Constraint Satisfaction Problems (CSP)

(Where we postpone making difficult decisions until they become easy to make)

R\&N: Chap. 5

What we will try to do

- Search techniques make choices in an often arbitrary order. Often little information is available to make each of them
- In many problems, the same states can be reached independent of the order in which choices are made ("commutative" actions)
- Can we solve such problems more efficiently by picking the order appropriately? Can we even avoid making any choice?

Constraint Propagation

Constraint Propagation

Constraint Propagation

- Place a queen in a square
- Remove the attacked squares from future consideration

Constraint Propagation

- Count the number of non-attacked squares in every row and column

Constraint Propagation

- Count the number of non-attacked squares in every row and column
- Place a queen in a row or column with minimum number

Constraint Propagation

- Count the number of non-attacked squares in every row and column
- Place a queen in a row or column with minimum number
- Remove the attacked squares from future consideration

Constraint Propagation

- Repeat

Constraint Propagation

- Repeat

Constraint Propagation

- Repeat

Constraint Propagation

What do we need?

- More than just a successor function and a goal test
- We also need:
- A means to propagate the constraints imposed by one queen's position on the positions of the other queens
- An early failure test
\rightarrow Explicit representation of constraints
\rightarrow Constraint propagation algorithms

Constraint Satisfaction Problem (CSP)

- Set of variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
- Each variable X_{i} has a domain D_{i} of possible values. Usually, D_{i} is finite
- Set of constraints $\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$
- Each constraint relates a subset of variables by specifying the valid combinations of their values
- Goal: Assign a value to every variable such that all constraints are satisfied

Map Coloring

- 7 variables $\{W A, N T, S A, Q, N S W, V, T\}$
- Each variable has the same domain:
\{red, green, blue\}
- No two adjacent variables have the same value:
$W A \neq N T, W A \neq S A, N T \neq S A, N T \neq Q, S A \neq Q$,
SA $\neq N S W, ~ S A \neq V, Q \neq N S W, N S W \neq V$

Map Coloring

- 7 variables $\{W A, N T, S A, Q, N S W, V, T\}$
- Each variable has the same domain:
\{red, green, blue\}
- No two adjacent variables have the same value:
$W A \neq N T, W A \neq S A, N T \neq S A, N T \neq Q, S A \neq Q$,
SA $\neq N S W, ~ S A \neq V, Q \neq N S W, N S W \neq V$

8-Queen Problem

- 8 variables $X_{i}, i=1$ to 8
- The domain of each variable is: $\{1,2, \ldots, 8\}$
- Constraints are of the forms:
- $X_{i}=k \rightarrow X_{j} \neq k$ for all $j=1$ to $8, j \neq i$
- Similar constraints for diagonals

8-Queen Problem

- 8 variables $X_{i}, i=1$ to 8
- The domain of each variable is: $\{1,2, \ldots, 8\}$
- Constraints are of the forms:

$$
\left\{\cdot X_{i}=k \rightarrow X_{j} \neq k \text { for all } j=1 \text { to } 8, j \neq i\right.
$$

- Similar constraints for diagonals

All constraints are binary

Street Puzzle

$\mathbf{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$\mathrm{C}_{\mathrm{i}}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{$ Tea, Coffee, Milk, Fruit-juice, Water $\}$
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra $\}$

Street Puzzle

$\mathbf{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$\mathrm{C}_{\mathrm{i}}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{T e a$, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra\}
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

1
 \square 3 4 5

$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$\mathrm{D}_{\mathrm{i}}=\{$ Tea, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra\}
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea

Who owns the Zebra?
Who drinks Water?

