
1

Blind (Uninformed)
Search

(Where we systematically explore
alternatives)

R&N: Chap. 3, Sect. 3.3–5

Sunday, February 26, 12

2

Simple Problem-Solving-Agent
Agent Algorithm

1. s0 ← sense/read initial state

2. GOAL? ← select/read goal test
3. Succ ← read successor function
4. solution ← search(s0, GOAL?, Succ)
5. perform(solution)

Sunday, February 26, 12

3

Search Tree

Search treeState graph

Sunday, February 26, 12

3

Search Tree

Search tree

Note that some states may
be visited multiple times

State graph

Sunday, February 26, 12

4

Search Nodes and States

1

2
3 4
5 6

7
8

Sunday, February 26, 12

4

Search Nodes and States

1

2
3 4
5 6

7
8

1

2
3 4
5 6

7
8

1

2
3 4
5 6

78

Sunday, February 26, 12

4

Search Nodes and States

1

2
3 4
5 6

7
8

1

2
3 4
5 6

7
8

1

2
3 4
5 6

78

1
3
5 6

8

1
3

4

5 6
7

82
4 7

2

1

2
3 4
5 6

7
8

Sunday, February 26, 12

5

Search Nodes and States

1

2
3 4
5 6

7
8

1

2
3 4
5 6

7
8

1

2
3 4
5 6

78

1
3
5 6

8

1
3

4

5 6
7

82
4 7

2

1

2
3 4
5 6

7
8

If states are allowed to be revisited,
the search tree may be infinite even

when the state space is finite

Sunday, February 26, 12

6

Data Structure of a Node

PARENT-NODE

1

2
3 4
5 6

7
8

STATE

Depth of a node N
 = length of path from root to N

(depth of the root = 0)

BOOKKEEPING

5Path-Cost
5Depth
RightAction

Expanded yes
...

CHILDREN

Sunday, February 26, 12

8

Open List (OL) of Search Tree

§ The OL is the set of all search nodes that
haven’t been expanded yet
	

1

2
3 4
5 6

7
8

1

2
3 4
5 6

7
8

1

2
3 4
5 6

78

1
3
5 6

8

1
3

4

5 6
7

82
4 7

2

1

2
3 4
5 6

7
8

Sunday, February 26, 12

10

Search Strategy

§ The OL is the set of all search nodes that
haven’t been expanded yet

§ The OL is implemented as a priority queue
• INSERT(node, OL)

• REMOVE(OL)

§ The ordering of the nodes in OL defines the
search strategy

Sunday, February 26, 12

11

Search Algorithm #1
SEARCH#1

1. If GOAL?(initial-state) then return initial-state

2. INSERT(initial-node,OL)

3. Repeat:
a. If empty(OL) then return failure

b. N ← REMOVE(OL)

c. s ← STATE(N)
d. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N
ii. If GOAL?(s’) then return path or goal state
iii. INSERT(N’,OL)

Sunday, February 26, 12

12

Performance Measures

§ Completeness
A search algorithm is complete if it finds a solution
whenever one exists
[What about the case when no solution exists?]

§ Optimality
A search algorithm is optimal if it returns a
minimum-cost path whenever a solution exists

§ Complexity
It measures the time and amount of memory
required by the algorithm

Sunday, February 26, 12

13

Blind vs. Heuristic Strategies

§ Blind (or un-informed) strategies do not
exploit state descriptions to order OL. They
only exploit the positions of the nodes in the
search tree

§ Heuristic (or informed) strategies exploit
state descriptions to order OL (the most
“promising” nodes are placed at the beginning
of OL)

Sunday, February 26, 12

14

Example

Goal state

N1

N2

STATE

STATE

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8

Sunday, February 26, 12

14

Example
For a blind strategy, N1 and N2 are
just two nodes (at some position in
the search tree)

Goal state

N1

N2

STATE

STATE

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8

Sunday, February 26, 12

15

Example
For a heuristic strategy counting the
number of misplaced tiles, N2 is more
promising than N1

Goal state

N1

N2

STATE

STATE

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8

Sunday, February 26, 12

16

Remark

§ Some search problems, such as the (n2-1)-
puzzle, are NP-hard

§ One can’t expect to solve all instances of such
problems in less than exponential time (in n)

§ One may still strive to solve each instance as
efficiently as possible

This is the purpose of the search strategy

Sunday, February 26, 12

17

Blind Strategies

Sunday, February 26, 12

17

Blind Strategies

Arc cost = 1

Sunday, February 26, 12

17

Blind Strategies

§ Breadth-first
• Bidirectional

Arc cost = 1

Sunday, February 26, 12

17

Blind Strategies

§ Breadth-first
• Bidirectional

§ Depth-first
• Depth-limited
• Iterative deepening

Arc cost = 1

Sunday, February 26, 12

17

Blind Strategies

§ Breadth-first
• Bidirectional

§ Depth-first
• Depth-limited
• Iterative deepening

§ Uniform-Cost
(variant of breadth-first)

