Heuristic (Informed) Search

(Where we try to choose smartly)

R&N: Chap. 4, Sect. 4.1-3

Search Algorithm #2

SEARCH#2

- 1. INSERT(initial-node,Open-List)
- 2. Repeat:
 - a. If empty(Open-List) then return failure
 - b. $N \leftarrow \text{REMOVE}(\text{Open-List})$
 - c. $s \leftarrow STATE(N)$
 - d. If GOAL?(s) then return path or goal state
 - e. For every state s' in SUCCESSORS(s)
 - i. Create a node N^\prime as a successor of N
 - ii. INSERT(N',Open-List)

Best-First Search

- It exploits state description to estimate how "good" each search node is
- An evaluation function f maps each node N of the search tree to a real number f(N) ≥ 0
 [Traditionally, f(N) is an estimated cost; so, the smaller f(N), the more promising N]
- Best-first search sorts the Open List in increasing f [Arbitrary order is assumed among nodes with equal f] ³

- It exploits state description to estimate how "good" each search node is
- An evaluation function f maps each node N of the search "Best" does not refer to the quality $f(N) \ge 0$ [Traditionally, f(N)f(N) the more provide path optimal paths in general
- Best-first search sorts the Open List in increasing f [Arbitrary order is assumed among nodes with equal f] 4

How to construct f?

- Typically, f(N) estimates:
 - either the cost of a solution path through N

Then f(N) = g(N) + h(N), where

- g(N) is the cost of the path from the initial node to N
- h(N) is an estimate of the cost of a path from N to a goal node
- or the cost of a path from N to a goal node Then $f(N) = h(N) \rightarrow Greedy best-search$
- But there are no limitations on f. Any function of your choice is acceptable.
 But will it help the search algorithm?

How to construct f?

- Typically, f(N) estimates:
 - either the cost of a solution path through N

Then f(N) = g(N) + h(N), where

- g(N) is the cost of the path from the initial node to N
- h(N) is an estimate of the cost of a path from N to a goal node
- or the cost of a path from N to a goal node
 Then f(N) = h(N)

Heuristic function

 But there are no limitations on f. Any function of your choice is acceptable.

But will it help the search algorithm?

Heuristic Function

The heuristic function h(N) ≥ 0 estimates the cost to go from STATE(N) to a goal state

Its value is **independent of the current search tree**; it depends only on STATE(N) and the goal test GOAL?

Example:

Goal state

h₁(N) = number of misplaced numbered tiles = 6 [Why is it an estimate of the distance to the goal?]

Other Examples

Б		0		1	2	2
5		8		1	2	3
4	2	1		4	5	6
7	3	6		7	8	
STATE(N)			Goal state			

- $h_1(N)$ = number of misplaced numbered tiles = 6
- h₂(N) = sum of the (Manhattan) distance of every numbered tile to its goal position
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

•
$$h_3(N)$$
 = sum of permutation inversions

$$= n_5 + n_8 + n_4 + n_2 + n_1 + n_7 + n_3 + n_6$$

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0
= 16

f(N) = h(N) = number of misplaced numbered tiles

The white tile is the empty tile

f(N) = g(N) + h(N)

 $f(N) = h(N) = \Sigma$ distances of numbered tiles to their goals

Best-First /> Efficiency

f(N) = h(N) = straight distance to the goal

Can we prove anything?

- If the state space is infinite, in general the search is not complete
- If the state space is finite and we do not discard nodes that revisit states, in general the search is not complete
- If the state space is finite and we discard nodes that revisit states, the search is complete, but in general is not optimal

Admissible Heuristic

- Let h*(N) be the cost of the optimal path from N to a goal node
- The heuristic function h(N) is admissible if: $0 \le h(N) \le h^*(N)$
- An admissible heuristic function is always optimistic !

Admissible Heuristic

- Let h*(N) be the cost of the optimal path from N to a goal node
- The heuristic function h(N) is admissible if: $0 \le h(N) \le h^*(N)$
- An admissible heuristic function is always optimistic !

G is a goal node $\rightarrow h(G) = 0$

h₁(N) = number of misplaced tiles = 6 is ???

- h₁(N) = number of misplaced tiles = 6
 is admissible
- h₂(N) = sum of the (Manhattan) distances of every tile to its goal position
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13
 is ???

