A4B36ZUI - Introduction to ARTIFICIAL INTELLIGENCE

https://cw.fel.cvut.cz/wiki/courses/a4b33zui/start

Michal Pechoucek, Branislav Bosansky, Jiri Klema & Olga Stepankova Department of Computer Science Czech Technical University in Prague

Přednášky z předmětu A4B33ZUI / Lectures for A4B33ZUI

No.	Téma přednášky / Topic	Datum / Date	Čas / Time	Místnost / Room	Slidy / Slides	Staré slidy / Old Slides	Přednášející / Lecturer
1	Introduction, search problems, Uninformed search algorithms	21.2.2017	14:30	KN:E-107		₹1 ₹2	Michal Pechoucek
2	Informed search algorithms, A*	28.2.2017	14:30	KN:E-107		₹3 👰 3	Michal Pechoucek
3	Advanced A*	7.3.2017	14:30	KN:E-107			Michal Pechoucek
4	Two-player Games	14.3.2017	14:30	KN:E-107		₹PDF	Branislav Bosansky
5	Constraint Satisfaction Programming	21.3.2017	14:30	KN:E-107		₹4 ₹EN₹BIN₹LS	Michal Pechoucek
6	Two-player Games II	28.3.2017	14:30	KN:E-107		₹ 5 2014_slides	Branislav Bosansky
7	Knowledge representation - introduction	4.4.2017	14:30	KN:E-107		₹ 7	Jiri Klema
8	Knowledge representation in FOL	11.4.2017	14:30	KN:E-107		₹ 8	Jiri Klema
9	Rational decisions under uncertainty	18.4.2017	14:30	KN:E-107		₹9	Jiri Klema
10	Sequential decisions under uncertainty	25.4.2017	14:30	KN:E-107		₹ 10	Jiri Klema
11		2.5.2017	_	_	Tuesday's Schedule		
12	Knowledge in Multiagent Systems	9.5.2017	14:30	KN:E-107		₹11	Olga Stepankova
13	Formal system for MOL, Temporal Logic for Real-life Problems	17.5.2017	14:30	KN:E-107		🔁 12 🔁 13a 🔁 13b-LTL	Olga Stepankova
14	Al an Applications	23.5.2017	14:30	KN:E-107			Michal Pechoucek

Přednášky z předmětu A4B33ZUI / Lectures for A4B33ZUI

No.	Téma přednášky / Topic	Datum / Date	Čas / Time	Místnost / Room	Slic
1	Introduction, search problems, Uninformed search algorithms	21.2.2017	14:30	KN:E-107	
2	Informed search algorithms, A*	28.2.2017	14:30	KN:E-107	
3	Advanced A*	7.3.2017	14:30	KN:E-107	
4	Two-player Games	14.3.2017	14:30	KN:E-107	
5	Constraint Satisfaction Programming	21.3.2017	14:30	KN:E-107	
6	Two-player Games II	28.3.2017	14:30	KN:E-107	
7	Knowledge representation - introduction	4.4.2017	14:30	KN:E-107	
8	Knowledge representation in FOL	11.4.2017	14:30	KN:E-107	
9	Rational decisions under uncertainty	18.4.2017	14:30	KN:E-107	
10	Sequential decisions under uncertainty	25.4.2017	14:30	KN:E-107	
11		2.5.2017	_	_	Tue
12	Knowledge in Multiagent Systems	9.5.2017	14:30	KN:E-107	
13	Formal system for MOL, Temporal Logic for Real-life Problems	17.5.2017	14:30	KN:E-107	
14	Al an Applications	23.5.2017	14:30	KN:E-107	

http://aima.cs.berkeley.edu

Introduction to AI Uninformed Search

R&N: Chap. 3, Sect. 3.1-3.6

Why Search Matters in AI?

AI Today?

Why Search Matters in AI?

AI Today?

