Blind (Uninformed) Search

(Where we systematically explore alternatives)

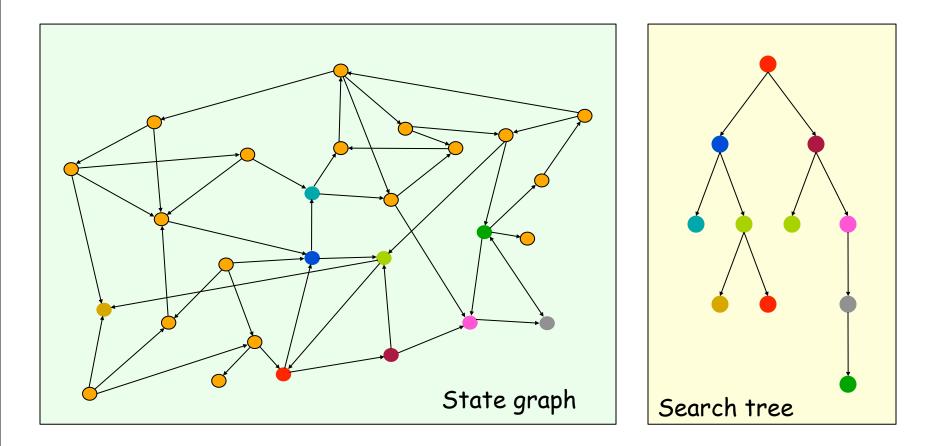
R&N: Chap. 3, Sect. 3.3–5

1

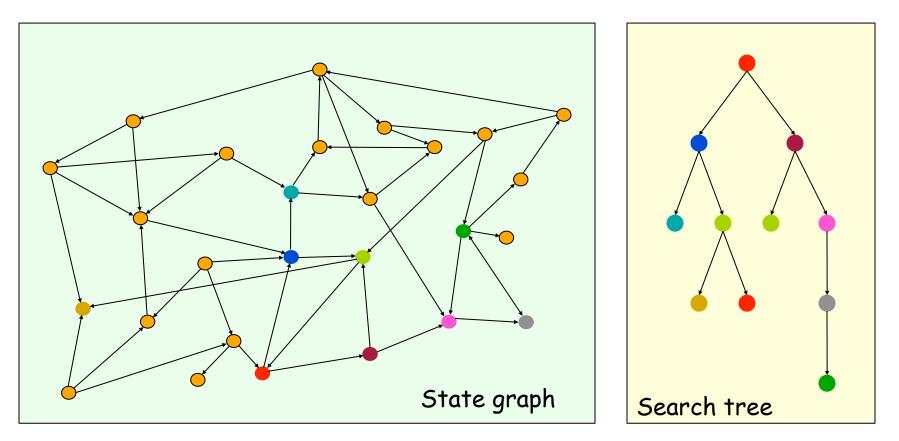
Simple Problem-Solving-Agent Agent Algorithm

- 1. $s_0 \leftarrow \text{sense/read initial state}$
- 2. GOAL? ← select/read goal test
- 3. Succ ← read successor function
- 4. solution \leftarrow **search**(s₀, GOAL?, Succ)
- 5. perform(solution)

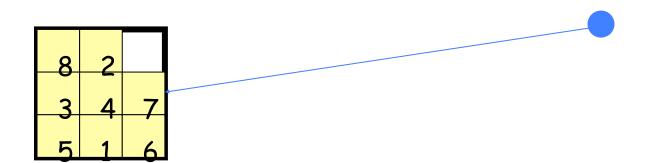
Search Tree

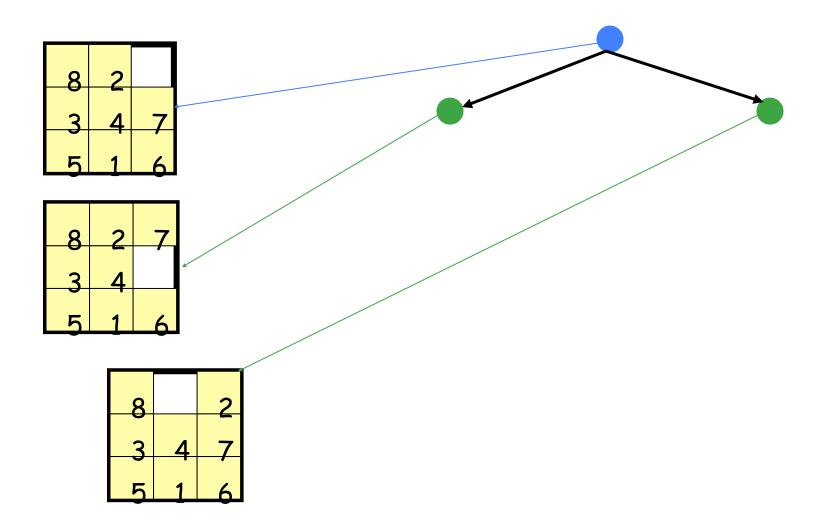


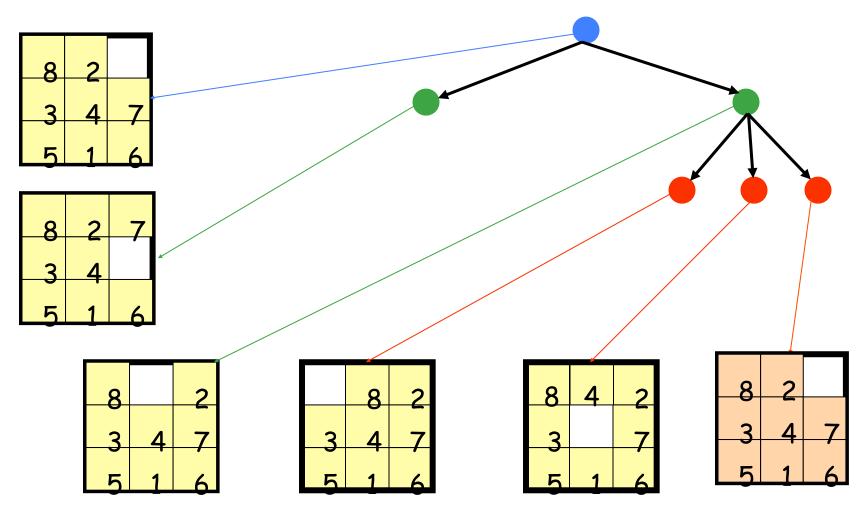
Search Tree



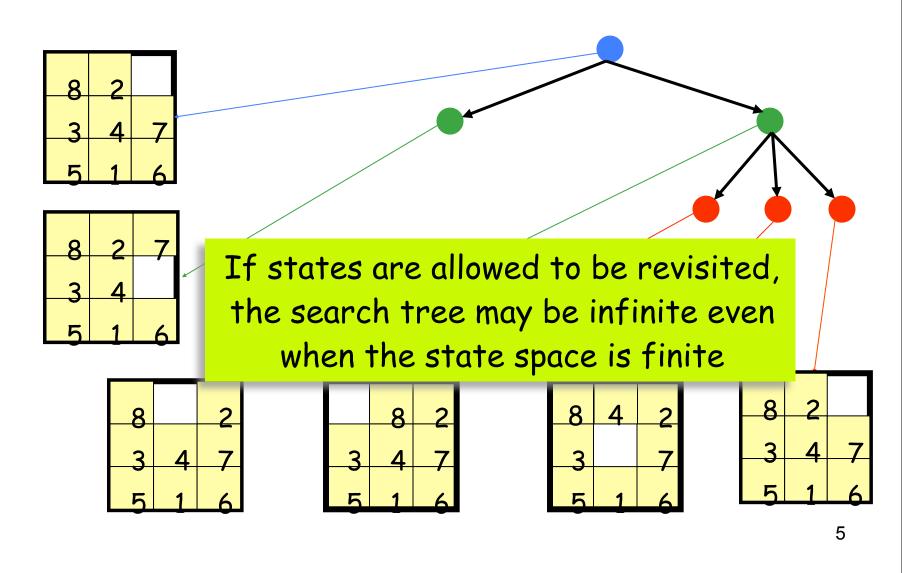
Note that some states may be visited multiple times



