
1

Heuristic (Informed) Search 
(Where we try to choose smartly)  

 
R&N: Chap. 4, Sect. 4.1–3  

2

SEARCH#2
1. INSERT(initial-node,Open-List)
2. Repeat:

a. If empty(Open-List) then return failure
b. N ! REMOVE(Open-List)
c. s ! STATE(N)
d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a node N’ as a successor of N
ii. INSERT(N’,Open-List)

Search Algorithm #2

2

Recall that the ordering
of Open List defines the
search strategy

3

Best-First Search
▪ It exploits state description to estimate

how “good” each search node is

▪ An evaluation function f maps each node N
of the search tree to a real number  
f(N) ≥ 0  
[Traditionally, f(N) is an estimated cost; so, the smaller
f(N), the more promising N]  

▪ Best-first search sorts the Open List in
increasing f  
[Arbitrary order is assumed among nodes with equal f]

4

Best-First Search
▪ It exploits state description to estimate

how “good” each search node is

▪ An evaluation function f maps each node N
of the search tree to a real number  
f(N) ≥ 0  
[Traditionally, f(N) is an estimated cost; so, the smaller
f(N), the more promising N]  

▪ Best-first search sorts the Open List in
increasing f  
[Arbitrary order is assumed among nodes with equal f]

“Best” does not refer to the quality  
of the generated path
Best-first search does not generate
optimal paths in general

5

▪ Typically, f(N) estimates:
• either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
– g(N) is the cost of the path from the initial node to N
– h(N) is an estimate of the cost of a path from N to a goal node

• or the cost of a path from N to a goal node
Then f(N) = h(N) → Greedy best-search

▪ But there are no limitations on f. Any function of your
choice is acceptable.  
But will it help the search algorithm? 

How to construct f?

6

▪ Typically, f(N) estimates:
• either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
– g(N) is the cost of the path from the initial node to N
– h(N) is an estimate of the cost of a path from N to a goal node

• or the cost of a path from N to a goal node
Then f(N) = h(N)

▪ But there are no limitations on f. Any function of your
choice is acceptable.  
But will it help the search algorithm? 

How to construct f?

Heuristic function

7

▪ The heuristic function h(N) ≥ 0 estimates the cost
to go from STATE(N) to a goal state  
 
Its value is independent of the current search
tree; it depends only on STATE(N) and the goal
test GOAL? 

▪ Example:

 h1(N) = number of misplaced numbered tiles = 6
 [Why is it an estimate of the distance to the goal?]

Heuristic Function

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

8

▪ h1(N) = number of misplaced numbered tiles = 6

▪ h2(N) = sum of the (Manhattan) distance of
 every numbered tile to its goal position  
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

▪ h3(N) = sum of permutation inversions 
 = n5 + n8 + n4 + n2 + n1 + n7 + n3 + n6  
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0  
 = 16

Other Examples

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

9

8-Puzzle

4

5

5

3

3

4

3 4

4

2 1

2

0

3

4

3

f(N) = h(N) = number of misplaced numbered tiles

The white tile is the empty tile

10

0+4

1+5

1+5

1+3

3+3

3+4

3+4

3+2 4+1

5+2

5+0

2+3

2+4

2+3

8-Puzzle
f(N) = g(N) + h(N)  

11

5

6

6

4

4

2 1

2

0

5

5

3

8-Puzzle
f(N) = h(N) = Σ distances of numbered tiles to their goals

12

Robot Navigation

xN

yN
N

xg

yg

2 2
g g1 N Nh (N) = (x -x) +(y -y) (L2 or Euclidean distance)

h2(N) = |xN-xg| + |yN-yg| (L1 or Manhattan distance)

13

Best-First → Efficiency

f(N) = h(N) = straight distance to the goal

Local-minimum problem

14

Can we prove anything?
▪ If the state space is infinite, in general the

search is not complete

▪ If the state space is finite and we do not discard
nodes that revisit states, in general the search is
not complete

▪ If the state space is finite and we discard nodes
that revisit states, the search is complete, but in
general is not optimal

15

Admissible Heuristic

▪ Let h*(N) be the cost of the optimal path
from N to a goal node  

▪ The heuristic function h(N) is admissible if:  
 0 ≤ h(N) ≤ h*(N)

▪ An admissible heuristic function is always
optimistic !