- Machine Learning
 (Computational Statistics, Mathematical Optimisation)
 perception, understanding, prediction, classification
- Automated Reasoning (Symbolic AI, Search based AI) problem solving, decision making, planning

Why Search Matters in AI?

AI Today?

- Machine Learning
 (Computational Statistics, Mathematical Optimisation)
 perception, understanding, prediction, classification
- Automated Reasoning (Symbolic AI, Search based AI) problem solving, decision making, planning
- 3. Machine Learning + Automated Reasoning

Example: 8-Puzzle

8	2	
3	4	7
5	1	6

Initial state

1	2	3
4	5	6
7	8	

Goal state

State: Any arrangement of 8 numbered tiles and an empty tile on a 3x3 board

8-Puzzle: Successor Function

Search is about the exploration of alternatives

(n^2-1) -puzzle

8	2	
3	4	7
5	1	6

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

. . . .

15-Puzzle

Sam Loyd offered \$1,000 of his own money to the first person who would solve the following problem:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Stating a Problem as a Search Problem

- State space S
- Successor function: $x \in S \rightarrow successors(x) \in 2^{S}$
- Initial state s₀
- Goal test: $x \in S \rightarrow GOAL?(x) = T \text{ or } F$
- Arc cost

State Graph

 Each state is represented by a distinct node

An arc (or edge) connects
 a node s
 to a node s' if
 s' ∈ SUCCESSORS(s)

 The state graph may contain more than one connected component

Solution to the Search Problem

 A solution is a path connecting the initial node to a goal node (any one)

Solution to the Search Problem

- A solution is a path connecting the initial node to a goal node (any one)
- The cost of a path is the sum of the arc costs along this path

An optimal solution is a solution path of

minimum cost

There might be no solution!

17

How big is the state space of the (n^2-1) puzzle?

- 8-puzzle \rightarrow 9! = 362,880 states
- 15-puzzle \rightarrow 16! ~ 2.09 x 10¹³ states
- 24-puzzle \rightarrow 25! ~ 10²⁵ states

But <u>only half</u> of these states are reachable from any given state (but you may not know that in advance)

8-, 15-, 24-Puzzles

8-puzzle
$$\rightarrow$$
 362,880 states
0.036 sec

15-puzzle \rightarrow 2.09 x 10¹³ states
 \sim 55 hours

24-puzzle \rightarrow 10²⁵ states

100 millions states/sec

- Often it is not feasible (or too expensive) to build a complete representation of the state graph
- A problem solver must construct a solution by exploring a small portion of the graph

Other examples

8-Queens Problem

Place 8 queens in a chessboard so that no two queens are in the same row, column, or diagonal.

Not a solution

Formulation #1

- States: all arrangements of 0, 1,
 2, ..., 8 queens on the board
- Initial state: 0 queens on the board
- Successor function: each of the successors is obtained by adding one queen in an empty square
- Arc cost: irrelevant
- Goal test: 8 queens are on the board, with no queens attacking each other

Formulation #2

- States: all arrangements of k = 0, 1, 2, ..., 8 queens in the k leftmost columns with no two queens attacking each other
- Initial state: 0 queens on the board
- Successor function: each successor is obtained by adding one queen in any square that is not attacked by any queen already in the board, in the leftmost empty column
- Arc cost: irrelevant
- Goal test: 8 queens are on the board

n-Queens Problem

- A solution is a goal node, not a path to this node (typical of design problem)
- Number of states in state space:
 - 8-queens \rightarrow 2,057
 - 100-queens \to 10⁵²
- But techniques exist to solve n-queens problems efficiently for large values of n
 They exploit the fact that there are many solutions well distributed in the state space

Path Planning

What is the state space?

