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Heuristic (Informed) Search 
(Where we try to choose smartly)  

 
R&N: Chap. 4, Sect. 4.1–3  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SEARCH#2 
1. INSERT(initial-node,Open-List) 
2. Repeat: 

a. If empty(Open-List) then return failure 
b. N ! REMOVE(Open-List) 
c. s ! STATE(N) 
d. If GOAL?(s) then return path or goal state 
e. For every state s’ in SUCCESSORS(s) 

i. Create a node N’ as a successor of N 
ii. INSERT(N’,Open-List)

Search Algorithm #2
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Recall that the ordering 
of Open List defines the  
search strategy
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Best-First Search
▪ It exploits state description to estimate 

how “good” each search node is 

▪ An evaluation function f maps each node N 
of the search tree to a real number  
f(N) ≥ 0  
[Traditionally, f(N) is an estimated cost; so, the smaller 
f(N), the more promising N]  

▪ Best-first search sorts the Open List in 
increasing f  
[Arbitrary order is assumed among nodes with equal f]
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Best-First Search
▪ It exploits state description to estimate 

how “good” each search node is 

▪ An evaluation function f maps each node N 
of the search tree to a real number  
f(N) ≥ 0  
[Traditionally, f(N) is an estimated cost; so, the smaller 
f(N), the more promising N]  

▪ Best-first search sorts the Open List in 
increasing f  
[Arbitrary order is assumed among nodes with equal f]

“Best” does not refer to the quality  
of the generated path 
Best-first search does not generate  
optimal paths in general 
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▪ Typically, f(N) estimates: 
• either the cost of a solution path through N 

Then f(N) = g(N) + h(N), where 
– g(N) is the cost of the path from the initial node to N 
– h(N) is an estimate of the cost of a path from N to a goal node 

• or the cost of a path from N to a goal node 
Then f(N) = h(N)      →    Greedy best-search 

▪ But there are no limitations on f. Any function of your 
choice is acceptable.  
But will it help the search algorithm? 

How to construct f?
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▪ Typically, f(N) estimates: 
• either the cost of a solution path through N 

Then f(N) = g(N) + h(N), where 
– g(N) is the cost of the path from the initial node to N 
– h(N) is an estimate of the cost of a path from N to a goal node 

• or the cost of a path from N to a goal node 
Then f(N) = h(N) 

▪ But there are no limitations on f. Any function of your 
choice is acceptable.  
But will it help the search algorithm? 

How to construct f?

Heuristic function
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▪ The heuristic function h(N) ≥ 0 estimates the cost 
to go from STATE(N) to a goal state  
 
Its value is independent of the current search 
tree; it depends only on STATE(N) and the goal 
test GOAL? 

▪ Example: 

 h1(N)  = number of misplaced numbered tiles = 6 
 [Why is it an estimate of the distance to the goal?]

Heuristic Function
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▪ h1(N)  = number of misplaced numbered tiles = 6 

▪ h2(N) = sum of the (Manhattan) distance of   
  every numbered tile to its goal position  
          = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 

▪ h3(N) = sum of permutation inversions 
          = n5 + n8 + n4 + n2 + n1 + n7 + n3 + n6  
         = 4  + 6  + 3   + 1   + 0  + 2   + 0  + 0  
         = 16

Other Examples
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8-Puzzle
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f(N) = h(N) = number of misplaced numbered tiles

The white tile is the empty tile
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f(N) = h(N) = Σ distances of numbered tiles to their goals



12

Robot Navigation

xN

yN
N

xg

yg

2 2
g g1 N Nh (N) = (x -x ) +(y -y ) (L2 or Euclidean distance)

h2(N)  =  |xN-xg| + |yN-yg| (L1 or Manhattan distance)
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Best-First → Efficiency

f(N) = h(N) = straight distance to the goal

Local-minimum problem
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Can we prove anything?
▪ If the state space is infinite, in general the 

search is not complete  

▪ If the state space is finite and we do not discard 
nodes that revisit states, in general the search is 
not complete 

▪ If the state space is finite and we discard nodes 
that revisit states, the search is complete, but in 
general is not optimal
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Admissible Heuristic

▪  Let h*(N) be the cost of the optimal path 
from N to a goal node  

▪ The heuristic function h(N) is admissible if:  
                0 ≤ h(N) ≤ h*(N) 

▪ An admissible heuristic function is always 
optimistic !
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Admissible Heuristic

▪  Let h*(N) be the cost of the optimal path 
from N to a goal node  

▪ The heuristic function h(N) is admissible if:  
                0 ≤ h(N) ≤ h*(N) 

▪ An admissible heuristic function is always 
optimistic !