15

Admissible Heuristic

▪ Let h*(N) be the cost of the optimal path
from N to a goal node  

▪ The heuristic function h(N) is admissible if:  
 0 ≤ h(N) ≤ h*(N)

▪ An admissible heuristic function is always
optimistic !

G is a goal node ➔ h(G) = 0

17

▪ h1(N) = number of misplaced tiles = 6  
is ???

▪ h2(N) = sum of the (Manhattan) distances of  
 every tile to its goal position 
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible

▪ h3(N) = sum of permutation inversions 
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is not admissible

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

18

▪ h1(N) = number of misplaced tiles = 6  
is admissible

▪ h2(N) = sum of the (Manhattan) distances of  
 every tile to its goal position 
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is ???

▪ h3(N) = sum of permutation inversions 
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is not admissible

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

19

▪ h1(N) = number of misplaced tiles = 6  
is admissible

▪ h2(N) = sum of the (Manhattan) distances of  
 every tile to its goal position 
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible

▪ h3(N) = sum of permutation inversions 
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is ???

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

20

▪ h1(N) = number of misplaced tiles = 6  
is admissible

▪ h2(N) = sum of the (Manhattan) distances of  
 every tile to its goal position 
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible

▪ h3(N) = sum of permutation inversions 
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is not admissible

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

21

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y) is admissible

22

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

h2(N) = |xN-xg| + |yN-yg| is ???

23

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

h2(N) = |xN-xg| + |yN-yg| is admissible if moving along
diagonals is not allowed, and
not admissible otherwiseh*(I) = 4√2

h2(I) = 8

24

How to create an admissible h?

▪ An admissible heuristic can usually be seen as the
cost of an optimal solution to a relaxed problem (one
obtained by removing constraints)

▪ In robot navigation:
• The Manhattan distance corresponds to removing the

obstacles
• The Euclidean distance corresponds to removing both the

obstacles and the constraint that the robot moves on a grid

▪ More on this topic later

25

A* Search  
(most popular algorithm in AI)

1) f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function  

2) for all arcs: c(N,N’) ≥ ε > 0 

3) SEARCH#2 algorithm is used

➔ Best-first search is then called A* search

26

Result #1

 A* is complete and optimal

 [This result holds if nodes revisiting
states are not discarded]

27

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution  

 - For each node N on the Open List,  
 f(N) = g(N) + h(N) ≥ g(N) ≥ d(N) × ε,  
 where d(N) is the depth of N in the tree 

28

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution  

 - For each node N on the Open List,  
 f(N) = g(N) + h(N) ≥ g(N) ≥ d(N) × ε,  
 where d(N) is the depth of N in the tree 
- As long as A* hasn’t terminated, a node K  
 on the Open List lies on a solution path

K

29

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution  

 - For each node N on the Open List,  
 f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,  
 where d(N) is the depth of N in the tree

- As long as A* hasn’t terminated, a node K  
 on the Open List lies on a solution path

- Since each node expansion increases the  
 length of one path, K will eventually be  
 selected for expansion, unless a solution is  
 found along another path

K

30

Proof (2/2)
2) Whenever A* chooses to expand a goal

node, the path to this node is optimal

- C*= cost of the optimal solution path

- G’: non-optimal goal node in the Open List 
 f(G’) = g(G’) + h(G’) = g(G’) > C*

- A node K in the Open List lies on an
optimal  
 path:
 f(K) = g(K) + h(K) ≤ C* 

- So, G’ will not be selected for expansion

G’ K

31

Time Limit Issue
▪ When a problem has no solution, A* runs for ever if

the state space is infinite. In other cases, it may take
a huge amount of time to terminate

▪ So, in practice, A* is given a time limit. If it has not
found a solution within this limit, it stops. Then there
is no way to know if the problem has no solution, or if
more time was needed to find it

▪ When AI systems are “small” and solving a single
search problem at a time, this is not too much of a
concern.

▪ When AI systems become larger, they solve many
search problems concurrently, some with no solution.