The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

1

$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$\mathrm{D}_{\mathrm{i}}=\{$ Tea, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra $\}$
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{T e a$, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra $\}$
The Englishman lives in the Red house $\cdots \cdots\left(N_{i}=\right.$ English $) \Leftrightarrow\left(C_{i}=\right.$ Red $)$
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

1
 \square 3 4 5

$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{$ Tea, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra\}
The Englishman lives in the Red house $\cdots \cdots\left(N_{i}=\right.$ English $) \Leftrightarrow\left(C_{i}=\right.$ Red $)$
The Spaniard has a Dog
The Japanese is a Painter

$$
\left(N_{i}=\text { Japanese }\right) \Leftrightarrow\left(J_{i}=\text { Painter }\right)
$$

The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk

$$
\left\{\begin{array}{l}
\left(C_{i}=\text { White }\right) \Leftrightarrow\left(C_{i+1}=\text { Green }\right) \\
\left(C_{5} \neq \text { White }\right)
\end{array}\right.
$$

The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

1
 \square 3 4 5

$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$\mathrm{D}_{\mathrm{i}}=\{$ Tea, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra\}
The Englishman lives in the Red house $\cdots \cdots\left(N_{i}=\right.$ English $) \Leftrightarrow\left(C_{i}=\right.$ Red $)$
The Spaniard has a Dog
The Japanese is a Painter

$$
\left(N_{i}=\text { Japanese }\right) \Leftrightarrow\left(J_{i}=\text { Painter }\right)
$$

The Italian drinks Tea
The Norwegian lives in the first house on the left $\cdots\left(N_{1}=\right.$ Norwegian $)$
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(C_{i}=\text { White }\right) \Leftrightarrow\left(C_{i+1}=\text { Green }\right) \\
\left(C_{5} \neq \text { White }\right)
\end{array}\right. \\
& \left(C_{1} \neq \text { Green }\right)
\end{aligned}
$$

The Norwegian lives next door to the Blue house $\quad\left(C_{5} \neq\right.$ White $)$
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

1 2 3 4 5

$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$\mathrm{C}_{\mathrm{i}}=\{$ Red, Green, White, Yellow, Blue $\}$
$\mathrm{D}_{\mathrm{i}}=\{$ Tea, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra\}
The Englishman lives in the Red house $\cdots \cdots\left(N_{i}=\right.$ English $) \Leftrightarrow\left(C_{i}=\right.$ Red $)$
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk

$$
\left\{\begin{array}{l}
\left(C_{i}=\text { White }\right) \Leftrightarrow\left(C_{i+1}=\text { Green }\right) \\
\left(C_{5} \neq \text { White }\right) \\
\left(C_{1} \neq \text { Green }\right)
\end{array}\right.
$$

The Horse is next to the Diplomat's

Street Puzzle

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

$\mathrm{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{$ Tea, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra\}
The Englishman lives in the Red house
The Spaniard has a Dog
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left $\rightarrow \mathrm{N}_{1}=$ Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk $\rightarrow D_{3}=$ Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Street Puzzle

1

$\mathbf{N}_{\mathrm{i}}=$ \{English, Spaniard, Japanese, Italian, Norwegian\}
$C_{i}=\{$ Red, Green, White, Yellow, Blue $\}$
$D_{i}=\{$ Tea, Coffee, Milk, Fruit-juice, Water\}
$\mathrm{J}_{\mathrm{i}}=\{$ Painter, Sculptor, Diplomat, Violinist, Doctor\}
$A_{i}=\{$ Dog, Snails, Fox, Horse, Zebra\}
The Englishman lives in the Red house $\rightarrow \mathrm{C}_{1} \neq$ Red
The Spaniard has a Dog $\rightarrow A_{1} \neq \operatorname{Dog}$
The Japanese is a Painter
The Italian drinks Tea
The Norwegian lives in the first house on the left $\rightarrow \mathrm{N}_{1}=$ Norwegian
The owner of the Green house drinks Coffee
The Green house is on the right of the White house
The Sculptor breeds Snails
The Diplomat lives in the Yellow house
The owner of the middle house drinks Milk $\rightarrow \mathrm{D}_{3}=$ Milk
The Norwegian lives next door to the Blue house
The Violinist drinks Fruit juice $\rightarrow J_{3} \neq$ Violinist
The Fox is in the house next to the Doctor's
The Horse is next to the Diplomat's

Task Scheduling

Task Scheduling

Four tasks T_{1}, T_{2}, T_{3}, and T_{4} are related by time constraints:

- T_{1} must be done during T_{3}
- T_{2} must be achieved before T_{1} starts
- T_{2} must overlap with T_{3}
- T_{4} must start after T_{1} is complete
- Are the constraints compatible?
- What are the possible time relations between two tasks?
- What if the tasks use resources in limited supply?