- h₁(N) = number of misplaced tiles = 6
 is admissible
- h₂(N) = sum of the (Manhattan) distances of every tile to its goal position
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13
 is admissible

- h₁(N) = number of misplaced tiles = 6
 is admissible
- h₂(N) = sum of the (Manhattan) distances of every tile to its goal position
 = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13
 is admissible
- h₃(N) = sum of permutation inversions
 = 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16
 is not admissible

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

$$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$
 is admissible

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

$$h_2(N) = |x_N - x_g| + |y_N - y_g|$$
 is ???

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

$$h_2(N) = |x_N - x_g| + |y_N - y_g|$$

 $h^*(I) = 4\sqrt{2}$
 $h_2(I) = 8$

is admissible if moving along diagonals is not allowed, and not admissible otherwise

How to create an admissible h?

- An admissible heuristic can usually be seen as the cost of an optimal solution to a relaxed problem (one obtained by removing constraints)
- In robot navigation:
 - The Manhattan distance corresponds to removing the obstacles
 - The Euclidean distance corresponds to removing both the obstacles and the constraint that the robot moves on a grid
- More on this topic later

A* Search

(most popular algorithm in AI)

- 1) f(N) = g(N) + h(N), where:
 - g(N) = cost of best path found so far to N
 - h(N) = admissible heuristic function
- 2) for all arcs: $c(N,N') \ge \varepsilon > 0$
- 3) SEARCH#2 algorithm is used

 \rightarrow Best-first search is then called A* search

Result #1

- A* is complete and optimal
- [This result holds if nodes revisiting states are not discarded]

Proof (1/2)

1) If a solution exists, A* terminates and returns a solution

For each node N on the Open List,
 f(N) = g(N) + h(N) ≥ g(N) ≥ d(N) × ε,
 where d(N) is the depth of N in the tree

SEARCH#2

- 1. INSERT(initial-node,Open List)
- 2. Repeat:
 - a. If empty(Open List) then return failure
 - b. $N \leftarrow REMOVE(Open List)$
 - c. s \leftarrow STATE(N)
- d. If GOAL?(s) then return path or goal state
 - e. For every state s' in SUCCESSORS(s)
 - i. Create a node N^\prime as a successor of N
 - ii. INSERT(N',Open List)

Proof (1/2)

1) If a solution exists, A* terminates and returns a solution

For each node N on the Open List,
f(N) = g(N) + h(N) ≥ g(N) ≥ d(N) × ε,
where d(N) is the depth of N in the tree
As long as A* hasn't terminated, a node K on the Open List lies on a solution path

SEARCH#2

- 1. INSERT(initial-node,Open List)
- 2. Repeat:
 - a. If empty(Open List) then return failure

Ϋ́

- b. $N \leftarrow REMOVE(Open List)$
- c. s \leftarrow STATE(N)
- d. If GOAL?(s) then return path or goal state
 - e. For every state s' in SUCCESSORS(s)
 - i. Create a node N^\prime as a successor of N
 - ii. INSERT(N',Open List)

Proof (1/2)

1) If a solution exists, A* terminates and returns a solution

For each node N on the Open List, f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε, where d(N) is the depth of N in the tree
As long as A* hasn't terminated, a node K on the Open List lies on a solution path

- 2. Repeat:
 - a. If empty(Open List) then return

δK

- b. $N \leftarrow REMOVE(Open List)$
- c. s ← STATE(N)
- d. If GOAL?(s) then return path or
 - e. For every state \mathbf{s}' in SUCCESSC
 - i. Create a node N' as a succes
 - ii. INSERT(N',Open List)
- Since each node expansion increases the length of one path, K will eventually be selected for expansion, unless a solution is found along another path

Proof (2/2)

2) Whenever A* chooses to expand a goal node, the path to this node is optimal

- C*= cost of the optimal solution path

- G': non-optimal goal node in the Open List $f(G') = g(G') + h(G') = g(G') > C^*$

A node K in the Open List lies on an optimal path:

$$f(K) = g(K) + h(K) \leq C^*$$

So, G' will not be selected for expansion

SEARCH#2

- 1. INSERT(initial-node,Open List)
- 2. Repeat:
 - a. If empty(Open List) then return