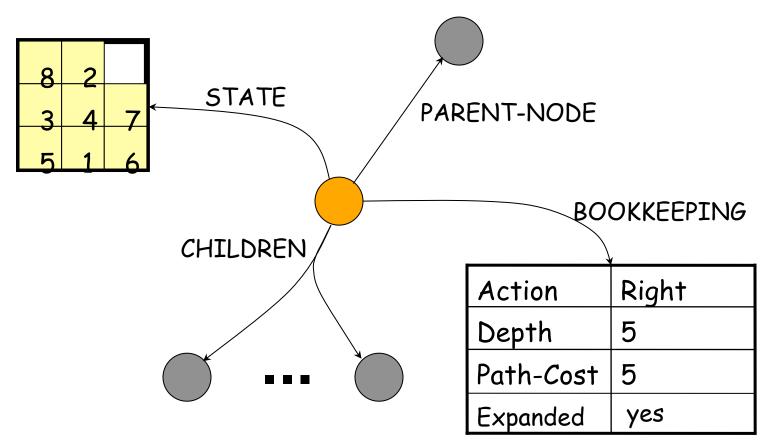




4



Data Structure of a Node

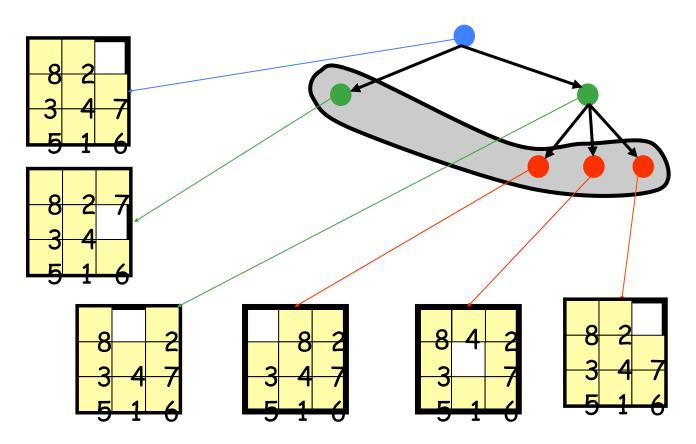


Depth of a node N = length of path from root to N (depth of the root = 0)

```
6
```

Open List (OL) of Search Tree

The OL is the set of all search nodes that haven't been expanded yet



Search Strategy

- The OL is the set of all search nodes that haven't been expanded yet
- The OL is implemented as a priority queue
 - INSERT(node, OL)
 - REMOVE(OL)
- The ordering of the nodes in OL defines the search strategy

Search Algorithm #I

SEARCH#I

- 1. If GOAL?(initial-state) then return initial-state
- 2. INSERT(initial-node,OL)
- 3. Repeat:
 - a. If empty(OL) then return failure

- c. s \leftarrow STATE(N)
- d. For every state s' in SUCCESSORS(s)
 - i. Create a new node N' as a child of N
 - ii. If GOAL?(s') then return path or goal state

iii. INSERT(N',OL)

Performance Measures

Completeness

A search algorithm is complete if it finds a solution whenever one exists [What about the case when no solution exists?]

Optimality

A search algorithm is optimal if it returns a minimum-cost path whenever a solution exists

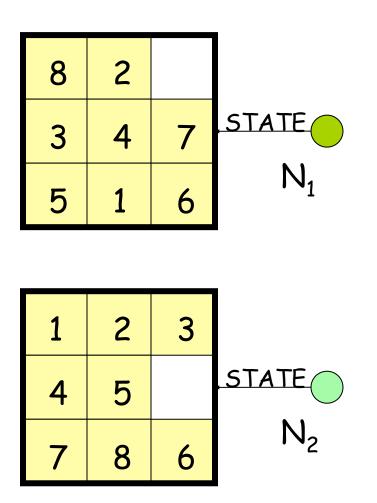
Complexity

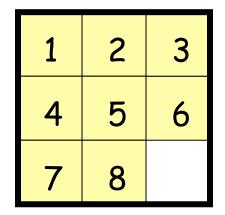
It measures the time and amount of memory required by the algorithm

Blind vs. Heuristic Strategies

- Blind (or un-informed) strategies do not exploit state descriptions to order OL. They only exploit the positions of the nodes in the search tree
- Heuristic (or informed) strategies exploit state descriptions to order OL (the most "promising" nodes are placed at the beginning of OL)

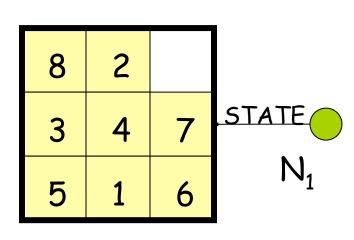
Example





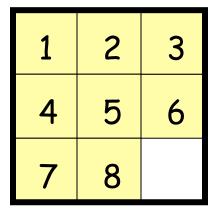
Goal state

Example



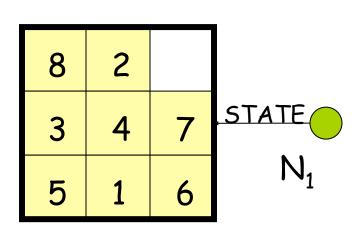
For a blind strategy, N_1 and N_2 are just two nodes (at some position in the search tree)

1	2	3	
4	5		STATE
7	8	6	N ₂



Goal state

Example



For a heuristic strategy counting the number of misplaced tiles, N_2 is more promising than N_1

1	2	3	
4	5		STATE
7	8	6	N ₂



Goal state

Remark

- Some search problems, such as the (n²-I)puzzle, are NP-hard
- One can't expect to solve all instances of such problems in less than exponential time (in n)
- One may still strive to solve each instance as efficiently as possible
 - This is the purpose of the search strategy

Arc cost = 1

- Breadth-first
 - Bidirectional

Arc cost = 1

- Breadth-first
 - Bidirectional
- Depth-first
 - Depth-limited
 - Iterative deepening

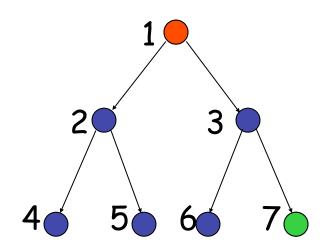
Arc cost = 1

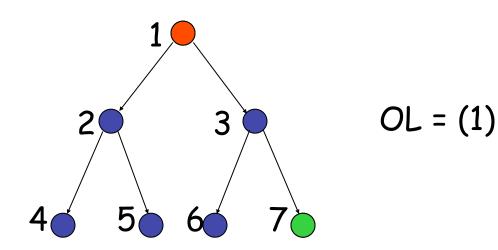
- Breadth-first
 - Bidirectional
- Depth-first
 - Depth-limited
 - Iterative deepening
- Uniform-Cost (variant of breadth-first)

```
Arc cost = 1
```

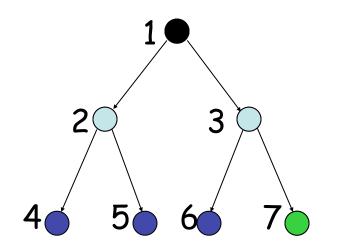
```
\int \operatorname{Arc \ cost} = c(\operatorname{action}) \ge \varepsilon > 0
```

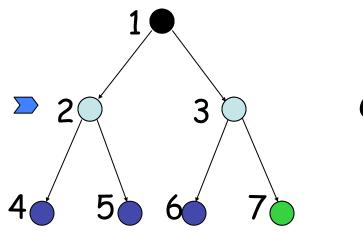
17



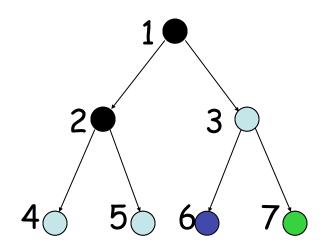




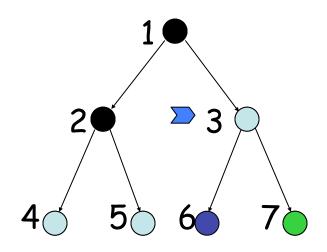




$$OL = (2, 3)$$

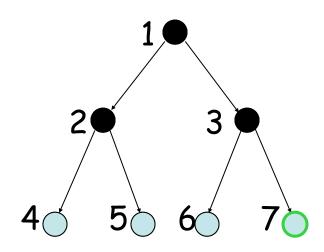


$$OL = (3, 4, 5)$$



OL = (3, 4, 5)

New nodes are inserted at the end of OL



OL = (4, 5, 6, 7)

Important Parameters

- 1) Maximum number of successors of any state
 - \rightarrow branching factor b of the search tree
- 2) Minimal length (≠ cost) of a path between the initial and a goal state
 - → depth d of the shallowest goal node in the search tree

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete? Not complete?
 - Optimal? Not optimal?

• **b**: branching factor

- b: branching factor
- d: depth of shallowest goal node

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is I

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is I
- Number of nodes generated: ???

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is I
- Number of nodes generated:
 I + b + b² + ... + b^d = ???