3-SAT

- n Boolean variables u_{1}, \ldots, u_{n}
- p constraints of the form

$$
u_{i}^{*} v u_{j}^{*} v u_{k}^{*}=1
$$

where u^{*} stands for either u or $\neg u$

- Known to be NP-complete

Finite vs. Infinite CSP

- Finite CSP: each variable has a finite domain of values
- Infinite CSP: some or all variables have an infinite domain
E.g., linear programming problems over the reals:

$$
\begin{aligned}
& \text { for } i=1,2, \ldots, p: a_{i, 1} x_{1}+a_{i, 2} x_{2}+\ldots+a_{i, n} x_{n}=a_{i, 0} \\
& \text { for } j=1,2, \ldots, q: b_{j, 1} x_{1}+b_{j, 2} x_{2}+\ldots+b_{j, n} x_{n} \leq b_{j, 0}
\end{aligned}
$$

- We will only consider finite CSP

CSP as a Search Problem

CSP as a Search Problem

- n variables X_{1}, \ldots, X_{n}

CSP as a Search Problem

- n variables X_{1}, \ldots, X_{n}
- Valid assignment: $\left\{X_{i 1} \leftarrow v_{i 1}, \ldots, X_{i k} \leftarrow v_{i k}\right\}, \quad 0 \leq k \leq n$, such that the values $v_{i 1}, \ldots, v_{i k}$ satisfy all constraints relating the variables $\mathrm{X}_{\mathrm{i1}}, \ldots, \mathrm{X}_{\mathrm{ik}}$
- Complete assignment: one where $k=n$ [if all variable domains have size d, there are $O\left(d^{n}\right)$ complete assignments]
- States: valid assignments
- Initial state: empty assignment \{\}, i.e. $k=0$
- Successor of a state:

$$
\left\{X_{i 1} \leftarrow v_{i 1}, \ldots, X_{i k} \leqslant v_{i k}\right\} \rightarrow\left\{X_{i 1} \leftarrow v_{i 1}, \ldots, X_{i k} \leqslant v_{i k}, X_{i k+1} \leqslant v_{i k+1}\right\}
$$

- Goal test: $\mathrm{k}=\mathrm{n}$

$r=n-k$ variables with s values $\rightarrow r \times s$ branching factor

A Key property of CSP: Commutativity

The order in which variables are assigned values has no impact on the reachable complete valid assignments

A Key property of CSP: Commutativity

The order in which variables are assigned values has no impact on the reachable complete valid assignments

Hence:

1) One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X
[\rightarrow big reduction in branching factor]

$$
r=n-k \text { variables with } s \text { values } \rightarrow r \times s \text { branching factor }
$$

$r=n-k$ variables with s values $\rightarrow s$ branching factor

$r=n-k$ variables with s values $\rightarrow \mathbf{S}$ branching factor

The depth of the solutions in the search tree is un-changed (n)

- 4 variables X_{1}, \ldots, X_{4}
- Let the valid assignment of N be:

$$
A=\left\{X_{1} \leqslant v_{1}, X_{3} \leftarrow v_{3}\right\}
$$

- For example pick variable X_{4}
- Let the domain of X_{4} be $\left\{v_{4,1}, v_{4,2}, v_{4,3}\right\}$
- The successors of A are all the valid assignments among:

$$
\begin{aligned}
& \left\{X_{1} \leftarrow v_{1}, X_{3} \leftarrow v_{3}, X_{4} \leftarrow v_{4,1}\right\} \\
& \left\{X_{1} \leqslant v_{1}, X_{3} \leftarrow v_{3}, X_{4} \leftarrow v_{4,2}\right\} \\
& \left\{X_{1} \leqslant v_{1}, X_{3} \leqslant v_{3}, X_{4} \leftarrow v_{4,2}\right\}
\end{aligned}
$$

A Key property of CSP: Commutativity

The order in which variables are assigned values has no impact on the reachable complete valid assignments

Hence:

1) One can expand a node N by first selecting one variable X not in the assignment A associated with N and then assigning every value v in the domain of X [\rightarrow big reduction in branching factor]
2) One need not store the path to a node
\rightarrow Backtracking search algorithm