G is a goal node ➔ h(G) = 0
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▪ h1(N)  = number of misplaced tiles = 6  
is ??? 

▪ h2(N) = sum of the (Manhattan) distances of     
             every tile to its goal position 
          = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible 

▪ h3(N) = sum of permutation inversions 
          = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  
is not admissible

8-Puzzle Heuristics
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▪ h1(N)  = number of misplaced tiles = 6  
is admissible 

▪ h2(N) = sum of the (Manhattan) distances of     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▪ h1(N)  = number of misplaced tiles = 6  
is admissible 

▪ h2(N) = sum of the (Manhattan) distances of     
             every tile to its goal position 
          = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 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▪ h3(N) = sum of permutation inversions 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▪ h1(N)  = number of misplaced tiles = 6  
is admissible 

▪ h2(N) = sum of the (Manhattan) distances of     
             every tile to its goal position 
          = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 
is admissible 

▪ h3(N) = sum of permutation inversions 
          = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16  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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step =  2

2 2
g g1 N Nh (N) = (x -x ) +(y -y ) is  admissible
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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step =  2

h2(N)  =  |xN-xg| + |yN-yg| is ???
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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step =  2

h2(N)  =  |xN-xg| + |yN-yg| is admissible if moving along  
diagonals is not allowed, and  
not admissible otherwiseh*(I) = 4√2 

h2(I) = 8
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How to create an admissible h?

▪ An admissible heuristic can usually be seen as the 
cost of an optimal solution to a relaxed problem (one 
obtained by removing constraints) 

▪ In robot navigation: 
• The Manhattan distance corresponds to removing the 

obstacles  
• The Euclidean distance corresponds to removing both the 

obstacles and the constraint that the robot moves on a grid 

▪ More on this topic later 
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A* Search  
(most popular algorithm in AI)

1) f(N) = g(N) + h(N), where: 
• g(N) = cost of best path found so far to N 
• h(N) = admissible heuristic function  

2) for all arcs: c(N,N’) ≥ ε > 0 

3) SEARCH#2 algorithm is used 

➔ Best-first search is then called A* search
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Result #1

 A* is complete and optimal 
  

 [This result holds if nodes revisiting 
states are not discarded]
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Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution  

 - For each node N on the Open List,  
  f(N) = g(N) + h(N) ≥ g(N) ≥ d(N) × ε,  
  where d(N) is the depth of N in the tree 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Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution  

 - For each node N on the Open List,  
  f(N) = g(N) + h(N) ≥ g(N) ≥ d(N) × ε,  
  where d(N) is the depth of N in the tree 
- As long as A* hasn’t terminated, a node K    
   on the Open List lies on a solution path

K
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Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution  

 - For each node N on the Open List,  
  f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,  
  where d(N) is the depth of N in the tree 

- As long as A* hasn’t terminated, a node K    
   on the Open List lies on a solution path 

- Since each node expansion increases the  
   length of one path, K will eventually be  
   selected for expansion, unless a solution is  
   found along another path

K
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Proof (2/2)
2) Whenever A* chooses to expand a goal 

node, the path to this node is optimal 

 
- C*= cost of the optimal solution path  

- G’: non-optimal goal node in the Open List 
       f(G’) = g(G’) + h(G’) = g(G’) > C* 

- A node K in the Open List lies on an 
optimal  
   path: 
 f(K) = g(K) + h(K) ≤ C* 

- So, G’ will not be selected for expansion

G’ K
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Time Limit Issue
▪ When a problem has no solution, A* runs for ever if 

the state space is infinite. In other cases, it may take 
a huge amount of time to terminate  

▪ So, in practice, A* is given a time limit. If it has not 
found a solution within this limit, it stops. Then there 
is no way to know if the problem has no solution, or if 
more time was needed to find it 

▪ When AI systems are “small” and solving a single 
search problem at a time, this is not too much of a 
concern.  

