
Constraint Satisfaction Problems (CSP) 
(Where we postpone making difficult decisions until they become easy to make)  

 
 R&N: Chap. 5

1



What we will try to do ... 

▪ Search techniques make choices in an often 
arbitrary order. Often little information is 
available to make each of them 

▪ In many problems, the same states can be reached 
independent of the order in which choices are 
made (“commutative” actions) 

▪ Can we solve such problems more efficiently by 
picking the order appropriately? Can we even avoid 
making any choice?

2



Constraint Propagation

3



Constraint Propagation

3



Constraint Propagation

▪ Place a queen in a square 
▪ Remove the attacked squares from future consideration

3



6 
6 
5 
5 

5 
5 
6

5   5     5    5   5   6   7

Constraint Propagation

▪ Count the number of non-attacked squares in every row 
and column 

4



6 
6 
5 
5 

5 
5 
6

5   5     5    5   5   6   7

Constraint Propagation

▪ Count the number of non-attacked squares in every row 
and column 

▪ Place a queen in a row or column with minimum number
4



6 
6 
5 
5 

5 
5 
6

5   5     5    5   5   6   7

Constraint Propagation

▪ Count the number of non-attacked squares in every row 
and column 

▪ Place a queen in a row or column with minimum number
▪ Remove the attacked squares from future consideration4



3 
4 

4 

3 
3 
5

4   3           3   3   4   5

▪ Repeat

Constraint Propagation

5



3 
4 

4 

3 
3 
5

4   3           3   3   4   5

▪ Repeat

Constraint Propagation

5



3 
4 

4 

3 
3 
5

4   3           3   3   4   5

▪ Repeat

Constraint Propagation

5



4 

3 

2 
3 
4

3   3                3   4   3

Constraint Propagation

6



4 

3 

2 
3 
4

3   3                3   4   3

Constraint Propagation

6



4 

3 

2 
3 
4

3   3                3   4   3

Constraint Propagation

6



4 

2 

2 
1 
3

3   3                     3   1

Constraint Propagation

7



4 

2 

2 
1 
3

3   3                     3   1

Constraint Propagation

7



4 

2 

2 
1 
3

3   3                     3   1

Constraint Propagation

7



2 

2 

1

2   2   1

Constraint Propagation

8



2 

2 

1

2   2   1

Constraint Propagation

8



2 

2 

1

2   2   1

Constraint Propagation

8



Constraint Propagation

2 

1

1   2

9



Constraint Propagation

2 

1

1   2

9



Constraint Propagation

2 

1

1   2

9



Constraint Propagation

1 

1   

10



Constraint Propagation

1 

1   

10



Constraint Propagation

11



What do we need?

▪ More than just a successor function and a goal 
test 

▪ We also need: 
• A means to propagate the constraints imposed by one 

queen’s position on the positions of the other queens  
• An early failure test 

→  Explicit representation of constraints 
→  Constraint propagation algorithms

12



Constraint Satisfaction Problem (CSP)

▪ Set of variables {X1, X2, …, Xn} 

▪ Each variable Xi has a domain Di of possible 
values. Usually, Di is finite 

▪ Set of constraints {C1, C2, …, Cp} 

▪ Each constraint relates a subset of variables by 
specifying the valid combinations of their values  

▪ Goal: Assign a value to every variable such that 
all constraints are satisfied

13



Map Coloring

▪  7 variables {WA,NT,SA,Q,NSW,V,T} 
▪  Each variable has the same domain:  

 {red, green, blue} 
▪  No two adjacent variables have the same value: 

 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q,  
 SA≠NSW, SA≠V, Q≠NSW, NSW≠V

WA

NT

SA

Q

NSW
V

T

14



Map Coloring

▪  7 variables {WA,NT,SA,Q,NSW,V,T} 
▪  Each variable has the same domain:  

 {red, green, blue} 
▪  No two adjacent variables have the same value: 

 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q,  
 SA≠NSW, SA≠V, Q≠NSW, NSW≠V

