.3)	59.3(3.5)	51.1(3.6)	47.22	

Heuristics and MCTS

- there are several points where MCTS can benefit from domain-specific heuristic
 - progressive unpruning/widening
 - standard MCTS adds all children
 - heavy rollout simulations
 - simulations do not have to be completely random
 - tradeoff between bias and complexity vs. speed
 - using evaluation function instead of simulation
 - often combined with previous

Variants of MCTS

• there are many improvements and variants of MCTS

• (see ``A Survey of Monte Carlo Tree Search Methods'' by Browne et

al. 2012)

	Go Phantom Go Blind Go NoGo	Multi-player Go Hex Y, Star, Renkulal Havannah	unes of Action P-Game Clobber Othello Amazons Arimaa Khet Shoet	Bokus Duo Focus Chinese Checkers Yavalath Connect Four Tic Tac Toe Sum of Switches	LeftRight Games Morpion Solitaire Crossword SameGame Sudoku, Kakuro Wumpus World Mazes, Tiers Grids	CADIAPLAYER ARY			Tron Ms. Pac-Man Pocman, Battleship Dead-End Wargus	Skat Bridge Poker Pou Di Zhu Klondike Solitaire Maric: The Catherine	Phantom Chess Urban Rivals Backgammon Settlers of Catan Scotland Yard Roshambo Thum and Taxis	Security Mixed Integer Prog. TSP, CTP Saling Domain Physics Simulations Function Approx.	Constraint Satisfaction	Schedul. Benchmarks Printer Scheduling Rock-Sample Problem PMPs Bue Recordation	Large State Spaces	PCG
Flat MC/UCB BAST TDMC(λ) BB Active Learner	+		+ +				ŀ	Flat MC/UCB BAST TDMC(λ)	+++	++ +	# S & & & E	+ + 5 8 8 18 8 5	ŏ	S T N T E	124	14
UCT SP-MCTS	+ + + +	+ + + +		++++ +?		+ +		BB Active Learner					Ц		<u> </u>	Ц
FUSE MP-MCTS Coalition Reduction Multi-agent MCTS Ensemble MCTS HOP	+ +			+ +	Ť			SP-MCTS FUSE MP-MCTS Coalition Reduction Multi-agent MCTS Ensemble MCTS	+	+ +	+ + +	+++++	+	+ + + +	,	
Sparse UCT Info Set UCT Multiple MCTS UCT+ MC _{\alpha\beta} MCCFR			·	+				Sparse UCT Info Set UCT Multiple MCTS UCT+ MC o 8		+ +	+					
Reflexive MC Nested MC NRPA HGSTS					+ + + +	+	ŀ	MCCFR Reflexive MC Nested MC NRPA		+		+ +	H	+		H
FSSS, BFS3 TAG UNLEO UCTSAT PUCT MRW MHSP				+	+			HGSTS FSSS, BFS3 TAG UNLEO UCTSAT PUCT MRW	+	+	+	+	+		+	
UCB1-Tuned Bayesian UCT EXP3								MHSP UCB1-Tuned Bayesian UCT	+				П	+	┢	H
First Play Urgency (Anti)Decisive Moves Move Groups Move Ordering Transpositions Progressive Bias Opening Books MCPG Search Seeding Parameter Tuning	+ + + + + + +	+	+ + + +	+	+			EXP3 HOOT First Play Urgency (Anti)Decisive Moves Move Groups Move Ordering Transpositions Progressive Bias Opening Books MCPG Search Seeding	+		+	+				+
History Heuristic AMAF RAVE Killer RAVE RAVE-max PoolRAVE MCTS-Solver	+ + + + +	+ + +	+ +	+ + + + +	+	+		Parameter Tuning History Heuristic AMAF RAVE Killer RAVE RAVE-max PoolRAVE			+ +					
MC-PNS Score Bounded MCTS Progressive Widening	+ + + + + + + + + + + + + + + + + + + +		+	+				MCTS-Solver MC-PNS Score Bounded MCTS Progressive Widening	+					+		
Pruning Contextual MC	+	+	+	+			ļ	Pruning	+				Ц		Ļ	H
Fill the Board MAST, PAST, FAST Simulation Balancing Last Good Reply Patterns Score Bonus	÷ ÷					+		Contextual MC Fill the Board MAST, PAST, FAST Simulation Balancing Last Good Reply Patterns								
Decaying Reward			+	+				Score Bonus Decaying Reward				+				
Leaf Parallelisation Root Parallelisation Tree Parallelisation UCT-Treesplit	+ + + +		+ +			+ +		Leaf Parallelisation Root Parallelisation Tree Parallelisation UCT-Treesplit								

Games and Game Theory

- one shot simultaneous-move games
 - Rock-Paper-Scissors
- sequential games with simultaneous moves
 - Tron, many card games, ...
 - alpha-beta algorithm can be generalized
- games with imperfect information

Games and Game Theory in AIC

- Game theory has many possible applications
 - general algorithms for solving dynamic games with imperfect information
 - implementation of domain independent algorithms

Games and Game Theory in AIC

two-player games with perfect information

Games and Game Theory (in AIC)

Games and Game Theory (in AIC)

Bachelor's project, Diploma thesis, ...

http://aic.fel.cvut.cz/gametheory