▪ When AI systems become larger, they solve many 
search problems concurrently, some with no solution.
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f(N) = g(N) + h(N)  
   with h(N) = number of misplaced tiles
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Robot Navigation
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Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal  
(not A*)
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Robot Navigation
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Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal 
(A*)
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Best-First Search

▪ An evaluation function f maps each node N of the 
search tree to a real number  
f(N) ≥ 0  

▪ Best-first search sorts the Open List in 
increasing f  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A* Search

1) f(N) = g(N) + h(N), where: 
• g(N) = cost of best path found so far to N 
• h(N) = admissible heuristic function  

2) for all arcs: c(N,N’) ≥ ε > 0 

3) SEARCH#2 algorithm is used 

➔ Best-first search is then called A* search
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Result #1

 A* is complete and optimal 
  

 [This result holds if nodes revisiting 
states are not discarded]
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What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1  The heuristic h is 
clearly admissible
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What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

104

4+90

f = 1+100 2+1

?
If we discard this new node, then the search 
algorithm expands the goal node next and 
returns a non-optimal solution
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Instead, if we do not discard nodes revisiting  
states, the search terminates with an optimal  
solution

What to do with revisited states?
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▪ It is not harmful to discard a node revisiting a 
state if the cost of the new path to this state is ≥ 
cost of the previous path 
[so, in particular, one can discard a node if it re-visits a 
state already visited by one of its ancestors] 

▪ A* remains optimal, but states can still be re-
visited multiple times  
[the size of the search tree can still be exponential in the 
number of visited states] 

▪ Fortunately, for a large family of admissible 
heuristics – consistent heuristics – there is a much 
more efficient way to handle revisited states
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Consistent Heuristic
 An admissible heuristic h is consistent (or 

monotone) if for each node N and each child 
N’ of N: 

     h(N) ≤ c(N,N’) + h(N’) 

       

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

" Intuition: a consistent heuristics becomes 
more precise as we get deeper in the search tree

h(N)  ≤  C*(N)  ≤  c(N,N’) + h*(N’) 
h(N)  − c(N,N’)  ≤  h*(N’) 
h(N)  − c(N,N’) ≤ h(N’) ≤  h*(N’)
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Consistency Violation

N

N’ h(N)  
=100

h(N’) 
=10

c(N,N’) 
=10

(triangle inequality)

If h tells that N is 100 
units from the goal,  
then moving from N 
along an arc costing 10 
units should not lead to 
a node N’ that h 
estimates to be 10 units 
away from the goal
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Consistent Heuristic 
(alternative definition)

 A heuristic h is consistent (or monotone) if  
 1) for each node N and each child N’ of N: 
     h(N) ≤ c(N,N’) + h(N’) 

       2) for each goal node G: 
     h(G) = 0

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

A consistent heuristic  
is also admissible
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▪ A consistent heuristic is also admissible 

▪ An admissible heuristic may not be 
consistent, but many admissible heuristics 
are consistent

Admissibility and Consistency
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8-Puzzle
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STATE(N) goal

▪ h1(N)  = number of misplaced tiles 
▪ h2(N) = sum of the (Manhattan) distances  
               of every tile to its goal position 
are both consistent (why?)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)
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Robot Navigation

Cost of one horizontal/vertical step = 1 
Cost of one diagonal step =  2
2 2

g g1 N Nh (N) = (x -x ) +(y -y )
h2(N)  =  |xN-xg| + |yN-yg|

is consistent
is consistent if moving along  
diagonals is not allowed, and  
not consistent otherwise

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)
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 If h is consistent, then whenever A* 
expands a node, it has already found 
an optimal path to this node’s state

Result #2
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Proof (1/2)
1) Consider a node N and its child N’  

Since h is consistent: h(N) ≤ c(N,N’) + h(N’)  
 
f(N)  = g(N)+h(N)  ≤  g(N)+c(N,N’)+h(N’) =  f(N’) 
So, f is non-decreasing along any path