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is I
- Number of nodes generated: $I + b + b^2 + \dots + b^d = (b^{d+1} I)/(b I) = O(b^d)$
- \rightarrow Time and space complexity is $O(b^d)$

Big O Notation

g(n) = O(f(n)) if there exist two positive constants a and N such that:

for all n > N: $g(n) \le af(n)$

Time and Memory Requirements

d	# Nodes	Time	Memory	
2	111	.01 msec	11 Kbytes	
4	11,111	1 msec	1 Mbyte	
6	~10 ⁶	1 sec	100 Mb	
8	~10 ⁸	100 sec	10 Gbytes	
10	~10 ¹⁰	2.8 hours	1 Tbyte	
12	~1012	11.6 days	100 Tbytes	
14	~10 ¹⁴	3.2 years	10,000 Tbytes	

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Time and Memory Requirements

d	# Nodes	Time	Memory	
2	111	.01 msec	11 Kbytes	
4	11,111	1 msec	1 Mbyte	
6	~10 ⁶	1 sec	100 Mb	
8	~10 ⁸	100 sec	10 Gbytes	
10	~10 ¹⁰	2.8 hours	1 Tbyte	
12	~1012	11.6 days	100 Tbytes	
14	~10 ¹⁴	3.2 years	10,000 Tbytes	

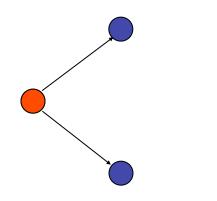
Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Remark

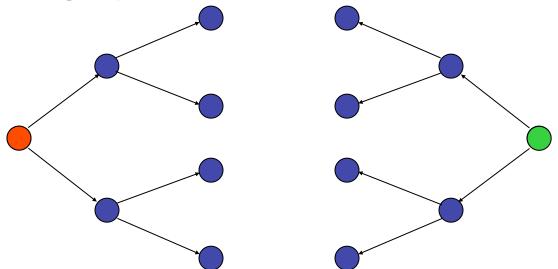
If a problem has no solution, breadth-first may run for ever (if the state space is infinite or states can be revisited arbitrary many times)

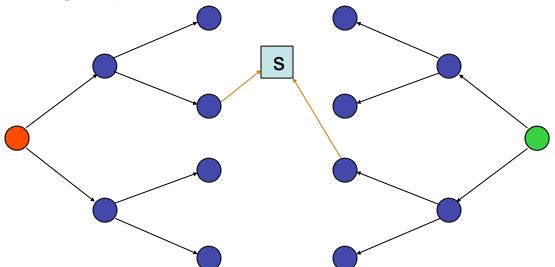
1	2	3	4		1	2	3	4
5	6	7	8	?	5	6	7	8
9	10	11	12		9	10	11	12
13	14	15			13	15	14	

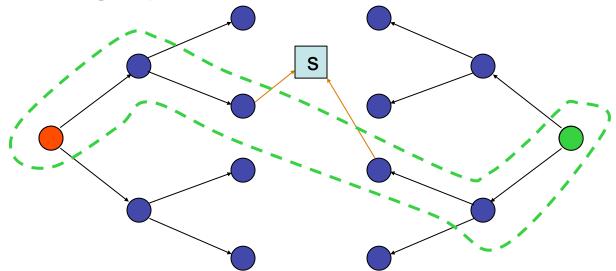
Sunday, February 26, 12



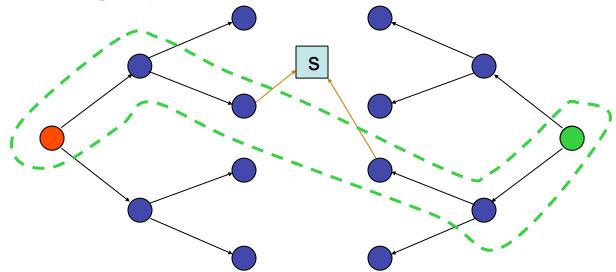






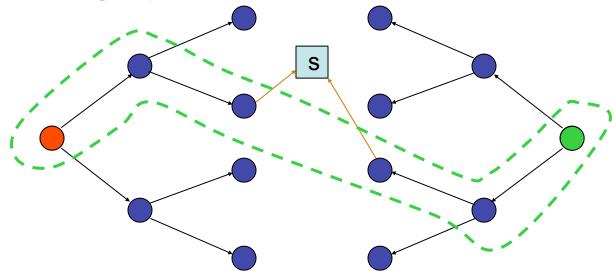


2 fringe queues: FRINGE1 and FRINGE2

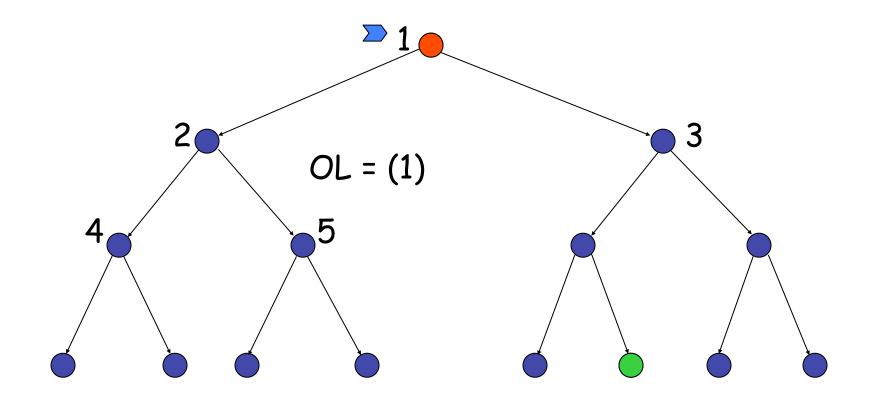


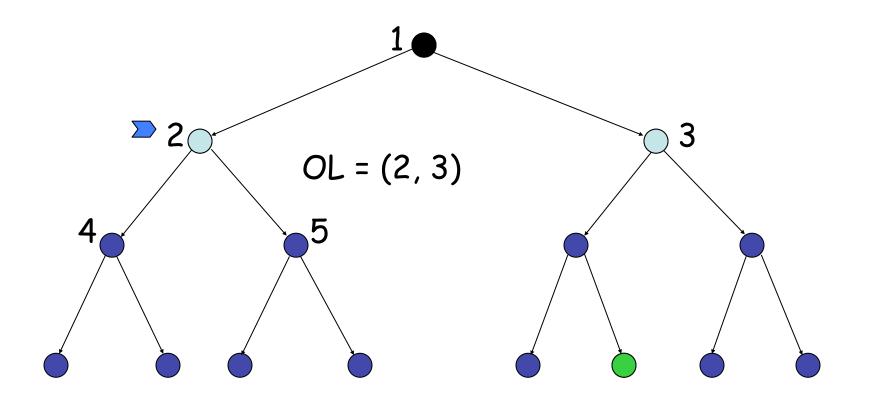
Time and space complexity is $O(b^{d/2}) \ll O(b^d)$ if both trees have the same branching factor b