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

Q

NSW
V

T

14



8-Queen Problem

▪  8 variables Xi, i = 1 to 8 

▪  The domain of each variable is: {1,2,…,8} 
▪  Constraints are of the forms: 

• Xi = k ➔ Xj ≠ k  for all j = 1 to 8, j≠i 
• Similar constraints for diagonals

15



8-Queen Problem

▪  8 variables Xi, i = 1 to 8 

▪  The domain of each variable is: {1,2,…,8} 
▪  Constraints are of the forms: 

• Xi = k ➔ Xj ≠ k  for all j = 1 to 8, j≠i 
• Similar constraints for diagonals

All constraints are binary

15



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}

16



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house 
The Spaniard has a Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s

16



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house 
The Spaniard has a Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s

Who owns the Zebra? 
Who drinks Water?

16



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house 
The Spaniard has a Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s

∀i,j∈[1,5], i≠j, Ni ≠ Nj

∀i,j∈[1,5], i≠j, Ci ≠ Cj 

 ...

17



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house 
The Spaniard has a Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s

(Ni = English) ⇔ (Ci = Red)

18



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house 
The Spaniard has a Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s

(Ni = English) ⇔ (Ci = Red)

(Ni = Japanese) ⇔ (Ji = Painter)

(N1 = Norwegian)

(Ci = White) ⇔ (Ci+1 = Green) 
(C5 ≠ White) 
(C1 ≠ Green)

18



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house 
The Spaniard has a Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s

(Ni = English) ⇔ (Ci = Red)

(Ni = Japanese) ⇔ (Ji = Painter)

(N1 = Norwegian)

left as an exercise

(Ci = White) ⇔ (Ci+1 = Green) 
(C5 ≠ White) 
(C1 ≠ Green)

18



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house 
The Spaniard has a Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s

(Ni = English) ⇔ (Ci = Red)

(Ni = Japanese) ⇔ (Ji = Painter)

(N1 = Norwegian)

(Ci = White) ⇔ (Ci+1 = Green) 
(C5 ≠ White) 
(C1 ≠ Green)

unary constraints19



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house 
The Spaniard has a Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left ! N1 = Norwegian 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk ! D3 = Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s 20



Street Puzzle
1 2 3 4 5

Ni = {English, Spaniard, Japanese, Italian, Norwegian} 
Ci  = {Red, Green, White, Yellow, Blue} 
Di = {Tea, Coffee, Milk, Fruit-juice, Water} 
Ji = {Painter, Sculptor, Diplomat, Violinist, Doctor} 
Ai = {Dog, Snails, Fox, Horse, Zebra}
The Englishman lives in the Red house ! C1 ≠ Red 
The Spaniard has a Dog ! A1 ≠ Dog 
The Japanese is a Painter 
The Italian drinks Tea 
The Norwegian lives in the first house on the left ! N1 = Norwegian 
The owner of the Green house drinks Coffee 
The Green house is on the right of the White house 
The Sculptor breeds Snails 
The Diplomat lives in the Yellow house 
The owner of the middle house drinks Milk ! D3 = Milk 
The Norwegian lives next door to the Blue house 
The Violinist drinks Fruit juice ! J3 ≠ Violinist 
The Fox is in the house next to the Doctor’s 
The Horse is next to the Diplomat’s 21



Task Scheduling
T1

T2

T3

T4

22



Task Scheduling

Four tasks T1, T2, T3, and T4 are related by time constraints: 

• T1 must be done during T3 

• T2 must be achieved before T1 starts 

• T2 must overlap with T3 

• T4 must start after T1 is complete 

▪ Are the constraints compatible? 
▪ What are the possible time relations between two tasks? 
▪ What if the tasks use resources in limited supply? 

How to formulate this problem as a CSP?       