Arc cost = 1

Arc cost
= c(action) ≥ ε > 0

Sunday, February 26, 12

18

Breadth-First Strategy

 New nodes are inserted at the end of OL

2 3

4 5

1

6 7

Sunday, February 26, 12

18

Breadth-First Strategy

 New nodes are inserted at the end of OL

2 3

4 5

1

6 7

OL = (1)

Sunday, February 26, 12

18

Breadth-First Strategy

 New nodes are inserted at the end of OL

2 3

4 5

1

6 7

OL = (1)

Sunday, February 26, 12

19

Breadth-First Strategy

 New nodes are inserted at the end of OL

OL = (2, 3)2 3

4 5

1

6 7

Sunday, February 26, 12

19

Breadth-First Strategy

 New nodes are inserted at the end of OL

OL = (2, 3)2 3

4 5

1

6 7

Sunday, February 26, 12

20

Breadth-First Strategy

 New nodes are inserted at the end of OL

OL = (3, 4, 5)2 3

4 5

1

6 7

Sunday, February 26, 12

20

Breadth-First Strategy

 New nodes are inserted at the end of OL

OL = (3, 4, 5)2 3

4 5

1

6 7

Sunday, February 26, 12

21

Breadth-First Strategy

 New nodes are inserted at the end of OL

OL = (4, 5, 6, 7)2 3

4 5

1

6 7

Sunday, February 26, 12

22

Important Parameters

1) Maximum number of successors of any state

→ branching factor b of the search tree

2) Minimal length (≠ cost) of a path between the
initial and a goal state

→ depth d of the shallowest goal node in the
 search tree

Sunday, February 26, 12

23

Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is:

• Complete? Not complete?
• Optimal? Not optimal?

Sunday, February 26, 12

24

Evaluation

Sunday, February 26, 12

24

Evaluation

§ b: branching factor

Sunday, February 26, 12

24

Evaluation

§ b: branching factor
§ d: depth of shallowest goal node

Sunday, February 26, 12

24

Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is:

• Complete
• Optimal if step cost is 1

Sunday, February 26, 12

24

Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is:

• Complete
• Optimal if step cost is 1

§ Number of nodes generated:
	
 ???

Sunday, February 26, 12

25

Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is:

• Complete
• Optimal if step cost is 1

§ Number of nodes generated:
 1 + b + b2 + … + bd = ???

Sunday, February 26, 12

26

Evaluation

§ b: branching factor
§ d: depth of shallowest goal node
§ Breadth-first search is:

• Complete
• Optimal if step cost is 1

§ Number of nodes generated:
 1 + b + b2 + … + bd = (bd+1-1)/(b-1) = O(bd)

§ → Time and space complexity is O(bd)

Sunday, February 26, 12

27

Big O Notation

 g(n) = O(f(n)) if there exist two positive
constants a and N such that:

	
 for all n > N: g(n) ≤ af(n)

Sunday, February 26, 12

28

Time and Memory Requirements

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Sunday, February 26, 12

29

Time and Memory Requirements

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Sunday, February 26, 12

30

Remark
If a problem has no solution, breadth-first may run for
ever (if the state space is infinite or states can be
revisited arbitrary many times)

12

14

11

15

10

13

9

5 6 7 8

4321

12

15

11

14

10

13

9

5 6 7 8

4321

?

Sunday, February 26, 12

31

Bidirectional Strategy

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

s

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

s

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

s

Time and space complexity is O(bd/2) << O(bd)
if both trees have the same branching factor b

Sunday, February 26, 12

31

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

s

Time and space complexity is O(bd/2) << O(bd)
if both trees have the same branching factor b
Question: What happens if the branching factor
is different in each direction?

Sunday, February 26, 12

32

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

OL = (1)

Sunday, February 26, 12

33

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

OL = (2, 3)

Sunday, February 26, 12

34

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

OL = (4, 5, 3)

Sunday, February 26, 12

35

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

Sunday, February 26, 12

36

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

Sunday, February 26, 12

37

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

Sunday, February 26, 12

38

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

Sunday, February 26, 12

39

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

Sunday, February 26, 12

40

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

Sunday, February 26, 12

41

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

Sunday, February 26, 12

42

Depth-First Strategy

 New nodes are inserted at the front of OL

1

2 3

4 5

Sunday, February 26, 12

43

Evaluation
§ b: branching factor
§ d: depth of shallowest goal node
§ m: maximal depth of a leaf node
§ Depth-first search is:

§ Complete?
§ Optimal?