Formulation #1

Cost of one horizontal/vertical step = 1 Cost of one diagonal step = $\sqrt{2}$

Optimal Solution

This path is the shortest in the discretized state space, but not in the original continuous space 34

Formulation #2

sweep-line

Formulation #2

States

Successor Function

Solution Path

A path-smoothing post-processing step is usually needed to shorten the path further

Formulation #3

Cost of one step: length of segment

Formulation #3

Cost of one step: length of segment

Solution Path

The shortest path in this state space is also the shortest in the original continuous space 42

Simple Problem-Solving-Agent

- 1. $s_0 \leftarrow \text{sense/read initial state}$
- 2. GOAL? ← select/read goal test
- 3. Succ ← read successor function
- 4. solution \leftarrow search(s_0 , GOAL?, Succ)
- 5. perform(solution)

Search Nodes and States

8	2	7
თ	4	
5	1	6

8		2
3	4	7
5	1	6

	8	2
3	4	7
5	1	6

8	4	2
3		7
5	1	6

8	2	
3	4	7
5	1	6

Data Structure of a Node

Depth of a node N = length of path from root to N

(depth of the root = 0)

Node expansion

The expansion of a node N of the search tree consists of:

- Evaluating the successor function on STATE(N)
- 2) Generating a child of N for each state returned by the function

node generation ≠ node expansion

	8	2
3	4	7
5	1	6

8	4	2
3		7
5	1	6

8		2
3	4	7
5	1	6

Open-List of Search Tree

 The Open-List is the set of all search nodes that haven't been expanded yet

Search Strategy

- The Open-List is the set of all search nodes that haven't been expanded yet
- The Open-List is implemented as a priority queue
 - INSERT(node,Open-List)
 - REMOVE(Open-List)
- The ordering of the nodes in Open-List defines the search strategy

Search Algorithm #1

SEARCH#1

- 1. If GOAL? (initial-state) then return initial-state
- 2. INSERT(initial-node,Open-List)
- 3. Repeat:
 - a. If empty(Open-List) then return failure
 - b. N ← REMOVE(Open-List)

Expansion of N

- c. $s \leftarrow STATE(N)$
- d. For every state s' in SUCCESSORS(s)
 - i. Create a new node N' as a child of N
 - ii. If GOAL?(s') then return path or goal state
 - iii. INSERT(N',Open-List)

Performance Measures

Completeness

A search algorithm is complete if it finds a solution whenever one exists

[What about the case when no solution exists?]

Optimality

A search algorithm is optimal if it returns a minimum-cost path whenever a solution exists

Complexity

It measures the time and amount of memory required by the algorithm

Blind vs. Heuristic Strategies

- Blind (or un-informed) strategies do not exploit state descriptions to order Open-List. They only exploit the positions of the nodes in the search tree
- Heuristic (or informed) strategies exploit state descriptions to order Open-List (the most "promising" nodes are placed at the beginning of Open-List)

Example

For a blind strategy, N_1 and N_2 are just two nodes (at some position in the search tree)

1	2	3	
4	5		STATE
7	8	6	N_2

1	2	3
4	5	6
7	8	

Goal state

Example

For a heuristic strategy counting the number of misplaced tiles, N_2 is more promising than N_1

1	2	3	
4	5		STATE
7	8	6	N_2

1	2	3
4	5	6
7	8	

Goal state

Remark

- Some search problems, such as the (n²-1)puzzle, are NP-hard
- One can't expect to solve all instances of such problems in less than exponential time (in n)
- One may still strive to solve each instance as efficiently as possible
 - → This is the purpose of the search strategy

Blind Strategies

- Breadth-first
 - Bidirectional

- Depth-first
 - · Depth-limited
 - Iterative deepening

Uniform-Cost Arc cost (variant of breadth-first) $= c(action) \ge \varepsilon > 0$ Uniform-Cost

New nodes are inserted at the end of Open-List

New nodes are inserted at the end of Open-List

Open-List = (2, 3)

New nodes are inserted at the end of Open-List

Open-List = (3, 4, 5)

New nodes are inserted at the end of Open-List

Open-List = (4, 5, 6, 7)

Important Parameters

- 1) Maximum number of successors of any state
 - branching factor b of the search tree
- 2) Minimal length (\neq cost) of a path between the initial and a goal state
 - → depth d of the shallowest goal node in the search tree

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete? Not complete?
 - Optimal? Not optimal?