T1

T2

T3

T4

22



3-SAT

▪ n Boolean variables u1, ..., un 

▪ p constraints of the form  
    ui* ∨ uj* ∨ uk*= 1 

where u* stands for either u or ¬u 

▪ Known to be NP-complete

23



Finite vs. Infinite CSP

▪ Finite CSP: each variable has a finite 
domain of values 

▪ Infinite CSP: some or all variables have an 
infinite domain  
E.g., linear programming problems over the reals: 

▪ We will only consider finite CSP 

=

≤

ni,ni,1 1 i,2 2 i,0

nj,nj,1 1 j,2 2 j,0

for i = 1, 2, ..., p : a x +a x +...+a x  a
for j = 1, 2, ..., q : b x +b x +...+b x  b

24



CSP as a Search Problem

25



CSP as a Search Problem
▪ n variables X1, ..., Xn

25



CSP as a Search Problem
▪ n variables X1, ..., Xn

▪ Valid assignment:     {Xi1 " vi1, ..., Xik " vik},    0≤ k ≤ n,  
such that the values vi1, ..., vik satisfy all constraints relating the 
variables Xi1, ..., Xik

▪ Complete assignment: one where k = n  
[if all variable domains have size d, there are O(dn) complete 
assignments]

▪ States: valid assignments
▪ Initial state: empty assignment {}, i.e. k = 0
▪ Successor of a state: 
 {Xi1"vi1, ..., Xik"vik} ! {Xi1"vi1, ..., Xik"vik, Xik+1"vik+1}

▪ Goal test: k = n 25



{Xi1"vi1, ..., Xik"vik}

r = n−k variables with s values ! r×s branching factor

{Xi1"vi1, ..., Xik"vik, Xik+1"vik+1}

26



A Key property of CSP: Commutativity

The order in which variables are assigned values has 
no impact on the reachable complete valid assignments

27



A Key property of CSP: Commutativity

The order in which variables are assigned values has 
no impact on the reachable complete valid assignments

Hence: 

1) One can expand a node N by first selecting one 
variable X not in the assignment A associated 
with N and then assigning every value v in the 
domain of X  
[→ big reduction in branching factor]

27



{Xi1"vi1, ..., Xik"vik}

r = n-k variables with s values ! r×s branching factor

{Xi1"vi1, ..., Xik"vik, Xik+1"vik+1}

28



{Xi1"vi1, ..., Xik"vik}

{Xi1"vi1, ..., Xik"vik, Xik+1"vik+1}

r = n−k variables with s values ! s branching factor

28



{Xi1"vi1, ..., Xik"vik}

{Xi1"vi1, ..., Xik"vik, Xik+1"vik+1}

r = n−k variables with s values ! s branching factor

The depth of the solutions in the search tree is un-changed (n) 
28



▪ 4 variables X1, ..., X4 

▪ Let the valid assignment of N be:  
     A = {X1 " v1, X3 " v3}  

▪ For example pick variable X4 

▪ Let the domain of X4 be {v4,1, v4,2, v4,3} 
▪ The successors of A are all the valid assignments among: 
       {X1 " v1, X3 " v3 , X4 " v4,1 } 
   {X1 " v1, X3 " v3 , X4 " v4,2 }  
   {X1 " v1, X3 " v3 , X4 " v4,2 } 

29



A Key property of CSP: Commutativity

Hence: 

1) One can expand a node N by first selecting one variable X not 
in the assignment A associated with N and then assigning 
every value v in the domain of X  
[→ big reduction in branching factor]  

2) One need not store the path to a node 

 → Backtracking search algorithm

The order in which variables are assigned values 
has no impact on the reachable complete valid 
assignments

30



Backtracking Search

Essentially a simplified depth-first 
algorithm using recursion

31



Backtracking Search 
(3 variables)

32



Backtracking Search 
(3 variables)

Assignment = {}
32



Backtracking Search 
(3 variables)

Assignment = {(X1,v11)}

X1

v11

33



Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

34



Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

X2

35



Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

X2 Assume that no value of X2 

leads to a valid assignment

35



Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

X2 Assume that no value of X2 

leads to a valid assignment

Then, the  search algorithm  
backtracks to the previous variable 
(X3) and tries another value

35



Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32v31

X2

36



Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

37



Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32

X2

Assume again that no value of  
X2 leads to a valid assignment

v31

X2

37



Backtracking Search 
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32

X2

Assume again that no value of  
X2 leads to a valid assignment

The  search algorithm  
backtracks to the previous 
variable (X3) and tries another 
value. But assume that X3 has 
only two possible values. The 
algorithm backtracks to X1v31