32

8-Puzzle

0+4

1+5

1+5

1+3

3+3

3+4

3+4

3+2 4+1

5+2

5+0

2+3

2+4

2+3

f(N) = g(N) + h(N)  
 with h(N) = number of misplaced tiles

33

Robot Navigation

34

Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal  
(not A*)

35

Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

7

0

36

Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

57+0

6+1

6+1

8+1

7+0

7+2

6+1

7+2

6+1

8+1

7+2

8+3

7+2 6+36+3 5+45+4 4+54+5 3+63+6 2+7

8+3 7+47+4 6+5

5+6

6+3 5+6

2+7 3+8

4+7

5+6 4+7

3+8

4+7 3+83+8 2+92+9 3+10

2+9

3+8

2+9 1+101+10 0+110+11

37

Best-First Search

▪ An evaluation function f maps each node N of the
search tree to a real number  
f(N) ≥ 0  

▪ Best-first search sorts the Open List in
increasing f  

38

A* Search

1) f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function  

2) for all arcs: c(N,N’) ≥ ε > 0 

3) SEARCH#2 algorithm is used

➔ Best-first search is then called A* search

39

Result #1

 A* is complete and optimal

 [This result holds if nodes revisiting
states are not discarded]

40

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1 The heuristic h is
clearly admissible

41

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

104

4+90

f = 1+100 2+1

?
If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

42

1

100

21

2

100

0

90

1

104

4+90

1+100 2+1

2+90

102

Instead, if we do not discard nodes revisiting  
states, the search terminates with an optimal  
solution

What to do with revisited states?

45

▪ It is not harmful to discard a node revisiting a
state if the cost of the new path to this state is ≥
cost of the previous path 
[so, in particular, one can discard a node if it re-visits a
state already visited by one of its ancestors]

▪ A* remains optimal, but states can still be re-
visited multiple times  
[the size of the search tree can still be exponential in the
number of visited states]

▪ Fortunately, for a large family of admissible
heuristics – consistent heuristics – there is a much
more efficient way to handle revisited states

46

Consistent Heuristic
 An admissible heuristic h is consistent (or

monotone) if for each node N and each child
N’ of N:

 h(N) ≤ c(N,N’) + h(N’)

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

" Intuition: a consistent heuristics becomes
more precise as we get deeper in the search tree

h(N) ≤ C*(N) ≤ c(N,N’) + h*(N’)
h(N) − c(N,N’) ≤ h*(N’)
h(N) − c(N,N’) ≤ h(N’) ≤ h*(N’)

47

Consistency Violation

N

N’ h(N)  
=100

h(N’) 
=10

c(N,N’) 
=10

(triangle inequality)

If h tells that N is 100
units from the goal,
then moving from N
along an arc costing 10
units should not lead to
a node N’ that h
estimates to be 10 units
away from the goal

48

Consistent Heuristic 
(alternative definition)

 A heuristic h is consistent (or monotone) if
 1) for each node N and each child N’ of N:
 h(N) ≤ c(N,N’) + h(N’)

 2) for each goal node G:
 h(G) = 0

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

A consistent heuristic  
is also admissible

49

▪ A consistent heuristic is also admissible 

▪ An admissible heuristic may not be
consistent, but many admissible heuristics
are consistent

Admissibility and Consistency

50

8-Puzzle

1 2 3

4 5 6

7 8

12

3

4

5

67

8

STATE(N) goal

▪ h1(N) = number of misplaced tiles
▪ h2(N) = sum of the (Manhattan) distances  
 of every tile to its goal position
are both consistent (why?)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)

51

Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2
2 2

g g1 N Nh (N) = (x -x) +(y -y)
h2(N) = |xN-xg| + |yN-yg|

is consistent
is consistent if moving along
diagonals is not allowed, and
not consistent otherwise

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)

52

 If h is consistent, then whenever A*
expands a node, it has already found
an optimal path to this node’s state

Result #2

53

Proof (1/2)
1) Consider a node N and its child N’  

Since h is consistent: h(N) ≤ c(N,N’) + h(N’)  
 
f(N) = g(N)+h(N) ≤ g(N)+c(N,N’)+h(N’) = f(N’) 
So, f is non-decreasing along any path

N

N’