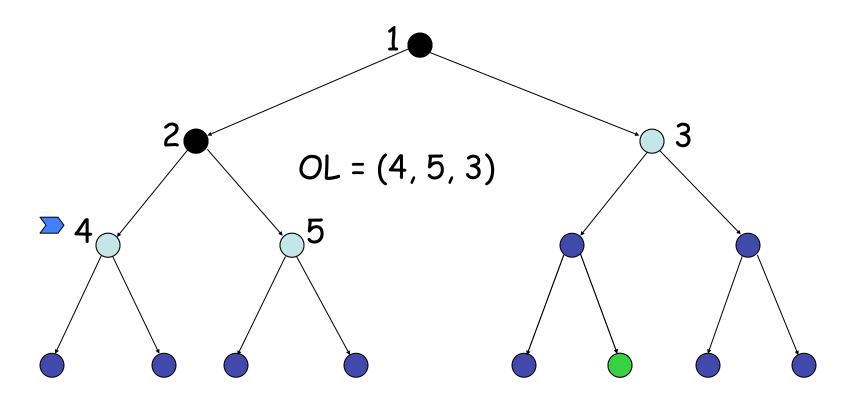
2 fringe queues: FRINGE1 and FRINGE2

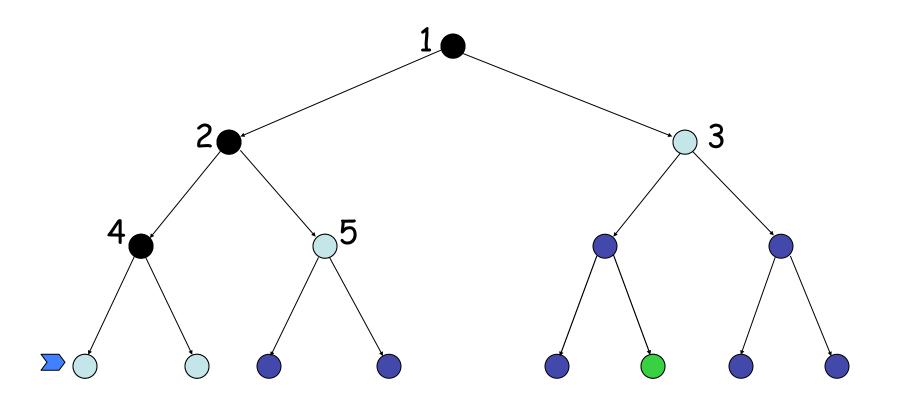


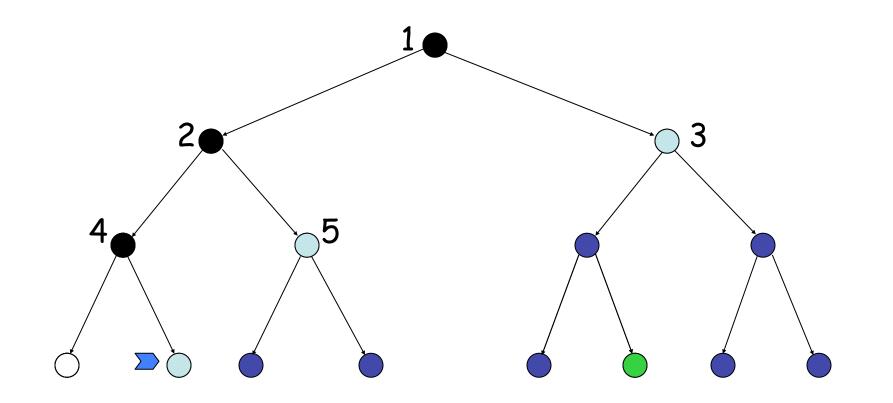
Time and space complexity is $O(b^{d/2}) << O(b^d)$ if both trees have the same branching factor b Question: What happens if the branching factor is different in each direction?

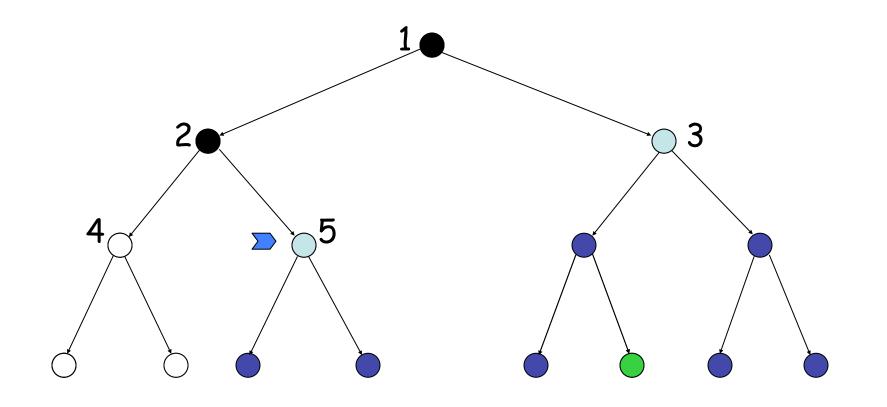


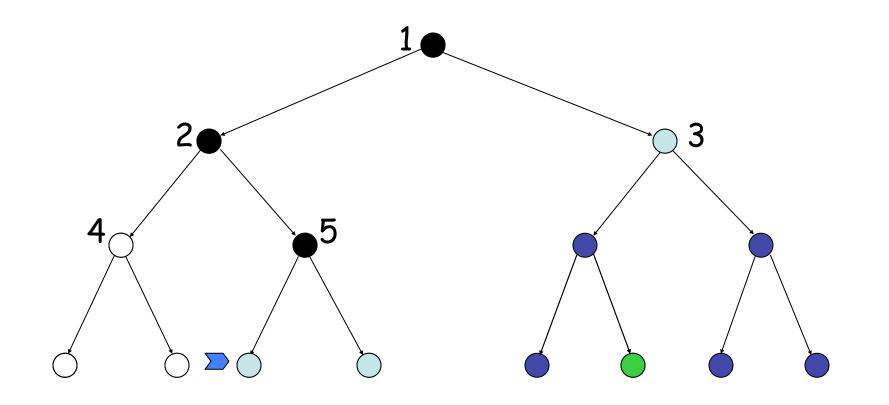


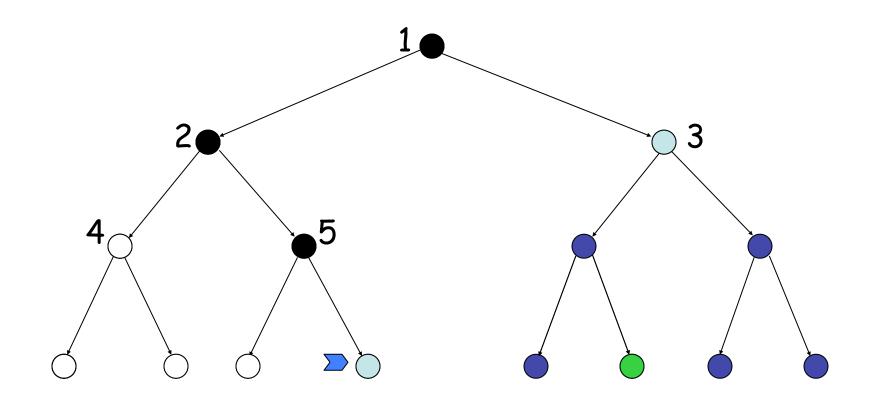


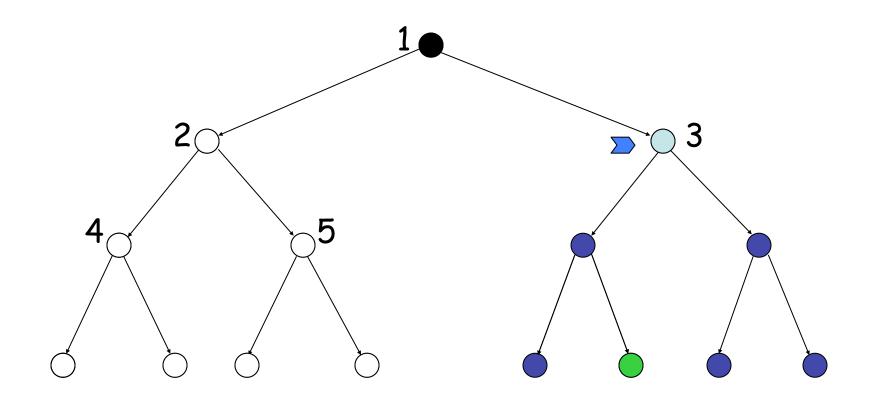


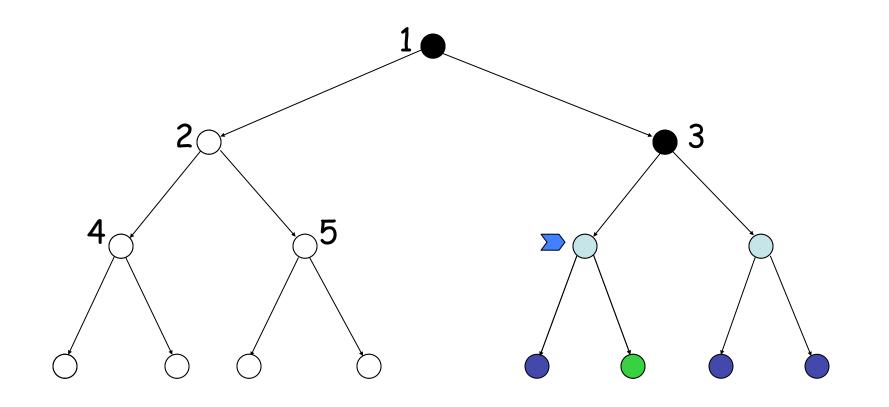


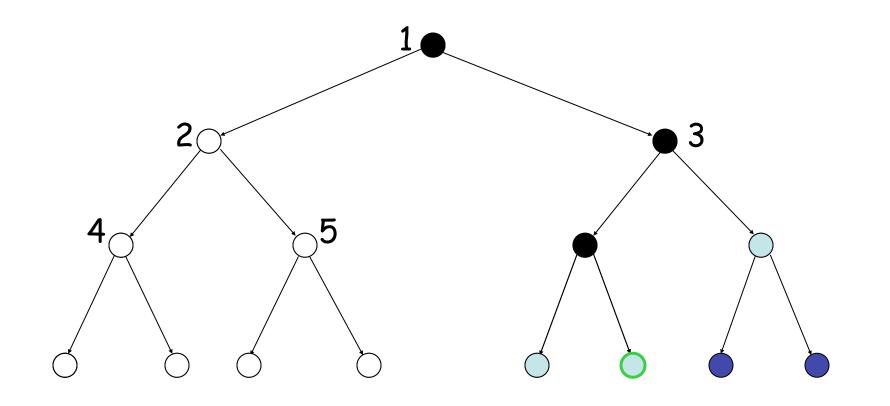












- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete?
 - Optimal?