X2

37



Backtracking Search 
(3 variables)

Assignment = {(X1,v12)}

X1

v11

X3

v32

X2

v31

X2

v12

38



Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

39



Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

The algorithm need not consider 
the variables in the same order in 
this sub-tree as in the other

40



Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

41



Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3
The algorithm need  
not consider the values 
of X3 in the same order  
in this sub-tree

42



Backtracking Search 
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3
Since there are only 
three variables, the 
assignment is complete

43



Backtracking Algorithm

CSP-BACKTRACKING(A) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

1. Add (X"v) to A 
2. If A is valid then 

1. result " CSP-BACKTRACKING(A) 
» If result ≠ failure then return result 

3. Remove (X"v) from A 
– Return failure 

Call CSP-BACKTRACKING({})

44



Backtracking Algorithm

CSP-BACKTRACKING(A) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

1. Add (X"v) to A 
2. If A is valid then 

1. result " CSP-BACKTRACKING(A) 
» If result ≠ failure then return result 

3. Remove (X"v) from A 
– Return failure 

Call CSP-BACKTRACKING({})
[This recursive algorithm keeps too much data in memory.  
An iterative version could save memory (left as an exercise)] 44



Critical Questions for the Efficiency of 
CSP-Backtracking 

45

CSP-BACKTRACKING(A) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

1. Add (X"v) to A 
2. If A is valid then 

1. result " CSP-BACKTRACKING(A) 
» If result ≠ failure then return result 

3. Remove (X"v) from A 
– Return failure 

Call CSP-BACKTRACKING({})



Critical Questions for the Efficiency of 
CSP-Backtracking 

1) Which variable X should be assigned a value next?  
The current assignment may not lead to any solution, but 
the algorithm still does know it. Selecting the right 
variable to which to assign a value may help discover the 
contradiction more quickly 

2) In which order should X’s values be assigned?  
The current assignment may be part of a solution. 
Selecting the right value to assign to X may help discover 
this solution more quickly 

More on these questions in a short while ...
46



Critical Questions for the Efficiency of 
CSP-Backtracking 

1) Which variable X should be assigned a value next?  
The current assignment may not lead to any solution, but 
the algorithm does not know it yet. Selecting the right 
variable X may help discover the contradiction more 
quickly 

2) In which order should X’s values be assigned?  
The current assignment may be part of a solution. 
Selecting the right value to assign to X may help discover 
this solution more quickly 

More on these questions in a short while ...
47



Critical Questions for the Efficiency of 
CSP-Backtracking 

1) Which variable X should be assigned a value next?  
The current assignment may not lead to any solution, but 
the algorithm does not know it yet. Selecting the right 
variable X may help discover the contradiction more 
quickly 

2) In which order should X’s values be assigned?  
The current assignment may be part of a solution. 
Selecting the right value to assign to X may help discover 
this solution more quickly 

More on these questions in a short while ...
48



Critical Questions for the Efficiency of 
CSP-Backtracking 

1) Which variable X should be assigned a value next?  
The current assignment may not lead to any solution, but 
the algorithm does not know it yet. Selecting the right 
variable X may help discover the contradiction more 
quickly 

2) In which order should X’s values be assigned?  
The current assignment may be part of a solution. 
Selecting the right value to assign to X may help discover 
this solution more quickly 

More on these questions very soon ...
49



Forward Checking

Assigning the value 5 to X1  
leads to removing values from  
the domains of X2, X3, ..., X8 

1 
2 
3 
4 
5 
6 
7 
8 X1 X2 X3 X4 X5 X6 X7 X8

A simple constraint-propagation technique: 

50



Forward Checking in Map Coloring

WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Constraint graph

51



WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

52



WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW

V

Forward Checking in Map Coloring

Forward checking removes the value Red of NT and of SA

52



WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R GB G RGB RGB GB RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