Sunday, February 26, 12

44

Evaluation

Sunday, February 26, 12

44

Evaluation
§ b: branching factor
§ d: depth of shallowest goal node

Sunday, February 26, 12

44

Evaluation
§ b: branching factor
§ d: depth of shallowest goal node
§ m: maximal depth of a leaf node
§ Depth-first search is:

§ Complete only for finite search tree
§ Not optimal

Sunday, February 26, 12

44

Evaluation
§ b: branching factor
§ d: depth of shallowest goal node
§ m: maximal depth of a leaf node
§ Depth-first search is:

§ Complete only for finite search tree
§ Not optimal

§ Number of nodes generated (worst case):
 1 + b + b2 + … + bm = O(bm)

Sunday, February 26, 12

44

Evaluation
§ b: branching factor
§ d: depth of shallowest goal node
§ m: maximal depth of a leaf node
§ Depth-first search is:

§ Complete only for finite search tree
§ Not optimal

§ Number of nodes generated (worst case):
 1 + b + b2 + … + bm = O(bm)

§ Time complexity is O(bm)

Sunday, February 26, 12

45

Depth-Limited Search

§ Depth-first with depth cutoff k (depth at
which nodes are not expanded)

§ Three possible outcomes:
• Solution
• Failure (no solution)
• Cutoff (no solution within cutoff)

Sunday, February 26, 12

46

Iterative Deepening Search

 Provides the best of both breadth-first and
depth-first search

	
 Main idea: Totally horrifying !

Sunday, February 26, 12

46

Iterative Deepening Search

 Provides the best of both breadth-first and
depth-first search

	
 Main idea: Totally horrifying !

Sunday, February 26, 12

46

Iterative Deepening Search

 Provides the best of both breadth-first and
depth-first search

	
 Main idea:

	
 IDS
	
 For k = 0, 1, 2, … do:
	
 	
 Perform depth-first search with
	
 depth cutoff k
	
 	
 (i.e., only generate nodes with depth ≤ k)

Totally horrifying !

Sunday, February 26, 12

47

Iterative Deepening

Sunday, February 26, 12

47

Iterative Deepening

Sunday, February 26, 12

47

Iterative Deepening

Sunday, February 26, 12

48

Iterative Deepening

Sunday, February 26, 12

48

Iterative Deepening

Sunday, February 26, 12

48

Iterative Deepening

Sunday, February 26, 12

48

Iterative Deepening

Sunday, February 26, 12

49

Iterative Deepening

Sunday, February 26, 12

49

Iterative Deepening

Sunday, February 26, 12

49

Iterative Deepening

Sunday, February 26, 12

49

Iterative Deepening

Sunday, February 26, 12

49

Iterative Deepening

Sunday, February 26, 12

49

Iterative Deepening

Sunday, February 26, 12

49

Iterative Deepening

Sunday, February 26, 12

50

Performance

§ Iterative deepening search is:
• Complete
• Optimal if step cost =1

§ Time complexity is:
 (d+1)(1) + db + (d-1)b2 + … + (1) bd = O(bd)

§ Space complexity is: O(bd) or O(d)

Sunday, February 26, 12

51

Calculation

db + (d-1)b2 + … + (1) bd

	
 = bd + 2bd-1 + 3bd-2 +… + db
	
 = (1 + 2b-1 + 3b-2 + … + db-d)×bd

	
 ≤ (Σi=1,…,∞ ib(1-i))×bd = bd (b/(b-1))2

Sunday, February 26, 12

52

d = 5 and b = 2

BF ID
1 1 x 6 = 6
2 2 x 5 = 10
4 4 x 4 = 16
8 8 x 3 = 24
16 16 x 2 = 32
32 32 x 1 = 32
63 120 120/63 ~ 2

Number of Generated Nodes
(Breadth-First & Iterative Deepening)

Sunday, February 26, 12

53

Number of Generated Nodes
(Breadth-First & Iterative Deepening)

d = 5 and b = 10

BF ID
1 6
10 50
100 400
1,000 3,000
10,000 20,000
100,000 100,000
111,111 123,456 123,456/111,111 ~ 1.111

Sunday, February 26, 12

54

Comparison of Strategies

§ Breadth-first is complete and optimal, but has
high space complexity

§ Depth-first is space efficient, but is neither
complete, nor optimal

§ Iterative deepening is complete and optimal,
with the same space complexity as depth-first
and almost the same time complexity as
breadth-first