- b: branching factor
- d: depth of shallowest goal node

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete only for finite search tree
 - Not optimal

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete only for finite search tree
 - Not optimal
- Number of nodes generated (worst case):
 I + b + b² + ... + b^m = O(b^m)

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete only for finite search tree
 - Not optimal
- Number of nodes generated (worst case):
 I + b + b² + ... + b^m = O(b^m)
- Time complexity is O(b^m)

Depth-Limited Search

- Depth-first with depth cutoff k (depth at which nodes are not expanded)
- Three possible outcomes:
 - Solution
 - Failure (no solution)
 - Cutoff (no solution within cutoff)

Iterative Deepening Search

Provides the best of both breadth-first and depth-first search

Main idea: Totally horrifying !

Iterative Deepening Search

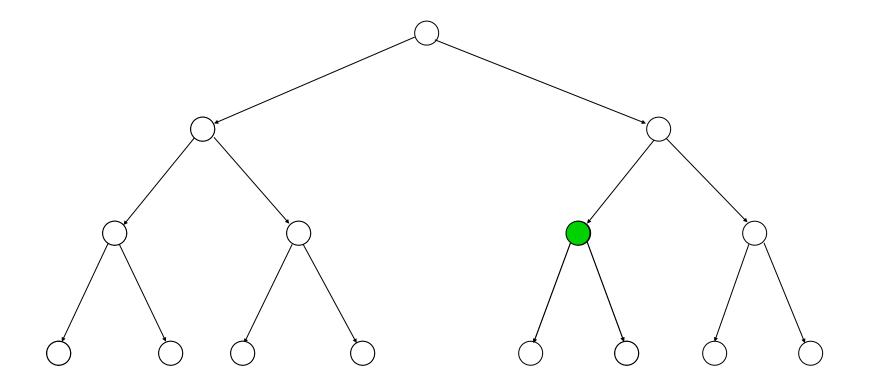
Provides the best of both breadth-first and depth-first search

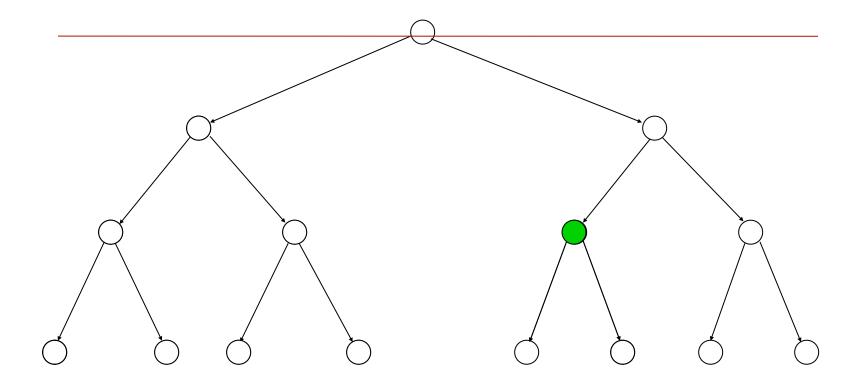
Main idea: Totally horrifying !

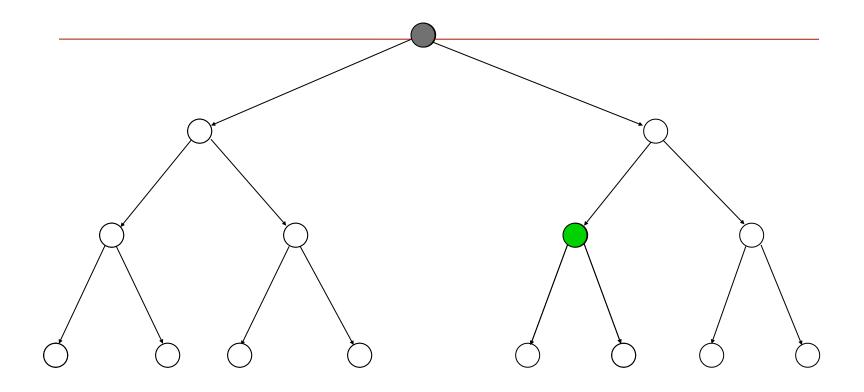
Iterative Deepening Search

Provides the best of both breadth-first and depth-first search

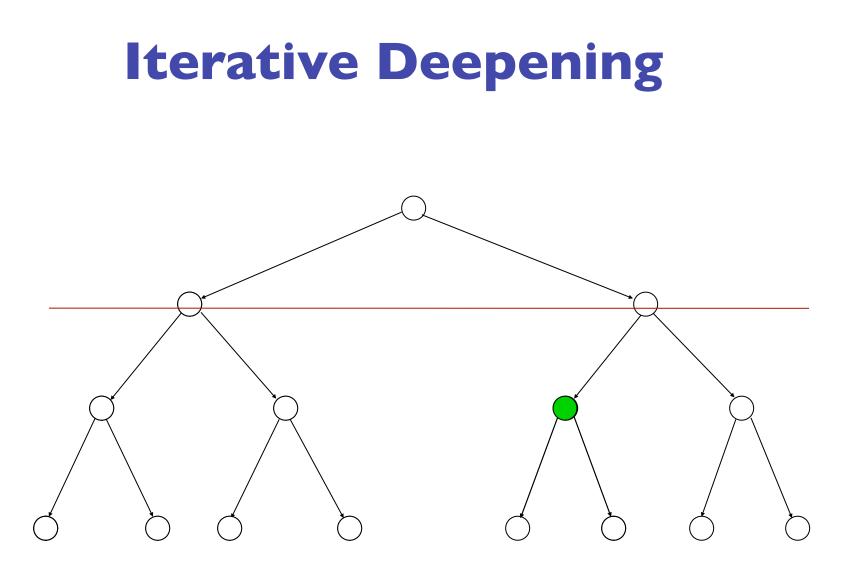
- Main idea: Totally horrifying !
- IDS For k = 0, 1, 2, ... do: Perform depth-first search with depth cutoff k (i.e., only generate nodes with depth \leq k)