53



WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

R B G RB B B RGB

Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

54



WA NT Q NSW V SA T

RGB RGB RGB RGB RGB RGB RGB

R GB RGB RGB RGB GB RGB

R B G RB RGB B RGB

R B G RB B B RGB

Forward Checking in Map Coloring

Empty set: the current assignment  
     {(WA " R), (Q " G), (V " B)} 
does not lead to a solution

55



Forward Checking (General Form)

Whenever a pair (X"v) is added to assignment A do: 

     For each variable Y not in A do: 
        For every constraint C relating Y to    
           the variables in A do:    
                  Remove all values from Y’s domain   
                  that do not satisfy C  

56



Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

d. Remove (X"v) from A 
5. Return failure

57



No need any more to  
verify that A is valid

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

d. Remove (X"v) from A 
5. Return failure

58



Need to pass down the  
updated variable domains

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

d. Remove (X"v) from A 
5. Return failure

59



Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

1. Remove (X"v) from A 
5. Return failure

60



61



1) Which variable Xi should be assigned a value 
next?  
! Most-constrained-variable heuristic 
! Most-constraining-variable heuristic

61



1) Which variable Xi should be assigned a value 
next?  
! Most-constrained-variable heuristic 
! Most-constraining-variable heuristic

2) In which order should its values be assigned?  
! Least-constraining-value heuristic

These heuristics can be quite confusing

61



1) Which variable Xi should be assigned a value 
next?  
! Most-constrained-variable heuristic 
! Most-constraining-variable heuristic

2) In which order should its values be assigned?  
! Least-constraining-value heuristic

These heuristics can be quite confusing

61



1) Which variable Xi should be assigned a value 
next?  
! Most-constrained-variable heuristic 
! Most-constraining-variable heuristic

2) In which order should its values be assigned?  
! Least-constraining-value heuristic

These heuristics can be quite confusing

Keep in mind that all variables must eventually 
get a value, while only one value from a domain 
must be assigned to each variable 61



Most-Constrained-Variable Heuristic 

62



Most-Constrained-Variable Heuristic 

1) Which variable Xi should be assigned a value 
next?

62



Most-Constrained-Variable Heuristic 

1) Which variable Xi should be assigned a value 
next?

62



Most-Constrained-Variable Heuristic 

1) Which variable Xi should be assigned a value 
next?

 Select the variable with the smallest 
remaining domain

62



Most-Constrained-Variable Heuristic 

1) Which variable Xi should be assigned a value 
next?

 Select the variable with the smallest 
remaining domain

62



Most-Constrained-Variable Heuristic 

1) Which variable Xi should be assigned a value 
next?

 Select the variable with the smallest 
remaining domain

 [Rationale: Minimize the branching factor]

62



8-Queens

4       3      2  3  4 Numbers 
of values for 
each un-assigned  
variable

63



8-Queens

4       3      2  3  4 Numbers 
of values for 
each un-assigned  
variable

63



8-Queens

4       3      2  3  4 Numbers 
of values for 
each un-assigned  
variable

New assignment

63



8-Queens

4       3      2  3  4 Numbers 
of values for 
each un-assigned  
variable

New assignment

Forward checking

63



8-Queens

3       2          1  3 New numbers 
of values for 
each un-assigned  
variable

64



8-Queens

3       2          1  3 New numbers 
of values for 
each un-assigned  
variable

New assignment

64



8-Queens

3       2          1  3 New numbers 
of values for 
each un-assigned  
variable

New assignment

Forward checking

64



Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

65



Map Coloring

▪ SA’s remaining domain has size 1 (value Blue remaining)

WA

NT

SA

Q

NSW
V

T

WA

NT

65



Map Coloring

▪ SA’s remaining domain has size 1 (value Blue remaining)
▪ Q’s remaining domain has size 2

WA

NT

SA

Q

NSW
V

T

WA

NT

65



Map Coloring

▪ SA’s remaining domain has size 1 (value Blue remaining)
▪ Q’s remaining domain has size 2