δK

- b. $N \leftarrow REMOVE(Open List)$
- c. s ← STATE(N)
- d. If GOAL?(s) then return path or
 - e. For every state s' in SUCCESSC
 - i. Create a node N' as a succes
 - ii. INSERT(N',Open List)

Time Limit Issue

- When a problem has no solution, A* runs for ever if the state space is infinite. In other cases, it may take a huge amount of time to terminate
- So, in practice, A* is given a time limit. If it has not found a solution within this limit, it stops. Then there is no way to know if the problem has no solution, or if more time was needed to find it
- When AI systems are "small" and solving a single search problem at a time, this is not too much of a concern.
- When AI systems become larger, they solve many search problems concurrently, some with no solution.

f(N) = h(N), with $h(N) = Manhattan distance to the goal (not <math>A^*$)

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

f(N) = h(N), with $h(N) = Manhattan distance to the goal (not <math>A^*$)

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal (A*)

8+3	7+4	6+3	5+6	4+7	3+8	2+9	3+10	4	5	6
7+2		5+6	4+7	3+8						5
6+1			3	2+9	1+10	0+11	1	2		4
7+0	6+1									5
8+1	7+2	6+3	5+4	4+5	3+6	2+7	3+8	4	5	6

Best-First Search

- An evaluation function f maps each node N of the search tree to a real number $f(N) \ge 0$
- Best-first search sorts the Open List in increasing f

A* Search

1) f(N) = g(N) + h(N), where:

- g(N) = cost of best path found so far to N
- h(N) = admissible heuristic function
- 2) for all arcs: $c(N,N') \ge \varepsilon > 0$
- 3) SEARCH#2 algorithm is used
- \rightarrow Best-first search is then called A* search

Result #1

- A* is complete and optimal
- [This result holds if nodes revisiting states are not discarded]

What to do with revisited states?

The heuristic h is clearly admissible

What to do with revisited states?

If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution

What to do with revisited states?

Instead, if we do not discard nodes revisiting states, the search terminates with an optimal solution It is not harmful to discard a node revisiting a state if the cost of the new path to this state is ≥ cost of the previous path [so, in particular, one can discard a node if it re-visits a

state already visited by one of its ancestors]

- A* remains optimal, but states can still be revisited multiple times
 [the size of the search tree can still be exponential in the number of visited states]
- Fortunately, for a large family of admissible heuristics - consistent heuristics - there is a much more efficient way to handle revisited states

Consistent Heuristic

An admissible heuristic h is consistent (or monotone) if for each node N and each child N' of N: N

 $h(N) \leq c(N,N') + h(N')$

 $\begin{array}{l} h(N) \leq C^{*}(N) \leq c(N,N') + h^{*}(N') \\ h(N) - c(N,N') \leq h^{*}(N') \\ h(N) - c(N,N') \leq h(N') \leq h^{*}(N') \end{array}$

N' h(N) h(N') (triangle inequality)

 \rightarrow Intuition: a consistent heuristics becomes more precise as we get deeper in the search tree

Consistency Violation

If h tells that N is 100 units from the goal, then moving from N along an arc costing 10 units should **not** lead to a node N' that h estimates to be 10 units away from the goal

Consistent Heuristic (alternative definition)

A heuristic h is consistent (or monotone) if

1) for each node N and each child N' of N: $h(N) \leq c(N,N') + h(N')$

2) for each goal node G: h(G) = 0

A consistent heuristic is also admissible ۱ h(N)

(triangle inequality)

Admissibility and Consistency

A consistent heuristic is also admissible

 An admissible heuristic may not be consistent, but many admissible heuristics are consistent

 $h(N) \leq c(N,N') + h(N')$

 h₁(N) = number of misplaced tiles
 h₂(N) = sum of the (Manhattan) distances of every tile to its goal position
 are both consistent (why?)