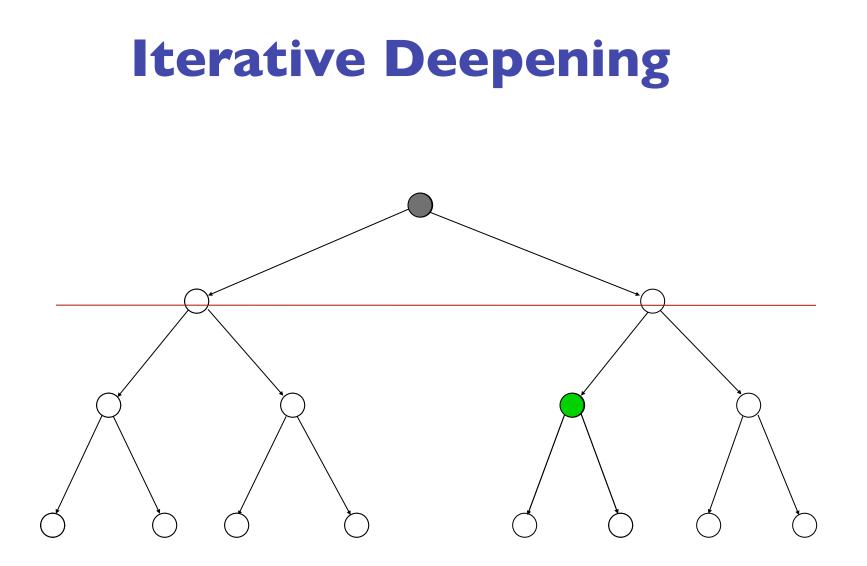


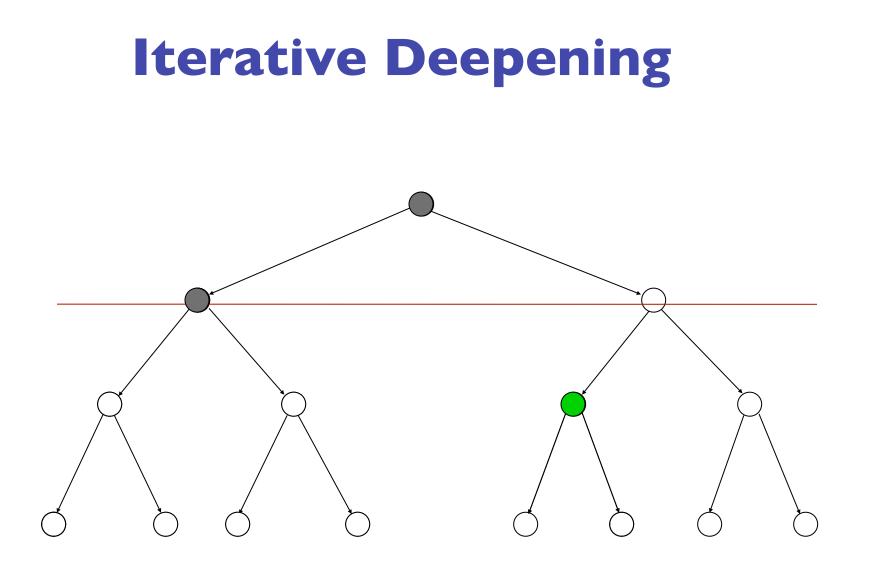




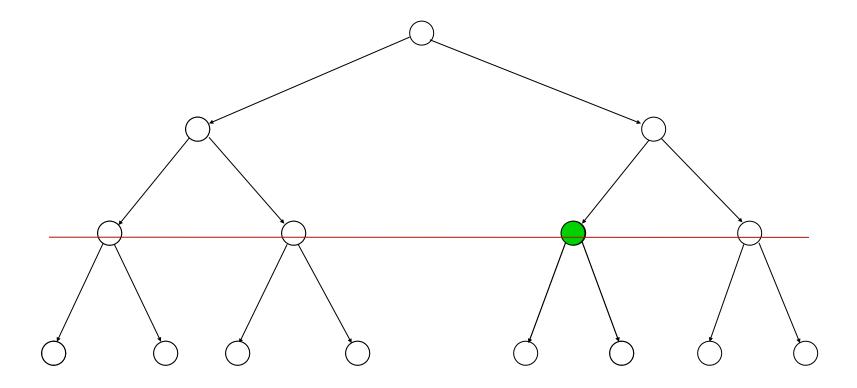
47

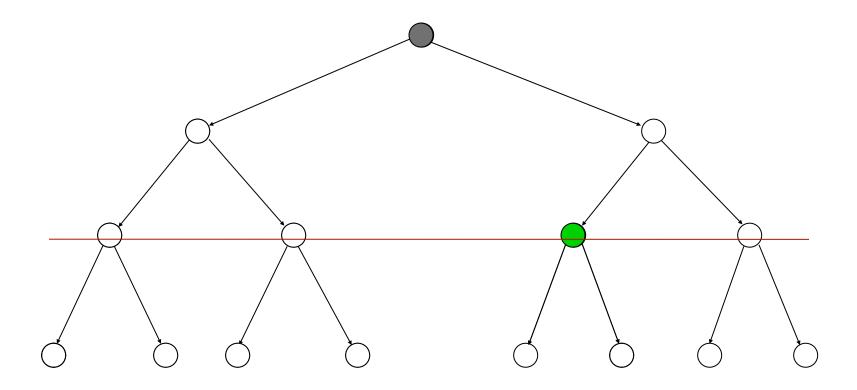


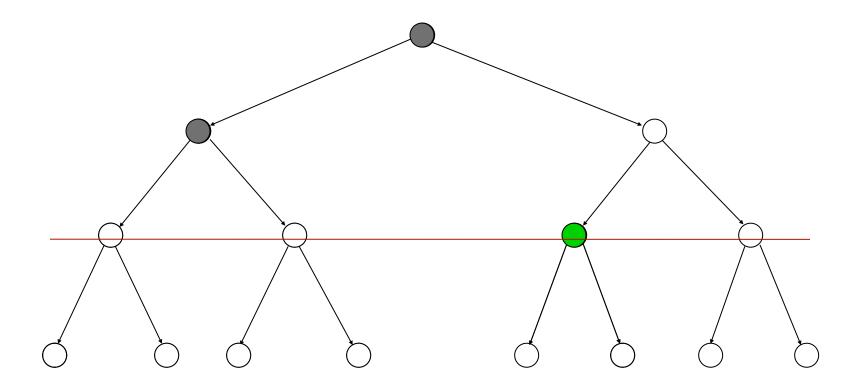


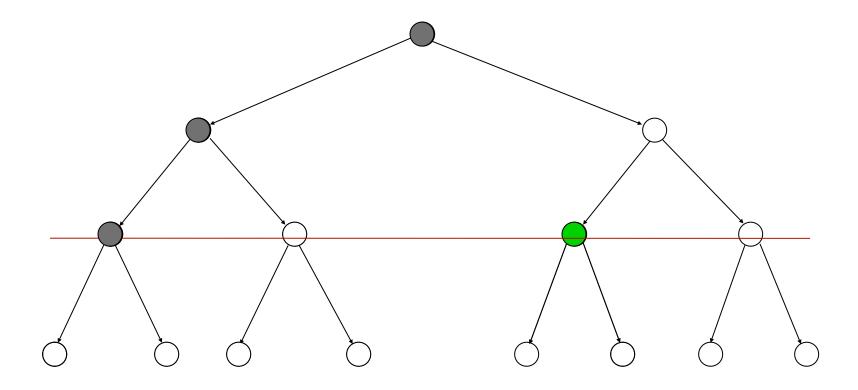


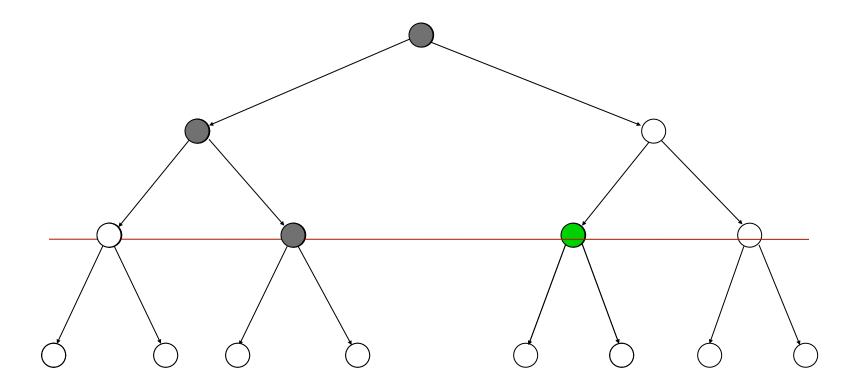


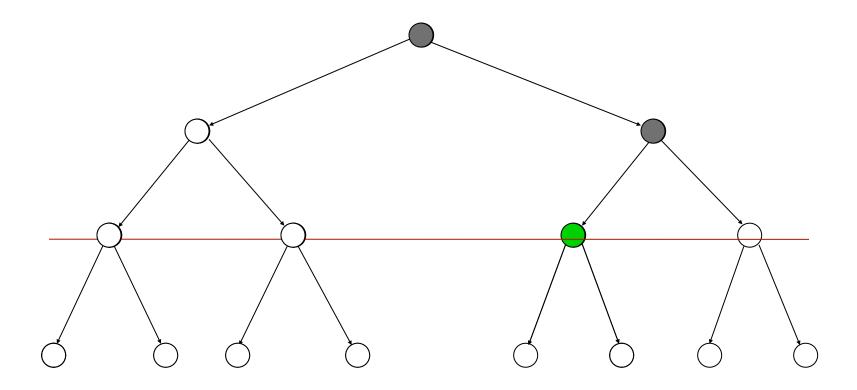


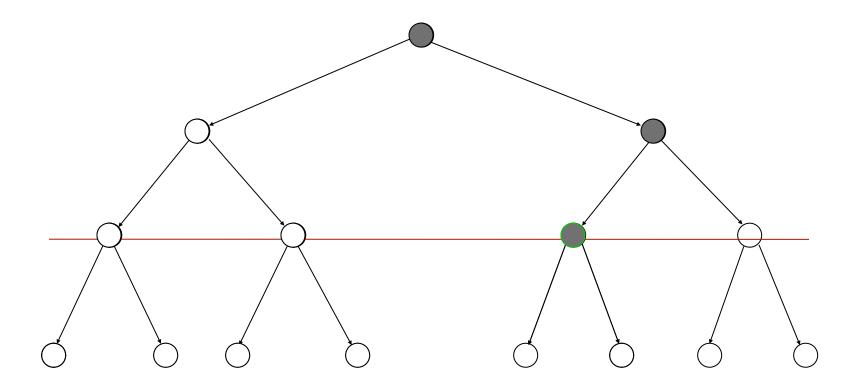












Performance

- Iterative deepening search is:
 - Complete
 - Optimal if step cost = I
- Time complexity is: (d+1)(1) + db + (d-1)b² + ... + (1) b^d = O(b^d)
- Space complexity is: O(bd) or O(d)