Backtracking Search

Essentially a simplified depth-firs \dagger algorithm using recursion

Backtracking Search
 (3 variables)

Backtracking Search
 (3 variables)

Assignment $=\{ \}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right)\right\}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(\mathrm{X}_{1}, \mathrm{v}_{11}\right),\left(\mathrm{X}_{3}, \mathrm{~V}_{31}\right)\right\}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{31}\right)\right\}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{31}\right)\right\}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{31}\right)\right\}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search
 (3 variables)

Assume again that no value of
X_{2} leads to a valid assignment
Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search

(3 variables)

The search algorithm backtracks to the previous variable (X_{3}) and tries another value. But assume that X_{3} has only two possible values. The algorithm backtracks to X_{1}

Assume again that no value of
X_{2} leads to a valid assignment
Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(\mathrm{X}_{1}, \mathrm{v}_{12}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, v_{21}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, v_{21}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, v_{21}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, v_{21}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search
 (3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, v_{21}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Algorithm

CSP-BACKTRACKING(A)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
5. Add $(X<v)$ to A
6. If A is valid then
7. result \leftarrow CSP-BACKTRACKING(A)
» If resul $\dagger \neq$ failure then return resul \dagger
8. Remove $(X \leftarrow v)$ from A

- Return failure

Call CSP-BACKTRACKING(\{\})

Backtracking Algorithm

CSP-BACKTRACKING(A)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
5. Add $(X<v)$ to A
6. If A is valid then
7. result \leftarrow CSP-BACKTRACKING(A)
» If resul $\dagger \neq$ failure then return resul \dagger
8. Remove $(X \leftarrow v)$ from A

- Return failure

Call CSP-BACKTRACKING(\{\})

[This recursive algorithm keeps too much data in memory. An iterative version could save memory (left as an exercise)]

Critical Questions for the Efficiency of CSP-Backtracking

CSP-BACKTRACKING(A)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
5. Add $(X \leftarrow v)$ to A
6. If A is valid then
7. result \leftarrow CSP-BACKTRACKING(A)
» If resul $\dagger \neq$ failure then return resul \dagger
8. Remove $(X \leftarrow v)$ from A

- Return failure

Call CSP-BACKTRACKING(\{\})

Critical Questions for the Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value next?
2) In which order should X 's values be assigned?

Critical Questions for the Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value next? The current assignment may not lead to any solution, but the algorithm does not know it yet. Selecting the right variable X may help discover the contradiction more quickly
2) In which order should X 's values be assigned?

Critical Questions for the Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value next? The current assignment may not lead to any solution, but the algorithm does not know it yet. Selecting the right variable X may help discover the contradiction more quickly
2) In which order should X 's values be assigned? The current assignment may be part of a solution. Selecting the right value to assign to X may help discover this solution more quickly

Critical Questions for the Efficiency of CSP-Backtracking

1) Which variable X should be assigned a value next? The current assignment may not lead to any solution, but the algorithm does not know it yet. Selecting the right variable X may help discover the contradiction more quickly
2) In which order should X 's values be assigned? The current assignment may be part of a solution. Selecting the right value to assign to X may help discover this solution more quickly

More on these questions very soon ...

Forward Checking

A simple constraint-propagation technique:

Assigning the value 5 to X 1 leads to removing values from the domains of $\mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{X} 8$

Forward Checking in Map Coloring

WA	NT	Q	NSW	V	SA	T
RGB						

Forward Checking in Map Coloring

WA	NT	Q	NSW	V	SA	T
RGB						
R	RGB	RGB	RGB	RGB	RGB	RGB

Forward Checking in Map Coloring

WA	NT	Q	NSW	V	SA	T
RGB						
R	RGB	RGB	RGB	RGB	RGB	RGB

Forward checking removes the value Red of NT and of SA

Forward Checking in Map Coloring

WA	NT	Q	NSW	V	SA	T
$R G B$						
R	$G B$	$R G B$	$R G B$	$R G B$	$G B$	$R G B$
R	$\not \subset$	G	$R \not \subset B$	$R G B$	C	$R G B$

Forward Checking in Map Coloring

WA	NT	Q	NSW	V	SA	T
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	B	G	RB	RGB	B	RGB
R	B	G	Rل	B	l	RGB