Robot Navigation

 $h(N) \leq c(N,N') + h(N')$

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

$$h_{1}(N) = \sqrt{(x_{N} - x_{g})^{2} + (y_{N} - y_{g})^{2}}$$
 is consistent

$$h_{2}(N) = |x_{N} - x_{g}| + |y_{N} - y_{g}|$$
 is consistent if moving along
diagonals is not allowed, and
not consistent otherwise

$$5^{2}$$

Result #2

If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node's state

Proof (1/2)

- N ● N'
- 1) Consider a node N and its child N' Since h is consistent: $h(N) \le c(N,N') + h(N')$

 $f(N) = g(N)+h(N) \leq g(N)+c(N,N')+h(N') = f(N')$ So, f is non-decreasing along any path

Proof (2/2)

2) If a node K is selected for expansion, then any other node N in the Open List verifies $f(N) \ge f(K)$

If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K: $f(N') \ge f(N) \ge f(K)$ and h(N') = h(K)So, $g(N') \ge g(K)$ 54

Proof (2/2)

2) If a node K is selected for expansion, then any other node N in the Open List verifies $f(N) \ge f(K)$

Result #2

If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node's state

If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K: $f(N') \ge f(N) \ge f(K)$ and h(N') = h(K)So, $g(N') \ge g(K)$ 55

Implication of Result #2

Revisited States with Consistent Heuristic

- When a node is expanded, store its state into CLOSED
- When a new node N is generated:
 - If STATE(N) is in CLOSED, discard N
 - If there exists a node N' in the Open List such that STATE(N') = STATE(N), discard the node - N or N' - with the largest f (or, equivalently, g)

Is A* with some consistent heuristic all that we need?

No!

There are **very dumb** consistent heuristic functions

For example: $h \equiv 0$

- It is consistent (hence, admissible) !
- A* with h=0 is uniform-cost search
- Breadth-first and uniform-cost are particular cases of A*

Heuristic Accuracy

Let h_1 and h_2 be two consistent heuristics such that for all nodes N:

 $h_1(N) \leq h_2(N)$

 h_2 is said to be more accurate (or more informed) than h_1

5		8
4	2	1
7	3	6

STATE(N)

Goal state

• $h_1(N)$ = number of misplaced tiles

60

 h₂(N) = sum of distances of every tile to its goal position

•
$$h_2$$
 is more accurate than h_1

Result #3

- Let h_2 be more accurate than h_1
- Let A_1^* be A^* using h_1 and A_2^* be A^* using h_2
- Whenever a solution exists, all the nodes expanded by A_2^* , are also expanded by A_1^*
 - except possibly for some nodes such that $f_1(N) = f_2(N) = C^*$ (cost of optimal solution)

Proof

- C* = h*(initial-node) [cost of optimal solution]
- Every node N such that f(N) < C* is eventually expanded.
 No node N such that f(N) > C* is ever expanded
- Every node N such that h(N) < C*-g(N) is eventually expanded. So, every node N such that h2(N) < C*-g(N) is expanded by A2*. Since h1(N) ≤ h2(N), N is also expanded by A1*

Effective Branching Factor

- It is used as a measure the effectiveness of a heuristic
- Let n be the total number of nodes expanded by A* for a particular problem and d the depth of the solution
- The effective branching factor b* is defined by n = 1 + b* + (b*)² +...+ (b*)^d

Experimental Results

(see R&N for details)

- 8-puzzle with:
 - h₁ = number of misplaced tiles
 - h₂ = sum of distances of tiles to their goal positions
- Random generation of many problem instances
- Average effective branching factors (number of expanded nodes):

d	IDS	A ₁ *	A ₂ *
2	2.45	1.79	1.79
6	2.73	1.34	1.30
12	2.78 (3,644,035)	1.42 (227)	1.24 (73)
16		1.45	1.25
20		1.47	1.27
24		1.48 (39,135)	1.26 (1,641)

How to create good heuristics?

- By solving relaxed problems at each node
- In the 8-puzzle, the sum of the distances of each tile to its goal position (h_2) corresponds to solving 8 simple problems:

 d_i is the length of the shortest path to move tile i to its goal position, ignoring the other tiles, e.g., $d_5 = 2$

$$h_2 = \Sigma_{i=1,\dots,8} d_i$$

It ignores negative interactions among tiles

Can we do better?

• For example, we could consider two more complex relaxed problems:

 d_{1234} = length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles

Can we do better?