54

2) If a node K is selected for expansion, then any other node N in
the Open List verifies f(N) ≥ f(K)

 If one node N lies on another path to the state of K, the cost
of this other path is no smaller than that of the path to K:

 f(N’) ≥ f(N) ≥ f(K) and h(N’) = h(K)
 So, g(N’) ≥ g(K)

Proof (2/2)

K N

N’S

55

2) If a node K is selected for expansion, then any other node N in
the Open List verifies f(N) ≥ f(K)

 If one node N lies on another path to the state of K, the cost
of this other path is no smaller than that of the path to K:

 f(N’) ≥ f(N) ≥ f(K) and h(N’) = h(K)
 So, g(N’) ≥ g(K)

Proof (2/2)

K N

N’S

 If h is consistent, then whenever A* expands a
node, it has already found an optimal path to this
node’s state

Result #2

56

Implication of Result #2

N N1
S S1

The path to N  
is the optimal
path to S

N2

N2 can be  
discarded

57

Revisited States with Consistent Heuristic

▪ When a node is expanded, store its state
into CLOSED

▪ When a new node N is generated:
• If STATE(N) is in CLOSED, discard N

• If there exists a node N’ in the Open
List such that STATE(N’) = STATE(N),
discard the node – N or N’ – with the
largest f (or, equivalently, g)

58

Is A* with some consistent heuristic all that
we need?

No !
 There are very dumb consistent heuristic

functions

59

For example: h ≡ 0

▪ It is consistent (hence, admissible) !
▪ A* with h≡0 is uniform-cost search
▪ Breadth-first and uniform-cost are

particular cases of A*

60

Heuristic Accuracy
 Let h1 and h2 be two consistent heuristics such that for all

nodes N:
 

 h1(N) ≤ h2(N)

 h2 is said to be more accurate (or more informed) than h1

▪ h1(N) = number of misplaced tiles
▪ h2(N) = sum of distances of

every tile to its goal position

▪ h2 is more accurate than h1

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

61

Result #3

▪ Let h2 be more accurate than h1

▪ Let A1* be A* using h1  
and A2* be A* using h2

▪ Whenever a solution exists, all the nodes
expanded by A2*, are also expanded by A1*
– except possibly for some nodes such that f1(N) = f2(N) = C* ( 

(cost of optimal solution)

62

Proof
▪ C* = h*(initial-node) [cost of optimal solution]

▪ Every node N such that f(N) < C* is eventually expanded.
No node N such that f(N) > C* is ever expanded

▪ Every node N such that h(N) < C*−g(N) is eventually
expanded. So, every node N such that h2(N) < C*−g(N) is
expanded by A2*. Since h1(N) ≤ h2(N), N is also
expanded by A1*

63

Effective Branching Factor

▪ It is used as a measure the effectiveness of a heuristic
▪ Let n be the total number of nodes expanded by A* for a

particular problem and d the depth of the solution
▪ The effective branching factor b* is defined by n = 1 +

b* + (b*)2 +...+ (b*)d

64

Experimental Results 
(see R&N for details)

▪ 8-puzzle with:
▪ h1 = number of misplaced tiles

▪ h2 = sum of distances of tiles to their goal positions

▪ Random generation of many problem instances
▪ Average effective branching factors (number of

expanded nodes):

d IDS A1* A2*

2 2.45 1.79 1.79

6 2.73 1.34 1.30

12 2.78 (3,644,035) 1.42 (227) 1.24 (73)

16 -- 1.45 1.25

20 -- 1.47 1.27

24 -- 1.48 (39,135) 1.26 (1,641)

65

▪ By solving relaxed problems at each node
▪ In the 8-puzzle, the sum of the distances of each tile to its

goal position (h2) corresponds to solving 8 simple problems:

▪ It ignores negative interactions among tiles

How to create good heuristics?