N

N’
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2) If a node K is selected for expansion, then any other node N in 
the Open List verifies f(N) ≥ f(K)  

 If one node N lies on another path to the state of K, the cost 
of this other path is no smaller than that of the path to K: 

 f(N’) ≥ f(N) ≥ f(K)    and     h(N’) = h(K) 
 So, g(N’) ≥ g(K)

Proof (2/2)

K N

N’S
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2) If a node K is selected for expansion, then any other node N in 
the Open List verifies f(N) ≥ f(K)  

 If one node N lies on another path to the state of K, the cost 
of this other path is no smaller than that of the path to K: 

 f(N’) ≥ f(N) ≥ f(K)    and     h(N’) = h(K) 
 So, g(N’) ≥ g(K)

Proof (2/2)

K N

N’S

 If h is consistent, then whenever A* expands a 
node, it has already found an optimal path to this 
node’s state 

Result #2
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Implication of Result #2

N N1
S S1

The path to N  
is the optimal  
path to S 

N2

N2 can be  
discarded
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Revisited States with Consistent Heuristic

▪ When a node is expanded, store its state 
into CLOSED  

▪ When a new node N is generated: 
• If STATE(N) is in CLOSED, discard N 

• If there exists a node N’ in the Open 
List such that STATE(N’) = STATE(N), 
discard the node – N or N’ – with the 
largest f (or, equivalently, g)
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Is A* with some consistent heuristic all that 
we need?

No !  
 There are very dumb consistent heuristic 

functions
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For example:  h ≡ 0

▪ It is consistent (hence, admissible) ! 
▪ A* with h≡0 is uniform-cost search 
▪ Breadth-first and uniform-cost are 

particular cases of A*
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Heuristic Accuracy
 Let h1 and h2 be two consistent heuristics such that for all 

nodes N:  
 

                   h1(N) ≤ h2(N) 

 h2 is said to be more accurate (or more informed) than h1

▪ h1(N) = number of misplaced tiles  
▪ h2(N) = sum of distances of 

every tile to its goal position 

▪ h2 is more accurate than h1 
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Result #3

▪ Let h2 be more accurate than h1 

▪ Let  A1* be A* using h1  
and A2* be A* using h2  

▪ Whenever a solution exists, all the nodes 
expanded by A2*, are also expanded by A1*  
– except possibly for some nodes such that  f1(N) = f2(N) = C* (  

(cost of optimal solution)
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Proof
▪ C* = h*(initial-node) [cost of optimal solution] 

▪ Every node N such that f(N) < C* is eventually expanded. 
No node N such that f(N) > C* is ever expanded 

▪ Every node N such that h(N) < C*−g(N) is eventually 
expanded. So, every node N such that h2(N) < C*−g(N) is 
expanded by A2*. Since h1(N) ≤ h2(N), N is also 
expanded by A1*
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Effective Branching Factor

▪ It is used as a measure the effectiveness of a heuristic 
▪ Let n be the total number of nodes expanded by A* for a 

particular problem and d the depth of the solution 
▪ The effective branching factor b* is defined by n = 1 + 

b* + (b*)2 +...+ (b*)d 
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Experimental Results 
(see R&N for details)

▪ 8-puzzle with: 
▪ h1 = number of misplaced tiles 

▪ h2 = sum of distances of tiles to their goal positions 

▪ Random generation of many problem instances 
▪ Average effective branching factors (number of 

expanded nodes):

d IDS A1* A2*

2 2.45 1.79 1.79

6 2.73 1.34 1.30

12 2.78 (3,644,035) 1.42 (227) 1.24 (73)

16 -- 1.45 1.25

20 -- 1.47 1.27

24 -- 1.48 (39,135) 1.26 (1,641)
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▪ By solving relaxed problems at each node 
▪ In the 8-puzzle, the sum of the distances of each tile to its 

goal position (h2) corresponds to solving 8 simple problems: 

▪ It ignores negative interactions among tiles 

How to create good heuristics?
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di is the length of the 
shortest path to move 
tile i to its goal position,  
ignoring the other tiles, 
e.g., d5 = 2 

h2 = Σi=1,...8 di
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▪For example, we could consider two more complex relaxed problems: 