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:???

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:

$$1 + b + b^2 + ... + b^d = ???$$

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:

$$1 + b + b^2 + ... + b^d = (b^{d+1}-1)/(b-1) = O(b^d)$$

 \rightarrow Time and space complexity is $O(b^d)$

Big O Notation

g(n) = O(f(n)) if there exist two positive constants a and N such that:

for all n > N: $g(n) \le a \times f(n)$

Time and Memory Requirements

d	# Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	~106	1 sec	100 Mb
8	~108	100 sec	10 Gbytes
10	~1010	2.8 hours	1 Tbyte
12	~1012	11.6 days	100 Tbytes
14	~1014	3.2 years	10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Time and Memory Requirements

d	# Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	~106	1 sec	100 Mb
8	~108	100 sec	10 Gbytes
10	~1010	2.8 hours	1 Tbyte
12	~1012	11.6 days	100 Tbytes
14	~1014	3.2 years	10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Remark

If a problem has no solution, breadth-first may run for ever (if the state space is infinite or states can be revisited arbitrary many times)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Bidirectional Strategy

2 Open-List queues: Open-List1 and Open-List2

Time and space complexity is $O(b^{d/2}) \ll O(b^d)$ if both trees have the same branching factor b

Question: What happens if the branching factor is different in each direction?

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete?
 - Optimal?

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete only for finite search tree
 - Not optimal
- Number of nodes generated (worst case):
 1 + b + b² + ... + b^m = O(b^m)
- Time complexity is O(b^m)
- Space complexity is O(bm) [or O(m)]

[Reminder: Breadth-first requires O(bd) time and space]

Depth-Limited Search

 Depth-first with depth cutoff k (depth at which nodes are not expanded)

- Three possible outcomes:
 - Solution
 - Failure (no solution)
 - Cutoff (no solution within cutoff)

Iterative Deepening Search

Provides the best of both breadth-first and depth-first search

```
IDS:
```

For k = 0, 1, 2, ... do:

Perform depth-first search with depth cutoff k

(i.e., only generate nodes with depth $\leq k$)

Iterative Deepening

Iterative Deepening

Iterative Deepening

Performance

- Iterative deepening search is:
 - Complete
 - Optimal if step cost =1
- Time complexity is:

$$(d+1)(1) + db + (d-1)b^2 + ... + (1) b^d = O(b^d)$$

Space complexity is: O(bd) or O(d)

Calculation

$$db + (d-1)b^{2} + ... + (1) b^{d}$$

$$= b^{d} + 2b^{d-1} + 3b^{d-2} + ... + db$$

$$= (1 + 2b^{-1} + 3b^{-2} + ... + db^{-d}) \times b^{d}$$

$$\leq (\sum_{i=1,...,\infty} ib^{(1-i)}) \times b^{d} = b^{d} (b/(b-1))^{2}$$

Number of Generated Nodes (Breadth-First & Iterative Deepening)

BF	ID	
1	1 × 6 = 6	
2	2 × 5 = 10	
4	4 × 4 = 16	
8	8 × 3 = 24	
16	16 × 2 = 32	
32	32 x 1 = 32	
63	120	

$$d = 5$$
 and $b = 2$

Number of Generated Nodes (Breadth-First & Iterative Deepening)

BF	ID
1	6
10	50
100	400
1,000	3,000
10,000	20,000
100,000	100,000
111,111	123,456

d = 5 and b = 10

 $123,456/111,111 \sim 1.111_{91}$

Comparison of Strategies

- Breadth-first is complete and optimal, but has high space complexity
- Depth-first is space efficient, but is neither complete, nor optimal
- Iterative deepening is complete and optimal, with the same space complexity as depthfirst and almost the same time complexity as breadth-first

Revisited States

- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated nodes in Closed-List
 - If the state of a new node is in Closed-List, then discard the node