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

65



Map Coloring

▪ SA’s remaining domain has size 1 (value Blue remaining)
▪ Q’s remaining domain has size 2
▪ NSW’s, V’s, and T’s remaining domains have size 3

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

65



Map Coloring

▪ SA’s remaining domain has size 1 (value Blue remaining)
▪ Q’s remaining domain has size 2
▪ NSW’s, V’s, and T’s remaining domains have size 3

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

65



Map Coloring

▪ SA’s remaining domain has size 1 (value Blue remaining)
▪ Q’s remaining domain has size 2
▪ NSW’s, V’s, and T’s remaining domains have size 3

! Select SA

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

65



Most-Constraining-Variable Heuristic 

1) Which variable Xi should be assigned a value next? 

 Among the variables with the smallest 
remaining domains (ties with respect to the 
most-constrained-variable heuristic), select 
the one that appears in the largest number 
of constraints on variables not in the 
current assignment 

 [Rationale: Increase future elimination of values, 
to reduce future branching factors] 66



Map Coloring

WA

NT

SA

Q

NSW
V

T

67



Map Coloring

WA

NT

SA

Q

NSW
V

T

▪ Before any value has been assigned, all variables 
have a domain of size 3, but SA is involved in 
more constraints (5) than any other variable

67



Map Coloring

WA

NT

SA

Q

NSW
V

T

SA

▪ Before any value has been assigned, all variables 
have a domain of size 3, but SA is involved in 
more constraints (5) than any other variable

67



Map Coloring

WA

NT

SA

Q

NSW
V

T

SA

▪ Before any value has been assigned, all variables 
have a domain of size 3, but SA is involved in 
more constraints (5) than any other variable

! Select SA and assign a value to it (e.g., Blue)
67



Modified Backtracking Algorithm

68

CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

1. Remove (X"v) from A 

5. Return failure



CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

1. Remove (X"v) from A 

5. Return failure

Modified Backtracking Algorithm

 1) Most-constrained-variable heuristic 
2) Most-constraining-variable heuristic 

69

1) Select the variable with the smallest remaining domain 
2) Select the variable that appears in the largest number of  

constraints on variables not in the current assignment



CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

1. Remove (X"v) from A 

5. Return failure

Modified Backtracking Algorithm

 1) Most-constrained-variable heuristic 
2) Most-constraining-variable heuristic 

 
3) Least-constraining-value heuristic

70

1) Select the variable with the smallest remaining domain 
2) Select the variable that appears in the largest number of  

constraints on variables not in the current assignment



Least-Constraining-Value Heuristic 

71



Least-Constraining-Value Heuristic 
2) In which order should X’s values be assigned?

71



Least-Constraining-Value Heuristic 
2) In which order should X’s values be assigned?

 Select the value of X that removes the smallest 
number of values from the domains of those 
variables which are not in the current assignment

 [Rationale: Since only one value will eventually be 
assigned to X, pick the least-constraining value first, 
since it is the most likely not to lead to an invalid 
assignment]

 [Note: Using this heuristic requires performing a forward-
checking step for every value, not just for the selected value]

71



Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

72



Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

▪ Q’s domain has two remaining values: Blue and Red

72



{}

Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

▪ Q’s domain has two remaining values: Blue and Red

72



{}

Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

▪ Q’s domain has two remaining values: Blue and Red
▪ Assigning Blue to Q would leave 0 value for SA, while 

assigning Red would leave 1 value

72



{Blue}

Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

▪ Q’s domain has two remaining values: Blue and Red

73



{Blue}

Map Coloring

WA

NT

SA

Q

NSW
V

T

WA

NT

▪ Q’s domain has two remaining values: Blue and Red
▪ Assigning Blue to Q would leave 0 value for SA, while 

assigning Red would leave 1 value
! So, assign Red to Q

73



Modified Backtracking Algorithm

74

CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. X " select a variable not in A 
3. D " select an ordering on the domain of X 
4. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

1. Remove (X"v) from A 

5. Return failure

 1) Most-constrained-variable heuristic 
2) Most-constraining-variable heuristic 

 
3) Least-constraining-value heuristic



Constraint Propagation 
 

(Where a better exploitation of the constraints further reduces the need to make decisions)  
 