Forward Checking in Map Coloring

Empty set: the current assignment $\{(W A \leftarrow R),(Q \leftarrow G),(V \leftarrow B)\}$ does not lead to a solution

WA	NT	Q	NSW	V	SA	
RGB	RGB	RGB	RGB	RGB	RG申	RGB
R	GB	RGB	RGB	RGB	GB	
RGB						
R	B	G	RB	RGB	B	RGB
R	B	G	Rل	B	I	RGB

Forward Checking (General Form)

Whenever a pair $(X \leftarrow v)$ is added to assignment A do:
For each variable Y not in A do:
For every constraint C relating Y to the variables in A do:

Remove all values from Y's domain that do not satisfy C

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
a. Add $(X<v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result \leftarrow CSP-BACKTRACKING(A, var-domains)
(ii) If result \neq failure then return result \dagger
d. Remove $(X \leftarrow v)$ from A
5. Return failure

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do No need any more to
a. Add $(X<v)$ to A.............. verify that A is valid
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result $\leftarrow C S P-B A C K T R A C K I N G(A$, var-domains)
(ii) If result \neq failure then return result \dagger
d. Remove $(X \leftarrow v)$ from A
5. Return failure

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
a. Add $(X<v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result \leftarrow CSP-BACKTRACKING(A, var-domains)
(ii) If result \neq failure then return result
d. Remove $(X \leftarrow v)$ from A
5. Return failure

Need to pass down the

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
a. Add $(X<v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result \leftarrow CSP-BACKTRACKING(A, var-domains)
(ii) If result \neq failure then return result
5. Remove $(X \leftarrow v)$ from A
6. Return failure
1) Which variable X_{i} should be assigned a value next?
\rightarrow Most-constrained-variable heuristic
\rightarrow Most-constraining-variable heuristic
2) Which variable X_{i} should be assigned a value next?
\rightarrow Most-constrained-variable heuristic
\rightarrow Most-constraining-variable heuristic
3) In which order should its values be assigned? \rightarrow Least-constraining-value heuristic

These heuristics can be quite confusing

1) Which variable X_{i} should be assigned a value next?
\rightarrow Most-constrained-variable heuristic
\rightarrow Most-constraining-variable heuristic
2) In which order should its values be assigned? \rightarrow Least-constraining-value heuristic

These heuristics can be quite confusing

1) Which variable X_{i} should be assigned a value next?
\rightarrow Most-constrained-variable heuristic
\rightarrow Most-constraining-variable heuristic
2) In which order should its values be assigned? \rightarrow Least-constraining-value heuristic

These heuristics can be quite confusing
Keep in mind that all variables must eventually get a value, while only one value from a domain must be assigned to each variable

Most-Constrained-Variable Heuristic

Most-Constrained-Variable Heuristic

1) Which variable X_{i} should be assigned a value next?

Most-Constrained-Variable Heuristic

1) Which variable X_{i} should be assigned a value next?

Most-Constrained-Variable Heuristic

1) Which variable X_{i} should be assigned a value next?

Select the variable with the smallest remaining domain

Most-Constrained-Variable Heuristic

1) Which variable X_{i} should be assigned a value next?

Select the variable with the smallest remaining domain

Most-Constrained-Variable Heuristic

1) Which variable X_{i} should be assigned a value next?

Select the variable with the smallest remaining domain
[Rationale: Minimize the branching factor]

8-Queens

Map Coloring

Map Coloring

- SA's remaining domain has size 1 (value Blue remaining)

Map Coloring

- SA's remaining domain has size 1 (value Blue remaining)
- Q's remaining domain has size 2

Map Coloring

- SA's remaining domain has size 1 (value Blue remaining)
- Q's remaining domain has size 2

Map Coloring

- SA's remaining domain has size 1 (value Blue remaining)
- Q's remaining domain has size 2
- NSW's, V's, and T's remaining domains have size 3

Map Coloring

- SA's remaining domain has size 1 (value Blue remaining)
- Q's remaining domain has size 2
- NSW's, V's, and T's remaining domains have size 3

Map Coloring

- SA's remaining domain has size 1 (value Blue remaining)
- Q's remaining domain has size 2
- NSW's, V's, and T's remaining domains have size 3
\rightarrow Select SA

Most-Constraining-Variable Heuristic

1) Which variable X_{i} should be assigned a value next?