Can we do better?
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d1234 = length of the  
shortest path to move  
tiles 1, 2, 3, and 4 to  
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Can we do better?
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" Several order-of-magnitude speedups  
for the 15- and 24-puzzle (see R&N)

▪For example, we could consider two more complex relaxed problems: 

d1234 = length of the  
shortest path to move  
tiles 1, 2, 3, and 4 to  
their goal positions,  
ignoring the other tiles 
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On Completeness and Optimality
▪ A* with a consistent heuristic function has nice 

properties: completeness, optimality, no need to 
revisit states 

▪ Theoretical completeness does not mean 
“practical” completeness if you must wait too long 
to get a solution (remember the time limit issue) 

▪ So, if one can’t design an accurate consistent 
heuristic, it may be better to settle for a non-
admissible heuristic that “works well in practice”, 
even through completeness and optimality are no 
longer guaranteed 
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Iterative Deepening A* (IDA*)
▪ Idea: Reduce memory requirement of A* by 

applying cutoff on values of f 
▪ Consistent heuristic function h 
▪ Algorithm IDA*: 

1. Initialize cutoff to f(initial-node) 
2. Repeat: 

a. Perform depth-first search by expanding all nodes 
N such that f(N) ≤ cutoff 

b. Reset cutoff to smallest value f of non-expanded 
(leaf) nodes
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8-Puzzle
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f(N) = g(N) + h(N)  
   with h(N) = number of misplaced tiles

Cutoff=4
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8-Puzzle
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   with h(N) = number of misplaced tiles
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f(N) = g(N) + h(N)  
   with h(N) = number of misplaced tiles
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8-Puzzle
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   with h(N) = number of misplaced tiles
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8-Puzzle
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Experimental Results of IDA*

▪ IDA* is asymptotically same time as A* but only 
O(d) in space - versus O(bd) for A* 
▪ Also avoids overhead of sorted queue of nodes 

▪ IDA* is simpler to implement - no closed lists 
(limited open list). 

▪ In Korf’s 15-puzzle experiments IDA*: solved all 
problems, ran faster even though it generated 
more nodes than A*. 
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Advantages/Drawbacks of IDA*

▪ Advantages: 
• Still complete and optimal 
• Requires less memory than A* 
• Avoid the overhead to sort the Open List 

▪ Drawbacks: 
• Can’t avoid revisiting states not on the current path 
• Available memory is poorly used  

(" memory-bounded search, see R&N p. 101-104)
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Local Search

▪ Light-memory search method  
▪ No search tree; only the current state is 

represented! 
▪ Only applicable to problems where the path is 

irrelevant (e.g., 8-queen), unless the path is 
encoded in the state 

▪ Many similarities with optimisation techniques
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RBFS - Recursive Best-First Search

▪ Mimics best-first search with linear space 
▪ Similar to recursive depth-first 

▪ Limits recursion by keeping track of the f-value of the best 
alternative path from any ancestor node – one step look-
ahead 

▪ If current node exceeds this value, recursion unwinds back 
to the alternative path – same idea as contour 

▪ As recursion unwinds, replaces f-value of node with best f- value 
of children 
▪ Allows to remember whether to re-expand path at later time 

▪ Exploits information gathered from previous searches about 
minimum f so as to focus further searches
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RBFS - Recursive Best-First Search
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RBFS - Recursive Best-First Search

▪ More efficient than IDA* and still optimal 
▪ Best-first Search based on next best f-contour; 

fewer regeneration of nodes 
▪ Exploit results of search at a specific f-contour by 

saving next f- countour associated with a node who 
successors have been explored. 

▪  Like IDA* still suffers from excessive node 
regeneration  IDA* and RBFS not good for graphs 

▪  Can’t check for repeated states other than those on 
current path  Both are hard to characterize in terms 
of expected time complexity



84

SMA* Simplified Memory Bounded A*

▪ The implementation of SMA* is very similar to 
the one of A*, the only difference is that when 
there isn't any space left, nodes with the highest 
f are pruned away.  