Calculation

$$\begin{aligned} db + (d-1)b^{2} + \dots + (1) b^{d} \\ &= b^{d} + 2b^{d-1} + 3b^{d-2} + \dots + db \\ &= (1 + 2b^{-1} + 3b^{-2} + \dots + db^{-d}) \times b^{d} \\ &\leq \left(\sum_{i=1,\dots,\infty} ib^{(1-i)}\right) \times b^{d} = b^{d} \left(b/(b-1)\right)^{2} \end{aligned}$$

Number of Generated Nodes (Breadth-First & Iterative Deepening)

d = 5 and b = 2

BF	ID
1	$1 \times 6 = 6$
2	2 × 5 = 10
4	4 × 4 = 16
8	8 x 3 = 24
16	16 x 2 = 32
32	32 × 1 = 32
63	120

120/63 ~ 2

Number of Generated Nodes (Breadth-First & Iterative Deepening)

d = 5 and b = 10

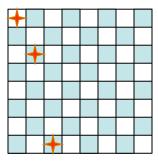
BF	ID
1	6
10	50
100	400
1,000	3,000
10,000	20,000
100,000	100,000
111,111	123,456

123,456/111,111 ~ 1.111

Comparison of Strategies

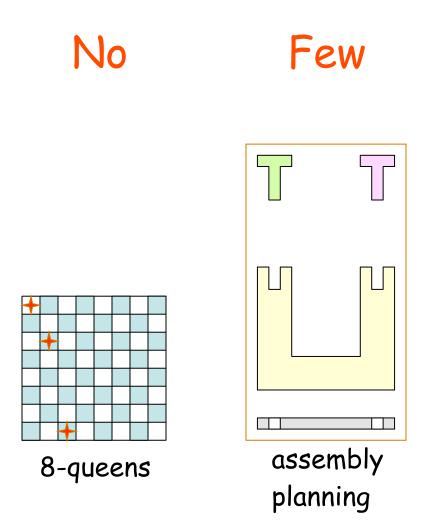
- Breadth-first is complete and optimal, but has high space complexity
- Depth-first is space efficient, but is neither complete, nor optimal
- Iterative deepening is complete and optimal, with the same space complexity as depth-first and almost the same time complexity as breadth-first

No

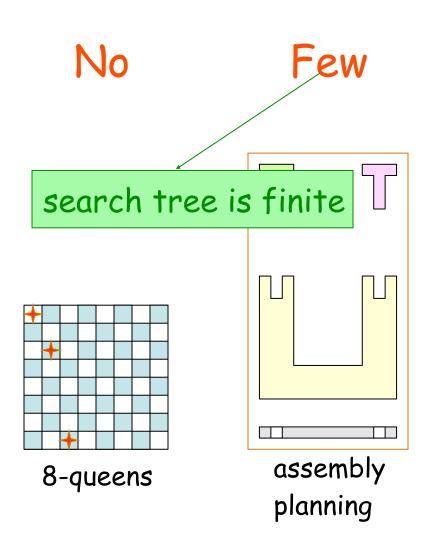


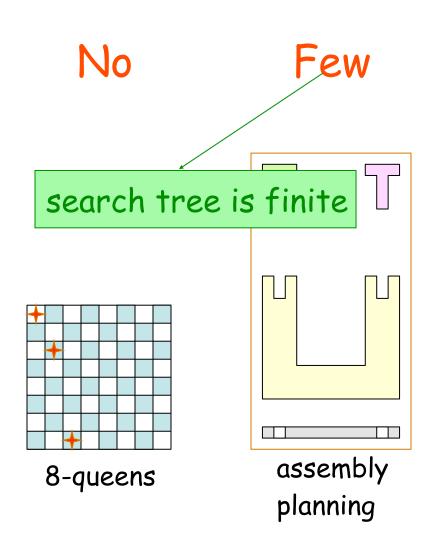
8-queens

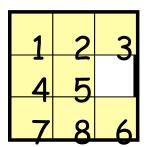
Sunday, February 26, 12

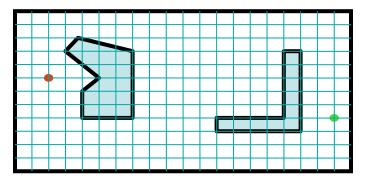


55

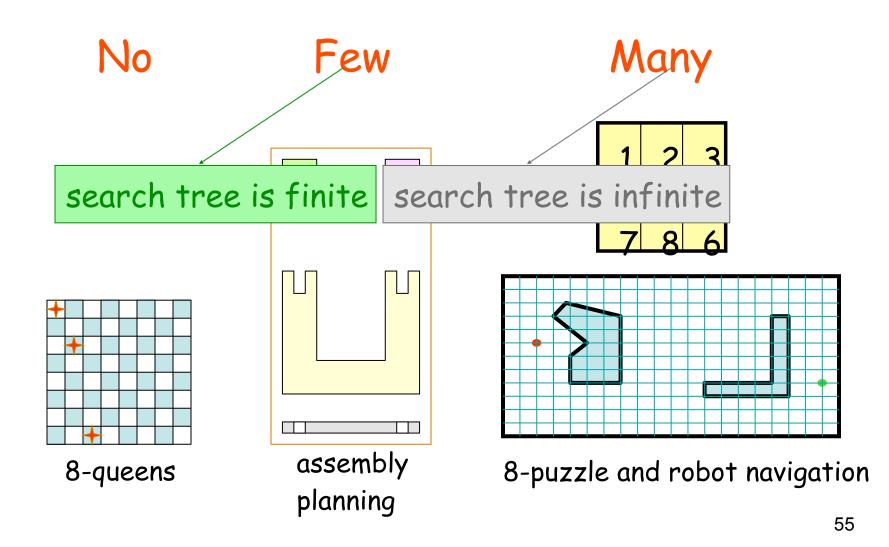








8-puzzle and robot navigation



- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated nodes in CLOSED LIST (CL)
 - If the state of a new node is in CL, then discard the node

- Depth-first search:
 - Solution I:
 - Store all generated states in CL

Depth-first search:

Solution I:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node

Depth-first search:

Solution I:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node
- → Same space complexity as breadth-first !

- Depth-first search:
 - Solution I:
 - Store all generated states in CL

Depth-first search:

Solution I:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node

Depth-first search:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node
- → Same space complexity as breadth-first !

Depth-first search:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node
- → Same space complexity as breadth-first !

Depth-first search:

Solution I:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node

→ Same space complexity as breadth-first !

Depth-first search:

Solution I:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node
- → Same space complexity as breadth-first !

Solution 2:

- Store all states associated with nodes in current path in CL

Depth-first search:

Solution I:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node
- → Same space complexity as breadth-first !

- Store all states associated with nodes in current path in CL
- If the state of a new node is in CL, then discard the node

Depth-first search:

Solution I:

- Store all generated states in CL
- If the state of a new node is in CL, then discard the node
- → Same space complexity as breadth-first !

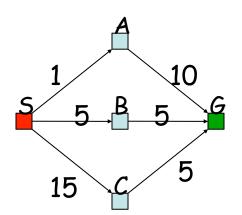
- Store all states associated with nodes in current path in CL
- If the state of a new node is in CL, then discard the node
- \rightarrow Only avoids loops

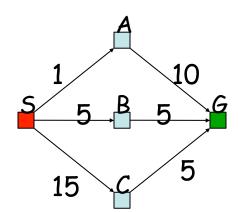
Depth-first search:

Solution I:

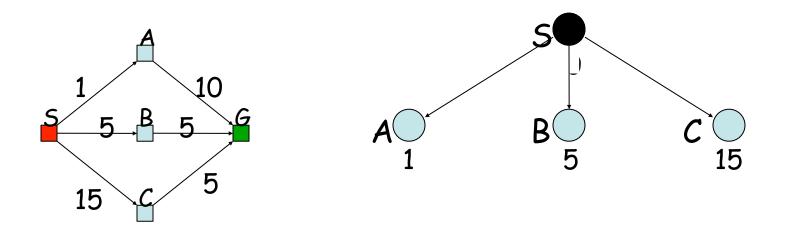
- Store all generated states in CL
- If the state of a new node is in CL, then discard the node
- → Same space complexity as breadth-first !