Sunday, February 26, 12

55

Revisited States

Sunday, February 26, 12

55

Revisited States

8-queens

No

Sunday, February 26, 12

55

Revisited States

8-queens

No

assembly
planning

Few

Sunday, February 26, 12

55

Revisited States

8-queens

No

assembly
planning

Few

search tree is finite

Sunday, February 26, 12

55

Revisited States

8-queens

No

assembly
planning

Few

1 2 3
4 5

67 8

8-puzzle and robot navigation

Many

search tree is finite

Sunday, February 26, 12

55

Revisited States

8-queens

No

assembly
planning

Few

1 2 3
4 5

67 8

8-puzzle and robot navigation

Many

search tree is finite search tree is infinite

Sunday, February 26, 12

56

Avoiding Revisited States

§ Requires comparing state descriptions
§ Breadth-first search:

• Store all states associated with generated nodes in
CLOSED LIST (CL)

• If the state of a new node is in CL, then discard the
node

Sunday, February 26, 12

59

Avoiding Revisited States

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node
→ Same space complexity as breadth-first !

Sunday, February 26, 12

59

Avoiding Revisited States

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node
→ Same space complexity as breadth-first !

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node
→ Same space complexity as breadth-first !

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node
→ Same space complexity as breadth-first !

Solution 2:

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node
→ Same space complexity as breadth-first !

Solution 2:
– Store all states associated with nodes in current path in

CL

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node
→ Same space complexity as breadth-first !

Solution 2:
– Store all states associated with nodes in current path in

CL
– If the state of a new node is in CL, then discard the

node

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node
→ Same space complexity as breadth-first !

Solution 2:
– Store all states associated with nodes in current path in

CL
– If the state of a new node is in CL, then discard the

node
à Only avoids loops

Sunday, February 26, 12

59

Avoiding Revisited States

§ Depth-first search:
Solution 1:

– Store all generated states in CL
– If the state of a new node is in CL, then discard the

node
→ Same space complexity as breadth-first !

Solution 2:
– Store all states associated with nodes in current path in

CL
– If the state of a new node is in CL, then discard the

node
à Only avoids loops

Sunday, February 26, 12

60

Uniform-Cost Search

Sunday, February 26, 12

60

Uniform-Cost Search

S G

A

B

C

5
1

15

10

5

5

Sunday, February 26, 12

60

Uniform-Cost Search

S
0

S G

A

B

C

5
1

15

10

5

5

Sunday, February 26, 12

60

Uniform-Cost Search

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

Sunday, February 26, 12

60

Uniform-Cost Search

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

Sunday, February 26, 12

60

Uniform-Cost Search

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Sunday, February 26, 12

60

Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Sunday, February 26, 12

60

Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Sunday, February 26, 12

60

Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
 g(N) = Σ costs of arcs

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Sunday, February 26, 12

60

Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
 g(N) = Σ costs of arcs
§ The goal is to generate a solution path of minimal cost

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Sunday, February 26, 12

60

Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
 g(N) = Σ costs of arcs
§ The goal is to generate a solution path of minimal cost
§ The nodes N in the queue OL are sorted in
 increasing g(N)

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Sunday, February 26, 12

60

Uniform-Cost Search
§ Each arc has some cost c ≥ ε > 0
§ The cost of the path to each node N is
 g(N) = Σ costs of arcs
§ The goal is to generate a solution path of minimal cost
§ The nodes N in the queue OL are sorted in
 increasing g(N)

§ Need to modify search algorithm

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Sunday, February 26, 12

61

Search Algorithm #2

SEARCH#2

1. INSERT(initial-node,OL)

2. Repeat:

a. If empty(OL) then return failure

b. N ← REMOVE(OL)
c. s ← STATE(N)

d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a new node N’ as a child of N
ii. INSERT(N’,OL)

The goal test is applied
to a node when this node is
expanded, not when it is
generated.

Sunday, February 26, 12

62

Avoiding Revisited States in
Uniform-Cost Search

§ For any state S, when the first node N such that
STATE(N) = S is expanded, the path to N is the best path
from the initial state to S

N

N’
N”

g(N) ≤ g(N’)
g(N) ≤ g(N”)

Sunday, February 26, 12

63

Avoiding Revisited States in
Uniform-Cost Search

§ For any state S, when the first node N such that
STATE(N) = S is expanded, the path to N is the best path
from the initial state to S

§ So:
• When a node is expanded, store its state into CL
• When a new node N is generated:

– If STATE(N) is in CL, discard N
– If there exits a node N’ in OL such that STATE(N’) =

STATE(N), discard the node −− N or N’ −− with the
highest-cost path

Sunday, February 26, 12