Among the variables with the smallest remaining domains (ties with respect to the most-constrained-variable heuristic), select the one that appears in the largest number of constraints on variables not in the current assignment
[Rationale: Increase future elimination of values, to reduce future branching factors]

Map Coloring

Map Coloring

- Before any value has been assigned, all variables have a domain of size 3, but SA is involved in more constraints (5) than any other variable

Map Coloring

- Before any value has been assigned, all variables have a domain of size 3, but SA is involved in more constraints (5) than any other variable

Map Coloring

- Before any value has been assigned, all variables have a domain of size 3 , but SA is involved in more constraints (5) than any other variable
\rightarrow Select SA and assign a value to it (e.g., Blue)

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $\quad X \leftarrow$ select a variable not in A
3. $D \leftarrow$ select an ordering on the domain of X
4. For each value v in D do
a. Add $(X \leftarrow v)$ to A
b. var-domains \leftarrow forward checking(var-domains, $X, v, A)$
c. If no variable has an empty domain then
(i) result $\leftarrow C S P-B A C K T R A C K I N G(A, v a r-d o m a i n s)$
(ii) If result \neq failure then return resul \dagger
5. Remove $(X \leftarrow v)$ from A
6. Return failure

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $\quad X \leftarrow$ select a variable not in A
3. $D \&$ select an ordering on the domain of X
1) Most-constrained-variable heuristic For each value v in D do
a. Add $(X \leftarrow v)$ to A
b. var-domains \leftarrow forward checking(var-domains, $X, v, A)$
c. If no variable has an empty domain then
(i) result $\leftarrow C S P-B A C K T R A C K I N G(A$, var-domains)
(ii) If result \neq failure then return resul \dagger
1. Remove $(X \leftarrow v)$ from A
2. Return failure
1) Select the variable with the smallest remaining domain
2) Select the variable that appears in the largest number of constraints on variables not in the current assignment

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $\quad X \leftarrow$ select a variable not in A
3. $D \Leftarrow$ select an ordering on the domain of X
1) Most-constrained-variable heuristic
2) Most-constraining-variable heuristic
3) Least-constraining-value heuristic For each value v in D do Add $(X \leqslant v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

$$
\begin{aligned}
& \text { (i) result } \leftarrow C S P-B A C K T R A C K I N G(A \text {, var-domains) } \\
& \text { (ii) If result } \neq \text { failure then return result }
\end{aligned}
$$

1. Remove $(X \leftarrow v)$ from A
2. Return failure
1) Select the variable with the smallest remaining domain
2) Select the variable that appears in the largest number of constraints on variables not in the current assignment

Least-Constraining-Value Heuristic

Least-Constraining-Value Heuristic

2) In which order should X 's values be assigned?

Least-Constraining-Value Heuristic

2) In which order should X 's values be assigned?

Select the value of X that removes the smallest number of values from the domains of those variables which are not in the current assignment
[Rationale: Since only one value will eventually be assigned to X, pick the least-constraining value first, since it is the most likely not to lead to an invalid assignment]
[Note: Using this heuristic requires performing a forwardchecking step for every value, not just for the selected value]

Map Coloring

Map Coloring

- Q's domain has two remaining values: Blue and Red

Map Coloring

- Q's domain has two remaining values: Blue and Red

Map Coloring

- Q's domain has two remaining values: Blue and Red
- Assigning Blue to Q would leave 0 value for $S A$, while assigning Red would leave 1 value

Map Coloring

- Q's domain has two remaining values: Blue and Red

Map Coloring

- Q's domain has two remaining values: Blue and Red
- Assigning Blue to Q would leave 0 value for $S A$, while assigning Red would leave 1 value
\rightarrow So, assign Red to Q

Modified Backtracking Algorithm

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. $X \leftarrow$ select a variable not in A
3. $D \&$ select an ordering on the domain of X
1) Most-constrained-variable heuristic
2) Most-constraining-variable heuristic
3) Least-constraining-value heuristic
eách value v in D do
a. Add $(X \leftarrow v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result $\leftarrow C S P-B A C K T R A C K I N G(A$, var-domains)
(ii) If result \neq failure then return resul \dagger
1. Remove $(X \leftarrow v)$ from A
2. Return failure

Constraint Propagation

(Where a better exploitation of the constraints further reduces the need to make decisions)

Constraint Propagation ...