75



Constraint Propagation …

    … is the process of determining how the 
constraints and the possible values of one 
variable affect the possible values of other 
variables 

It is an important form of “least-commitment” 
reasoning 

76



Forward checking is only on simple form of 
constraint propagation

When a pair (X→v) is added to assignment A do: 
For each variable Y not in A do: 

For every constraint C relating Y to variables in A do: 
Remove all values from Y’s domain that do not satisfy C 

77

▪ n = number of variables 
▪ d = size of initial domains 
▪ s = maximum number of constraints 

involving a given variable (s ≤ n-1) 
▪ Forward checking takes O(nsd) time



WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

Forward Checking in Map Coloring

Empty set: the current assignment  
     {(WA " R), (Q " G), (V " B)} 
does not lead to a solution

78



Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward  
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

79



Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward  
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

79



Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward  
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

79



Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward  
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

79



Forward Checking in Map Coloring

T
WA

NT

SA

Q

NSW

V

Contradiction that forward  
checking did not detect

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB
R GB G RGB RGB GB RGB
R B G RB B B RGB

Detecting this contradiction requires a more  
powerful constraint propagation technique

80



Constraint Propagation  
for Binary Constraints

REMOVE-VALUES(X,Y) 
1.  removed " false 
2.  For every value v in the domain of Y do 

– If there is no value u in the domain of X such that the constraint on 
(X,Y) is satisfied then 
1.  Remove v from Y‘s domain 
2.  removed " true 

3.  Return removed 

81

REMOVE-VALUES(X,Y) removes every value of Y that is  
incompatible with the values of X



Constraint Propagation  
for Binary Constraints

AC3  
1. Initialize queue Q with all variables (not yet instantiated) 

2. While Q ≠ ∅ do 
a. X " Remove(Q) 
– For every (not yet instantiated) variable Y related to X 

by a (binary) constraint do 
1. If REMOVE-VALUES(X,Y) then  

a. If Y’s domain = ∅ then exit 
1. Insert(Y,Q)

82



Complexity Analysis of AC3
▪ n = number of variables 
▪ d = size of initial domains 
▪ s = maximum number of 

constraints involving a given 
variable (s ≤ n-1) 

▪ Each variable is inserted in Q 
up to d times 

▪ REMOVE-VALUES takes O(d2) time 
▪ AC3 takes O(n×d×s×d2) = 

O(n×s×d3) time 
▪ Usually more expensive than 

forward checking

REMOVE-VALUES(X,Y)
1. removed ! false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that 
the constraint on (x,y) is satisfied then
a. Remove v from Y‘s domain
b. removed ! true

3. Return removed
83

AC3  
1. Initialize queue Q with all variables (not yet 

instantiated) 

2. While Q ≠ ∅ do 
a. X " Remove(Q) 
• For every (not yet instantiated) variable Y 

related to X by a (binary) constraint do 
1. If REMOVE-VALUES(X,Y) then  

a. If Y’s domain = ∅ then exit 
1. Insert(Y,Q)



Is AC3 all that we need?

84



Is AC3 all that we need?
▪ No !!

X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

84



Is AC3 all that we need?
▪ No !!
▪ AC3 can’t detect all contradictions among binary 

constraints

X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

84



Is AC3 all that we need?
▪ No !! 
▪ AC3 can’t detect all contradictions among binary 

constraints
X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

REMOVE-VALUES(X,Y) 
1.  removed " false 
2.  For every value v in the domain of Y do 

– If there is no value u in the domain of X such 
that the constraint on (X,Y) is satisfied then 
1.  Remove v from Y‘s domain 
2.  removed " true 

•  Return removed
85



Is AC3 all that we need?
▪ No !! 
▪ AC3 can’t detect all contradictions among binary 

constraints
X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

REMOVE-VALUES(X,Y) 
1.  removed " false 
2.  For every value v in the domain of Y do 

– If there is no value u in the domain of X such 
that the constraint on (X,Y) is satisfied then 
1.  Remove v from Y‘s domain 
2.  removed " true 