- Requires comparing state descriptions
- Breadth-first search:
 - Store all states associated with generated nodes in Closed-List
 - If the state of a new node is in Closed-List, then discard the node

Depth-first search:

Solution 1:

- Store all states associated with nodes in current path in Closed-List
- If the state of a new node is in Closed-List, then discard the node

Depth-first search:

Solution 1:

- Store all states associated with nodes in current path in Closed-List
- If the state of a new node is in Closed-List, then discard the node

Only avoids loops

Solution 2:

- Store all generated states in Closed-List
- If the state of a new node is in Closed-List, then discard the node

Uniform-Cost Search

- Each arc has some cost $c \ge \varepsilon > 0$
- The cost of the path to each node N is $g(N) = \Sigma$ costs of arcs
- The goal is to generate a solution path of minimal cost
- The nodes N in the queue Open-List are sorted in

Need to modify search algorithm

Search Algorithm #1

SEARCH#1

- 1. If GOAL? (initial-state) then return initial-state
- 2. INSERT(initial-node,Open-List)
- 3. Repeat:
 - a. If empty(Open-List) then return failure
 - b. N ← REMOVE(Open-List)
 - c. $s \leftarrow STATE(N)$
 - d. For every state s' in SUCCESSORS(s)
 - i. Create a new node N' as a child of N
 - ii. If GOAL?(s') then return path or goal state
 - iii. INSERT(N',Open-List)

Search Algorithm #2

SEARCH#2

- INSERT(initial-node, Open-List)
- 2. Repeat:
 - a. If empty(Open-List) then return failure
 - b. N ← REMOVE(Open-List)
 - c. $s \leftarrow STATE(N)$
 - d. If GOAL?(s) then return path or goal state
 - e. For every state s' in SUCCESSORS(s)
 - i. Create a node N' as a successor of N
 - ii. INSERT(N',Open-List)

Avoiding Revisited States in Uniform-Cost Search

 For any state 5, when the first node N such that STATE(N) = 5 is expanded, the path to N is the best path from the initial state to 5

So:

- · When a node is expanded, store its state into CLOSED
- When a new node N is generated:
 - If STATE(N) is in CLOSED, discard N
 - If there exits a node N' in the Open-List such that STATE(N') = STATE(N), discard the node (N or N') with the highest-cost path

Permutation Inversions

- A tile j appears after a tile i if either j appears on the same row as i to the right of i, or on another row below the row of i.
- For every i = 1, 2, ..., 15, let n_i be the number of tiles j < i that appear after tile i (permutation inversions)
- N = $n_2 + n_3 + ... + n_{15} + row number of empty tile$

1	2	3	4
5	10	7	8
9	6	11	12
13	14	15	

$$n_2 = 0 n_3 = 0 n_4 = 0$$

 $n_5 = 0 n_6 = 0 n_7 = 1$
 $n_8 = 1 n_9 = 1 n_{10} = 4$
 $n_{11} = 0 n_{12} = 0 n_{13} = 0$
 $n_{14} = 0 n_{15} = 0$

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

$$\rightarrow$$
 N = 7 + 4

 Proposition: (N mod 2) is invariant under any legal move of the empty tile

Proof:

- Any horizontal move of the empty tile leaves N unchanged
- A vertical move of the empty tile changes N by an even increment $(\pm 1 \pm 1 \pm 1 \pm 1)$

$$s = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 \\ 9 & 10 & 11 & 8 \\ 13 & 14 & 15 & 12 \end{bmatrix}$$

$$s' = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 11 & 7 \\ 9 & 10 & 8 \\ 13 & 14 & 15 & 12 \end{bmatrix}$$

$$N(s') = N(s) + 3 + 1$$

- Proposition: (N mod 2) is invariant under any legal move of the empty tile
- For a goal state g to be reachable from a state s, a necessary condition is that N(g) and N(s) have the same parity

 It can be shown that this is also a sufficient condition