14

7

5

2

63

8

64

7

1

5

2

8

3

5

5

di is the length of the
shortest path to move
tile i to its goal position,
ignoring the other tiles,
e.g., d5 = 2

h2 = Σi=1,...8 di

66

▪For example, we could consider two more complex relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3

3

2 14 4

1 2 3

d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions,
ignoring the other tiles

6

7

5

87

5

6

8

d5678

69

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3

3

2 14 4

1 2 3

6

7

5

87

5

6

8

d5678

" Several order-of-magnitude speedups  
for the 15- and 24-puzzle (see R&N)

▪For example, we could consider two more complex relaxed problems:

d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions,
ignoring the other tiles

70

On Completeness and Optimality
▪ A* with a consistent heuristic function has nice

properties: completeness, optimality, no need to
revisit states

▪ Theoretical completeness does not mean
“practical” completeness if you must wait too long
to get a solution (remember the time limit issue)

▪ So, if one can’t design an accurate consistent
heuristic, it may be better to settle for a non-
admissible heuristic that “works well in practice”,
even through completeness and optimality are no
longer guaranteed

71

Iterative Deepening A* (IDA*)
▪ Idea: Reduce memory requirement of A* by

applying cutoff on values of f
▪ Consistent heuristic function h
▪ Algorithm IDA*:

1. Initialize cutoff to f(initial-node)
2. Repeat:

a. Perform depth-first search by expanding all nodes
N such that f(N) ≤ cutoff

b. Reset cutoff to smallest value f of non-expanded
(leaf) nodes

72

8-Puzzle

4

6

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

Cutoff=4

73

8-Puzzle

4

4

6

Cutoff=4

6

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

74

8-Puzzle

4

4

6

Cutoff=4

6

5

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

75

8-Puzzle

4

4

6

Cutoff=4

6

5

5

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

76

4

8-Puzzle

4

6

Cutoff=4

6

5

56

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

77

8-Puzzle

4

6

Cutoff=5

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

78

8-Puzzle

4

4

6

Cutoff=5

6

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

79

8-Puzzle

4

4

6

Cutoff=5

6

5

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

80

8-Puzzle

4

4

6

Cutoff=5

6

5

7

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

81

8-Puzzle

4

4

6

Cutoff=5

6

5

7

5

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

82

8-Puzzle

4

4

6

Cutoff=5

6

5

7

5 5

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

83

8-Puzzle

4

4

6

Cutoff=5

6

5

7

5 5

f(N) = g(N) + h(N)
 with h(N) = number of misplaced tiles

5

84

Experimental Results of IDA*

▪ IDA* is asymptotically same time as A* but only
O(d) in space - versus O(bd) for A*
▪ Also avoids overhead of sorted queue of nodes

▪ IDA* is simpler to implement - no closed lists
(limited open list).

▪ In Korf’s 15-puzzle experiments IDA*: solved all
problems, ran faster even though it generated
more nodes than A*.

84

Advantages/Drawbacks of IDA*

▪ Advantages:
• Still complete and optimal
• Requires less memory than A*
• Avoid the overhead to sort the Open List

▪ Drawbacks:
• Can’t avoid revisiting states not on the current path
• Available memory is poorly used  

(" memory-bounded search, see R&N p. 101-104)

85

Local Search

▪ Light-memory search method
▪ No search tree; only the current state is

represented!
▪ Only applicable to problems where the path is

irrelevant (e.g., 8-queen), unless the path is
encoded in the state

▪ Many similarities with optimisation techniques

84

85

86

87

84

RBFS - Recursive Best-First Search

▪ Mimics best-first search with linear space
▪ Similar to recursive depth-first

▪ Limits recursion by keeping track of the f-value of the best
alternative path from any ancestor node – one step look-
ahead

▪ If current node exceeds this value, recursion unwinds back
to the alternative path – same idea as contour

▪ As recursion unwinds, replaces f-value of node with best f- value
of children
▪ Allows to remember whether to re-expand path at later time

▪ Exploits information gathered from previous searches about
minimum f so as to focus further searches

89

90

91

84

RBFS - Recursive Best-First Search

84

RBFS - Recursive Best-First Search

▪ More efficient than IDA* and still optimal
▪ Best-first Search based on next best f-contour;

fewer regeneration of nodes
▪ Exploit results of search at a specific f-contour by

saving next f- countour associated with a node who
successors have been explored.