• For example, we could consider two more complex relaxed problems:

 d_{1234} = length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, d₅₆₇₈ ignoring the other tiles

> → Several order-of-magnitude speedups for the 15- and 24-puzzle (see R&N)

On Completeness and Optimality

- A* with a <u>consistent heuristic</u> function has nice properties: completeness, optimality, no need to revisit states
- Theoretical completeness does not mean "practical" completeness if you must wait too long to get a solution (remember the time limit issue)
- So, if one can't design an accurate consistent heuristic, it may be better to settle for a nonadmissible heuristic that "works well in practice", even through completeness and optimality are no longer guaranteed

Iterative Deepening A* (IDA*)

- Idea: Reduce memory requirement of A* by applying cutoff on values of f
- Consistent heuristic function h
- Algorithm IDA*:
 - 1. Initialize cutoff to f(initial-node)
 - 2. Repeat:
 - a. Perform depth-first search by expanding all nodes N such that $f(N) \leq cutoff$
 - b. Reset cutoff to smallest value f of non-expanded (leaf) nodes

f(N) = g(N) + h(N) with h(N) = number of misplaced tiles

f(N) = g(N) + h(N) with h(N) = number of misplaced tiles

f(N) = g(N) + h(N) with h(N) = number of misplaced tiles

8-Puzzle

8-Puzzle

8-Puzzle

Experimental Results of IDA*

- IDA* is asymptotically same time as A* but only O(d) in space - versus O(bd) for A*
 - Also avoids overhead of sorted queue of nodes
- IDA* is simpler to implement no closed lists (limited open list).
- In Korf's 15-puzzle experiments IDA*: solved all problems, ran faster even though it generated more nodes than A*.

Advantages/Drawbacks of IDA*

Advantages:

- Still complete and optimal
- Requires less memory than A*
- Avoid the overhead to sort the Open List

Drawbacks:

- Can't avoid revisiting states not on the current path
- Available memory is poorly used
 (→ memory-bounded search, see R&N p. 101-104)

Local Search

- Light-memory search method
- No search tree; only the current state is represented!
- Only applicable to problems where the path is irrelevant (e.g., 8-queen), unless the path is encoded in the state
- Many similarities with optimisation techniques

Figure 3.2 FILES: figures/romania-distances.eps (Tue Nov 3 16:23:37 2009). A simplified road map of part of Romania.

Figure 3.23 FILES: figures/greedy-progress.eps (Tue Nov 3 16:22:55 2009). Stages in a greedy best-first tree search for Bucharest with the straight-line distance heuristic h_{SLD} . Nodes are labeled with their *h*-values.

Figure 3.24 FILES: figures/astar-progress.eps (Tue Nov 3 16:22:24 2009). Stages in an A^{*} search for Bucharest. Nodes are labeled with f = g + h. The h values are the straight-line distances to Bucharest taken from Figure 3.20.

RBFS - Recursive Best-First Search

- Mimics best-first search with linear space
- Similar to recursive depth-first
 - Limits recursion by keeping track of the f-value of the best alternative path from any ancestor node - one step lookahead
 - If current node exceeds this value, recursion unwinds back to the alternative path - same idea as contour
- As recursion unwinds, replaces f-value of node with best f- value of children
 - Allows to remember whether to re-expand path at later time
- Exploits information gathered from previous searches about minimum f so as to focus further searches

Figure 3.25 FILES: figures/f-circles.eps (Tue Nov 3 16:22:45 2009). Map of Romania showing contours at f = 380, f = 400, and f = 420, with Arad as the start state. Nodes inside a given contour have f-costs less than or equal to the contour value.

Figure 3.27 FILES: figures/rbfs-progress.eps (Tue Nov 3 16:23:27 2009). Stages in an RBFS search for the shortest route to Bucharest. The f-limit value for each recursive call is shown on top of each current node, and every node is labeled with its f-cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti) has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is expanded. This time, because the best alternative path (through Timisoara) costs at least 447, the expansion continues to Bucharest.

RBFS - Recursive Best-First Search

function RECURSIVE-BEST-FIRST-SEARCH(*problem*) returns a solution, or failure RBFS(MAKE-NODE(INITIAL-STATE[*problem*]), ∞)

function RBFS(problem, node, f-limit) returns a solution, or failure and a new f-cost limit
if GOAL-TEST[problem](state) then return node

 $successors \leftarrow \text{EXPAND}(node, problem)$

if successors is empty, then return failure, ∞

for each *s* in successors do $f[s] \leftarrow \max(g(s) + h(s), f[node])$

repeat

 $best \leftarrow$ the lowest f-value node in successors **if** f[best] > f-limit **then return** failure, f[best] $alternative \leftarrow$ the second-lowest f-value among successors result, $f[best] \leftarrow RBFS(problem, best, min(f-limit, alternative))$ **if** $result \neq failure$ **then return** result**end**