▪ Because those nodes are deleted, the SMA* also 
has to remember the f of the best forgotten 
child with the parent node.  

▪ When it seems that all explored paths are worse 
than such a forgotten path, the path is re-
generated.
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SMA* Simplified Memory Bounded A*

▪ It is complete, provided the available memory is sufficient 
to store the shallowest solution path. 

▪ It is optimal, if enough memory is available to store the 
shallowest optimal solution path. Otherwise, it returns the 
best solution (if any) that can be reached with the available 
memory. 

▪ Can keep switching back and forth between a set of 
candidate solution paths, only a few of which can fit in 
memory (thrashing) 

▪ Memory limitations can make a problem intractable wrt time 
▪ With enough memory for the entire tree, same as A*
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Memory-bounded heuristic search
▪ IDA* - Iterative-deepening A* 

▪  Use f-cost as cutoff - at each iteration, the cutoff value is the 
smallest f-cost of any node that exceeded the cutoff on the previous 
iteration 

▪  Recursive best-first search (RBFS) 
▪  Best-first search with only linear space 
▪  Keep track of the f-value of the best alternative 
▪  As the recursion unwinds, it forgets the sub-tree and back-up the f-

value of the best leaf as its parent’s f-value. 
▪  SMA* 

▪  Expanding the best leaf until memory is full 
▪  Drop the worst leaf, and back-up the value of this node to its parent. 
▪  Complete IF there is any reachable solution. 
▪  Optimal IF any optimal solution is reachable.
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Steepest Descent
1) S ! initial state 
2) Repeat: 

a) S’ ! arg minS’∈SUCCESSORS(S){h(S’)}  

b) if GOAL?(S’) return S’  
c) if h(S’) < h(S)  then S ! S’  else return failure 

Similar to: 
- hill climbing with –h 
- gradient descent over continuous space



Application: 8-Queen
Repeat n times: 
1) Pick an initial state S at random with one queen in each column 
2) Repeat k times: 

a) If GOAL?(S) then return S 
b) Pick an attacked queen Q at random  
c) Move Q in its column to minimize the number of attacking 

queens " new S  [min-conflicts heuristic] 
3) Return failure
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Application: 8-Queen
Repeat n times: 
1) Pick an initial state S at random with one queen in each column 
2) Repeat k times: 

a) If GOAL?(S) then return S 
b) Pick an attacked queen Q at random  
c) Move Q it in its column to minimize the number of attacking 

queens is minimum " new S 
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Why does it work ??? 
1) There are many goal states that are  

  well-distributed over the state space 
2) If no solution has been found after a few  

  steps, it’s better to start it all over again.  
  Building a search tree would be much less  
  efficient because of the high branching  
  factor 

3) Running time almost independent of the  
  number of queens
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Steepest Descent
1) S ! initial state 
2) Repeat: 

a) S’ ! arg minS’∈SUCCESSORS(S){h(S’)}  

b) if GOAL?(S’) return S’  
c) if h(S’) < h(S)  then S ! S’  else return failure 

may easily get stuck in local minima 
à Random restart (as in n-queen example) 
à Monte Carlo descent
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Monte Carlo Descent
1) S ! initial state 
2) Repeat k times: 

a) If GOAL?(S) then return S 

b) S’ ! successor of S picked at random   
c) if h(S’) ≤ h(S)  then S ! S’ 
d) else  

- Δh = h(S’)-h(S) 
- with probability ~ exp(−Δh/T), where T is called the “temperature”, 

do: S ! S’             [Metropolis criterion] 

3) Return failure 

Simulated annealing lowers T over the k iterations.  
It starts with a large T and slowly decreases T
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“Parallel” Local Search Techniques

They perform several local searches 
concurrently, but not independently: 
▪ Beam search 
▪ Genetic algorithms 

See R&N, pages 115-119
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Search problems

Blind search

Heuristic search:  
best-first and A*

Construction of heuristics Local searchVariants of A*
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When to Use Search Techniques?

1) The search space is small, and 
• No other technique is available, or 
• Developing a more efficient technique is not 

worth the effort  

2)The search space is large, and 
• No other available technique is available, and 
• There exist “good” heuristics