... is the process of determining how the constraints and the possible values of one variable affect the possible values of other variables

It is an important form of "least-commitment" reasoning

Forward checking is only on simple form of constraint propagation

When a pair $(X \rightarrow v)$ is added to assignment A do:
For each variable Y not in A do:
For every constraint C relating Y to variables in A do: Remove all values from Y's domain that do not satisfy C

- $n=$ number of variables
- d = size of initial domains
- $s=$ maximum number of constraints involving a given variable ($s \leq n-1$)
- Forward checking takes O(nsd) time

Forward Checking in Map Coloring

Empty set: the current assignment $\{(W A \leftarrow R),(Q \leftarrow G),(V \leftarrow B)\}$ does not lead to a solution

$W A$	NT	Q	NSW	V	SA	T
$R G B$						
R	$\not \subset G B$	$R G B$	$R G B$	$R G B$	$\not / G B$	$R G B$
R	$\not \subset B$	G	$R \not / B$	$R G B$	$\not \subset B$	$R G B$
R	B	G	$R \not /$	B	$\not /$	$R G B$

Forward Checking in Map Coloring

Contradiction that forward checking did not detect

Detecting this contradiction requires a more powerful constraint propagation technique

WA	NT	Q	HSW	V	SA	T
RGB	RGB	RGP	RGB	RGB	RGB	RGB
R	RGB	RGB	RGB	RGB	ధGB	RGB
R	(B)	G	$R \not / \mathrm{B}$	RGB	(B)	RGB
R	B	G	$R \nsim$	B	\square	RGB

Constraint Propagation for Binary Constraints

REMOVE-VALUES (X, Y) removes every value of Y that is

 incompatible with the values of X
REMOVE-VALUES(X,Y)

1. removed \leftarrow false
2. For every value v in the domain of y do

- If there is no value u in the domain of X such that the constraint on (X, Y) is satisfied then

1. Remove v from $Y^{\prime} s$ domain
2. removed \leftarrow true
3. Return removed

Constraint Propagation for Binary Constraints

AC3

1. Initialize queue Q with all variables (not yet instantiated)
2. While $Q \neq \varnothing$ do
a. $\quad X \leftarrow \operatorname{Remove}(Q)$

- For every (not yet instantiated) variable Y related to X by a (binary) constraint do 1. If REMOVE-VALUES (X, Y) then
a. If Y 's domain $=\varnothing$ then exit

1. Insert (Y, Q)

Complexity Analysis of AC3

- $n=$ number of variables
- $d=$ size of initial domains
- s = maximum number of constraints involving a given variable ($s \leq n-1$)
- Each variable is inserted in Q up to d times
- REMOVE-VALUES takes $O\left(d^{2}\right)$ time
- AC3 takes $O\left(n \times d \times s \times d^{2}\right)=$ $O\left(n \times s \times d^{3}\right)$ time
- Usually more expensive than forward checking

1. Initialize queue Q with all variables (not yet instantiated)
2. While $Q \neq \varnothing$ do
a. $\quad X \leftarrow \operatorname{Remove}(Q)$

- For every (not yet instantiated) variable Y related to X by a (binary) constraint do

1. If REMOVE-VALUES (X, Y) then
a. If Y's domain $=\varnothing$ then exit
2. Insert (Y, Q)

REMOVE-VALUES (X, Y)

1. removed \leftarrow false
2. For every value v in the domain of Y do

- If there is no value u in the domain of X such that the constraint on (x, y) is satisfied then
a. Remove v from Y 's domain
b. removed \leftarrow true

3. Return removed

Is AC3 all that we need?

Is AC3 all that we need?

- No !!

Is AC3 all that we need?

- No!!
- AC3 can't detect all contradictions among binary constraints

Is AC3 all that we need?