RBFS - Recursive Best-First Search

- More efficient than IDA* and still optimal
 - Best-first Search based on next best f-contour; fewer regeneration of nodes
 - Exploit results of search at a specific f-contour by saving next f- countour associated with a node who successors have been explored.
- Like IDA* still suffers from excessive node regeneration IDA* and RBFS not good for graphs
- Can't check for repeated states other than those on current path Both are hard to characterize in terms of expected time complexity

SMA* Simplified Memory Bounded A*

- The implementation of SMA* is very similar to the one of A*, the only difference is that when there isn't any space left, nodes with the highest f are pruned away.
- Because those nodes are deleted, the SMA* also has to remember the f of the best forgotten child with the parent node.
- When it seems that all explored paths are worse than such a forgotten path, the path is regenerated.

SMA* Simplified Memory Bounded A*

SMA* Simplified Memory Bounded A*

- It is complete, provided the available memory is sufficient to store the shallowest solution path.
- It is optimal, if enough memory is available to store the shallowest optimal solution path. Otherwise, it returns the best solution (if any) that can be reached with the available memory.
- Can keep switching back and forth between a set of candidate solution paths, only a few of which can fit in memory (thrashing)
- Memory limitations can make a problem intractable wrt time
- With enough memory for the entire tree, same as A*

Memory-bounded heuristic search

IDA* - Iterative-deepening A*

 Use f-cost as cutoff - at each iteration, the cutoff value is the smallest f-cost of any node that exceeded the cutoff on the previous iteration

Recursive best-first search (RBFS)

- Best-first search with only linear space
- Keep track of the f-value of the best alternative
- As the recursion unwinds, it forgets the sub-tree and back-up the fvalue of the best leaf as its parent's f-value.
- SMA*
 - Expanding the best leaf until memory is full
 - Drop the worst leaf, and back-up the value of this node to its parent.
 - Complete IF there is any reachable solution.
 - Optimal IF any optimal solution is reachable.

Steepest Descent

- 1) $S \leftarrow initial state$
- 2) Repeat:
 - a) $S' \leftarrow arg \min_{S' \in SUCCESSORS(S)} \{h(S')\}$
 - b) if GOAL?(S') return S'
 - c) if h(S') < h(S) then $S \leftarrow S'$ else return failure

Similar to:

- hill climbing with -h
- gradient descent over continuous space

Application: 8-Queen

- 1) Pick an initial state S at random with one queen in each column
- 2) Repeat k times:
 - a) If GOAL?(S) then return S
 - b) Pick an attacked queen Q at random
 - c) Move Q in its column to minimize the number of attacking queens \rightarrow new S [min-conflicts heuristic]
- 3) Return failure

Steepest Descent

- 1) $S \leftarrow initial state$
- 2) Repeat:
 - a) $S' \leftarrow arg \min_{S' \in SUCCESSORS(S)} \{h(S')\}$
 - b) if GOAL?(S') return S'
 - c) if h(S') < h(S) then $S \leftarrow S'$ else return failure

may easily get stuck in local minima

- à Random restart (as in n-queen example)
- à Monte Carlo descent

Monte Carlo Descent

- 1) $S \leftarrow initial state$
- 2) Repeat k times:
 - a) If GOAL?(S) then return S
 - b) $S' \leftarrow$ successor of S picked at random
 - c) if $h(S') \le h(S)$ then $S \leftarrow S'$
 - d) else
 - $\Delta h = h(S')-h(S)$
 - with probability ~ exp($-\Delta h/T$), where T is called the "temperature", do: S \leftarrow S' [Metropolis criterion]
- 3) Return failure

Simulated annealing lowers T over the k iterations. It starts with a large T and slowly decreases T

"Parallel" Local Search Techniques

They perform several local searches concurrently, but not independently:

- Beam search
- Genetic algorithms

See R&N, pages 115-119

When to Use Search Techniques?

1) The search space is small, and

- No other technique is available, or
- Developing a more efficient technique is not worth the effort
- 2) The search space is large, and
 - No other available technique is available, and
 - There exist "good" heuristics