•  Return removed
86



Is AC3 all that we need?
▪ No !! 
▪ AC3 can’t detect all contradictions among binary 

constraints
X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

REMOVE-VALUES(X,Y) 
1.  removed " false 
2.  For every value v in the domain of Y do 

– If there is no value u in the domain of X such 
that the constraint on (X,Y) is satisfied then 
1.  Remove v from Y‘s domain 
2.  removed " true 

•  Return removed

REMOVE-VALUES(X,Y,Z) 
1.  removed " false 
2.  For every value w in the domain of Z do 

– If there is no pair (u,v) of values in the domains 
of X and Y verifying the constraint on (X,Y) such 
that the constraints on (X,Z) and (Y,Z) are 
satisfied then 
•  Remove w from Z‘s domain 
1.  removed " true 

3.  Return removed

86



Is AC3 all that we need?
▪ No !! 
▪ AC3 can’t detect all contradictions among binary 

constraints 

▪ Not all constraints are binary

X

Z

Y
X≠Y

X≠Z Y≠Z

{1, 2}

{1, 2}{1, 2}

87



Tradeoff

Generalizing the constraint propagation algorithm 
increases its time complexity 

Tradeoff between time spent in  
backtracking search and time spent in  
constraint propagation 

A good tradeoff when all or most constraints are 
binary is often to combine backtracking with forward 
checking and/or AC3 (with REMOVE-VALUES for two 
variables)

88



Modified Backtracking Algorithm with AC3

CSP-BACKTRACKING(A, var-domains) 
1. If assignment A is complete then return A 
2. Run AC3 and update var-domains accordingly 
3. If a variable has an empty domain then return failure 
4. X " select a variable not in A 
5. D " select an ordering on the domain of X 
6. For each value v in D do  

a. Add (X"v) to A 
b. var-domains " forward checking(var-domains, X, v, A) 
c. If no variable has an empty domain then  

(i)  result " CSP-BACKTRACKING(A, var-domains)  
(ii) If result ≠ failure then return result 

• Remove (X"v) from A 
7. Return failure 89



A Complete Example:4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

90



A Complete Example:4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

1)  The modified backtracking algorithm starts by calling AC3, which 
removes no value

90



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

2) The backtracking algorithm then selects a variable and a value for this 
variable. No heuristic helps in this selection. X1 and the value 1 are 
arbitrarily selected 91



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

3) The algorithm performs forward checking, which eliminates 2 values in 
each other variable’s domain

92



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

4) The algorithm calls AC3

93



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the domain of X2

X2 = 3 is 
incompatible 
with any of the  
remaining values 
of X3

REMOVE-VALUES(X,Y)
1. removed ! false
2. For every value v in the domain of Y do

– If there is no value u in the domain of X such that 
the constraint on (x,y) is satisfied then
a. Remove v from Y‘s domain
b. removed ! true

3. Return removed

94



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the domain of X2, and 2 
from the domain of X3   

95



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

4) The algorithm calls AC3, which eliminates 3 from the domain of X2, and 2 
from the domain of X3, and 4 from the domain of X3

96



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

5) The domain of X3 is empty ! backtracking

97



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

6) The algorithm removes 1 from X1’s domain and assign 2 to X1

98



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

7) The algorithm performs forward checking

99



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

8) The algorithm calls AC3

100



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

8) The algorithm calls AC3, which reduces the domains of X3 and X4 to a 
single value

101



4-Queens Problem

1

3

2

4

32 41

X1 

{1,2,3,4}

X3 

{1,2,3,4}
X4 

{1,2,3,4}

X2 

{1,2,3,4}

8) The algorithm calls AC3, which reduces the domains of X3 and X4 to a 
single value

101



Applications of CSP

▪ CSP techniques are widely used 
▪ Applications include:  

• Crew assignments to flights 
• Management of transportation fleet 
• Flight/rail schedules 
• Job shop scheduling  
• Task scheduling in port operations 
• Design, including spatial layout design 
• Radiosurgical procedures

102