- No!!
- AC3 can't detect all contradictions among binary constraints

REMOVE-VALUES (X, Y)

1. removed \leftarrow false
2. For every value v in the domain of y do

- If there is no value u in the domain of X such that the constraint on (X, Y) is satisfied then

1. Remove v from Y 's domain
2. removed \leftarrow true

Is AC3 all that we need?

- No!!
- AC3 can't detect all contradictions among binary constraints

REMOVE-VALUES (X, Y)

1. removed \leftarrow false
2. For every value v in the domain of y do

- If there is no value u in the domain of X such that the constraint on (X, Y) is satisfied then

1. Remove v from Y 's domain
2. removed \leftarrow true

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

$\{1,2\}$	
	REMOVE-VALUES(X, Y, Z)
REMOVE-VALUES(X, Y	1. removed \leftarrow false
1. removed \leftarrow false	2. For every value w in the domain of Z do
2. For every value v	- If there is no pair (u, v) of values in the domains
- If there is no	of X and Y verifying the constraint on (X, Y) such that the constraints on (X, Z) and (Y, Z) are
1. Remove v	satisfied then
2. removed	- Remove w from Z's domain 86
Return removed	1. removed \leftarrow true

Is AC3 all that we need?

- No !!
- AC3 can't detect all contradictions among binary constraints

- Not all constraints are binary

Tradeoff

Generalizing the constraint propagation algorithm increases its time complexity

> Tradeoff between time spent in backtracking search and time spent in constraint propagation

A good tradeoff when all or most constraints are binary is often to combine backtracking with forward checking and/or AC3 (with REMOVE-VALUES for two variables)

Modified Backtracking Algorithm with AC3

CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. Run AC3 and update var-domains accordingly
3. If a variable has an empty domain then return failure
4. $X \leftarrow$ select a variable not in A
5. $D \leftarrow$ select an ordering on the domain of X
6. For each value v in D do
a. Add $(X \leftarrow v)$ to A
b. var-domains \leftarrow forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then
(i) result $\leftarrow C S P-B A C K T R A C K I N G(A$, var-domains)
(ii) If result \neq failure then return result \dagger

- Remove $(X \leftarrow v)$ from A

7. Return failure

A Complete Example:4-Queens Problem

A Complete Example:4-Queens Problem

1) The modified backtracking algorithm starts by calling AC3, which removes no value

4-Queens Problem

2) The backtracking algorithm then selects a variable and a value for this variable. No heuristic helps in this selection. X_{1} and the value 1 are arbitrarily selected

4-Queens Problem

3) The algorithm performs forward checking, which eliminates 2 values in each other variable's domain

4-Queens Problem

4) The algorithm calls $A C 3$

REMOVE-VALUES (X, y).
 4-Queens Problem
 1. removed \leftarrow false

2. For every value v in the domain of Y do

- If there is no value ì in the domain of X such thät the constraint on (x, y) is satisfied then
a. Remove v from Y 's domain
b. removed \leftarrow true

3. Return removed

4) The algorithm calls $A C 3$, which eliminates 3 from the domain of X_{2}

4-Queens Problem

4) The algorithm calls $A C 3$, which eliminates 3 from the domain of X_{2}, and 2 from the domain of X_{3}

4-Queens Problem

4) The algorithm calls $A C 3$, which eliminates 3 from the domain of X_{2}, and 2 from the domain of X_{3}, and 4 from the domain of X_{3}

4-Queens Problem

5) The domain of X_{3} is empty \rightarrow backtracking

4-Queens Problem

6) The algorithm removes 1 from X_{1} 's domain and assign 2 to X_{1}

4-Queens Problem

7) The algorithm performs forward checking

4-Queens Problem

8) The algorithm calls $A C 3$

4-Queens Problem

8) The algorithm calls $A C 3$, which reduces the domains of X_{3} and X_{4} to a single value

4-Queens Problem

8) The algorithm calls AC3, which reduces the domains of X_{3} and X_{4} to a single value

Applications of CSP

- CSP techniques are widely used
- Applications include:
- Crew assignments to flights
- Management of transportation fleet
- Flight/rail schedules
- Job shop scheduling
- Task scheduling in port operations
- Design, including spatial layout design
- Radiosurgical procedures