▪ Like IDA* still suffers from excessive node
regeneration IDA* and RBFS not good for graphs

▪ Can’t check for repeated states other than those on
current path Both are hard to characterize in terms
of expected time complexity

84

SMA* Simplified Memory Bounded A*

▪ The implementation of SMA* is very similar to
the one of A*, the only difference is that when
there isn't any space left, nodes with the highest
f are pruned away.

▪ Because those nodes are deleted, the SMA* also
has to remember the f of the best forgotten
child with the parent node.

▪ When it seems that all explored paths are worse
than such a forgotten path, the path is re-
generated.

84

SMA* Simplified Memory Bounded A*

84

SMA* Simplified Memory Bounded A*

84

SMA* Simplified Memory Bounded A*

84

SMA* Simplified Memory Bounded A*

84

SMA* Simplified Memory Bounded A*

▪ It is complete, provided the available memory is sufficient
to store the shallowest solution path.

▪ It is optimal, if enough memory is available to store the
shallowest optimal solution path. Otherwise, it returns the
best solution (if any) that can be reached with the available
memory.

▪ Can keep switching back and forth between a set of
candidate solution paths, only a few of which can fit in
memory (thrashing)

▪ Memory limitations can make a problem intractable wrt time
▪ With enough memory for the entire tree, same as A*

84

Memory-bounded heuristic search
▪ IDA* - Iterative-deepening A*

▪ Use f-cost as cutoff - at each iteration, the cutoff value is the
smallest f-cost of any node that exceeded the cutoff on the previous
iteration

▪ Recursive best-first search (RBFS)
▪ Best-first search with only linear space
▪ Keep track of the f-value of the best alternative
▪ As the recursion unwinds, it forgets the sub-tree and back-up the f-

value of the best leaf as its parent’s f-value.
▪ SMA*

▪ Expanding the best leaf until memory is full
▪ Drop the worst leaf, and back-up the value of this node to its parent.
▪ Complete IF there is any reachable solution.
▪ Optimal IF any optimal solution is reachable.

86

Steepest Descent
1) S ! initial state
2) Repeat:

a) S’ ! arg minS’∈SUCCESSORS(S){h(S’)}

b) if GOAL?(S’) return S’
c) if h(S’) < h(S) then S ! S’ else return failure

Similar to:
- hill climbing with –h
- gradient descent over continuous space

Application: 8-Queen
Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random
c) Move Q in its column to minimize the number of attacking

queens " new S [min-conflicts heuristic]
3) Return failure

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Application: 8-Queen
Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random
c) Move Q it in its column to minimize the number of attacking

queens is minimum " new S
1
2

3
3
2
2
3

2
2

2
2

2
0
2

Why does it work ???
1) There are many goal states that are  

 well-distributed over the state space
2) If no solution has been found after a few  

 steps, it’s better to start it all over again.  
 Building a search tree would be much less  
 efficient because of the high branching  
 factor

3) Running time almost independent of the  
 number of queens

89

Steepest Descent
1) S ! initial state
2) Repeat:

a) S’ ! arg minS’∈SUCCESSORS(S){h(S’)}

b) if GOAL?(S’) return S’
c) if h(S’) < h(S) then S ! S’ else return failure

may easily get stuck in local minima
à Random restart (as in n-queen example)
à Monte Carlo descent

90

Monte Carlo Descent
1) S ! initial state
2) Repeat k times:

a) If GOAL?(S) then return S

b) S’ ! successor of S picked at random
c) if h(S’) ≤ h(S) then S ! S’
d) else

- Δh = h(S’)-h(S)
- with probability ~ exp(−Δh/T), where T is called the “temperature”,

do: S ! S’ [Metropolis criterion]

3) Return failure

Simulated annealing lowers T over the k iterations.
It starts with a large T and slowly decreases T

91

“Parallel” Local Search Techniques

They perform several local searches
concurrently, but not independently:
▪ Beam search
▪ Genetic algorithms

See R&N, pages 115-119

92

Search problems

Blind search

Heuristic search:  
best-first and A*

Construction of heuristics Local searchVariants of A*

93

When to Use Search Techniques?

1) The search space is small, and
• No other technique is available, or
• Developing a more efficient technique is not

worth the effort  

2)The search space is large, and
• No other available technique is available, and
• There exist “good” heuristics