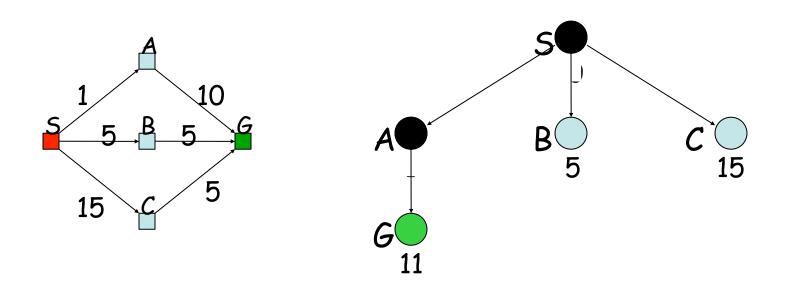
- Store all states associated with nodes in current path in CL
- If the state of a new node is in CL, then discard the node
- \rightarrow Only avoids loops

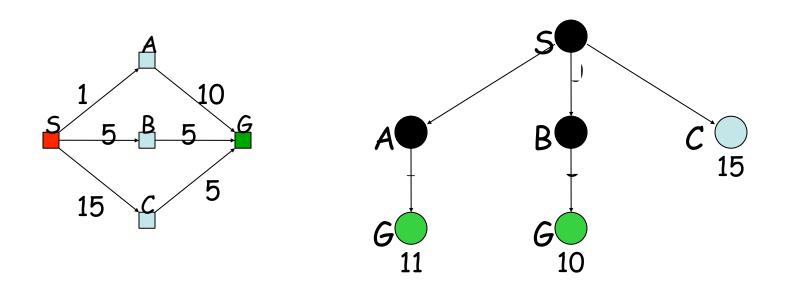




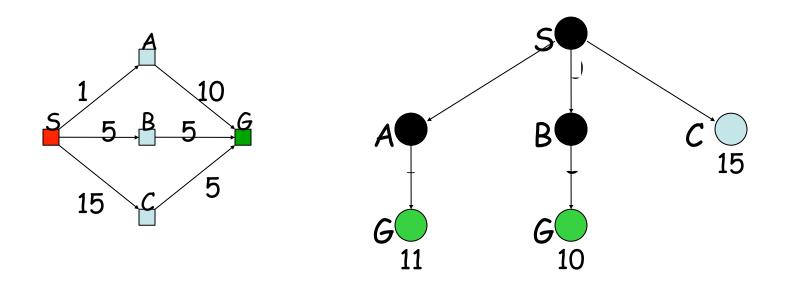
Sunday, February 26, 12



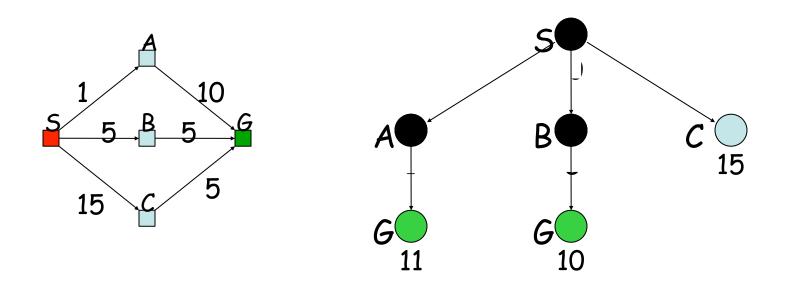




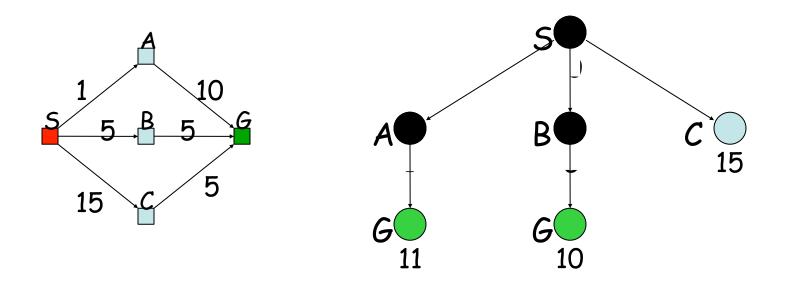
• Each arc has some cost $c \ge \varepsilon > 0$



- Each arc has some cost $c \ge \epsilon > 0$
- The cost of the path to each node N is



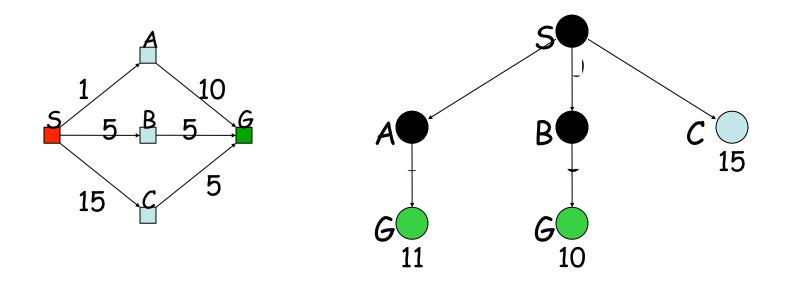
Each arc has some cost c ≥ ε > 0
 The cost of the path to each node N is g(N) = Σ costs of arcs



- Each arc has some cost $c \ge \varepsilon > 0$
- The cost of the path to each node N is

 $g(N) = \Sigma$ costs of arcs

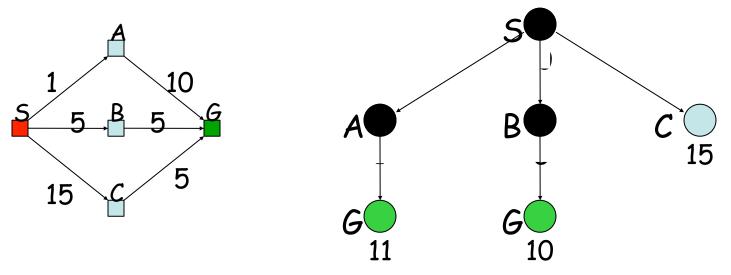
The goal is to generate a solution path of minimal cost



- Each arc has some cost $c \ge \varepsilon > 0$
- The cost of the path to each node N is

 $g(N) = \Sigma$ costs of arcs

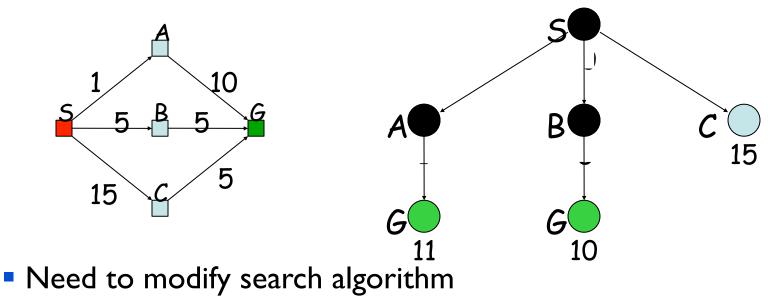
- The goal is to generate a solution path of minimal cost
- The nodes N in the queue OL are sorted in increasing g(N)



- Each arc has some cost $c \ge \varepsilon > 0$
- The cost of the path to each node N is

 $g(N) = \Sigma$ costs of arcs

- The goal is to generate a solution path of minimal cost
- The nodes N in the queue OL are sorted in increasing g(N)



Search Algorithm #2

SEARCH#2

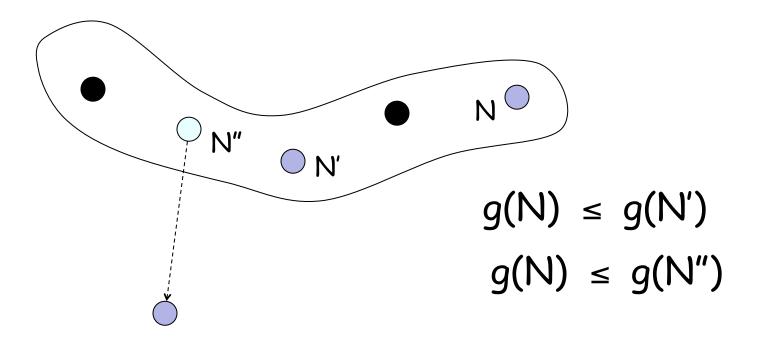
- 1. INSERT(initial-node,OL)
- 2. Repeat:

The goal test is applied to a node when this node is **expanded**, not when it is generated.

- a. If empty(OL) then return failure
- b. $N \leftarrow \text{REMOVE}(OL)$
- c. s \leftarrow STATE(N)
- d. If GOAL?(s) then return path or goal state
 - e. For every state s' in SUCCESSORS(s)
 - i. Create a new node N' as a child of N
 - ii. INSERT(N',OL)

Avoiding Revisited States in Uniform-Cost Search

 For any state S, when the first node N such that STATE(N) = S is expanded, the path to N is the best path from the initial state to S



Avoiding Revisited States in Uniform-Cost Search

 For any state S, when the first node N such that STATE(N) = S is expanded, the path to N is the best path from the initial state to S

So:

- When a node is **expanded**, store its state into CL
- When a new node N is generated:
 - If STATE(N) is in CL, discard N
 - If there exits a node N' in OL such that STATE(N') = STATE(N), discard the node -- N or N' -- with the highest-cost path