A4B36ZUI - Introduction to ARTIFICIAL INTELLIGENCE https://cw.fel.cvut.cz/wiki/courses/a4b33zui/start

Michal Pechoucek, Branislav Bosansky, Jiri Klema \& Olga Stepankova Department of Computer Science Czech Technical University in Prague

In parts based on csI21.stanford.edu \& S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. 3rd edition, Prentice Hall, 2010

Přednášky z předmětu A4B33ZUI／Lectures for A4B33ZUI

No．	Téma přednášky／Topic	Datum／Date	Čas／Time	Místnost／Room	Slidy／Slides	Staré slidy／Old Slides	Přednášející／Lecturer
1	Introduction，search problems，Uninformed search algorithms	21．2．2017	14：30	KN：E－107		쥰 2	Michal Pechoucek
2	Informed search algorithms，A＊	28．2．2017	14：30	KN：E－107		중 3	Michal Pechoucek
3	Advanced A＊	7．3．2017	14：30	KN：E－107			Michal Pechoucek
4	Two－player Games	14．3．2017	14：30	KN：E－107		ZPDF	Branislav Bosansky
5	Constraint Satisfaction Programming	21．3．2017	14：30	KN：E－107			Michal Pechoucek
6	Two－player Games II	28．3．2017	14：30	KN：E－107		， 5 2014＿slides	Branislav Bosansky
7	Knowledge representation－introduction	4．4．2017	14：30	KN：E－107		园 7	Jiri Klema
8	Knowledge representation in FOL	11．4．2017	14：30	KN：E－107		준	Jiri Klema
9	Rational decisions under uncertainty	18．4．2017	14：30	KN：E－107		중	Jiri Klema
10	Sequential decisions under uncertainty	25．4．2017	14：30	KN：E－107		亿10	Jiri Klema
11	－－	2．5．2017	－	－	Tuesday＇s Schedule		
12	Knowledge in Multiagent Systems	9．5．2017	14：30	KN：E－107		＊ 11	Olga Stepankova
13	Formal system for MOL，Temporal Logic for Real－life Problems	17．5．2017	14：30	KN：E－107		园 12 园 $13 \mathrm{~b}-$ LTL	Olga Stepankova
14	Al an Applications	23．5．2017	14：30	KN：E－107			Michal Pechoucek

Přednášky z předmětu A4B33ZUI / Lectures for A4B33ZUI

No.	Téma přednášky / Topic	Datum / Date	Čas / Time	Místnost / Room	Slic
1	Introduction, search problems, Uninformed search algorithms	21.2 .2017	$14: 30$	KN:E-107	
2	Informed search algorithms, A*	28.2 .2017	$14: 30$	KN:E-107	
3	Advanced A*	7.3 .2017	$14: 30$	KN:E-107	
4	Two-player Games	14.3 .2017	$14: 30$	KN:E-107	
5	Constraint Satisfaction Programming	21.3 .2017	$14: 30$	KN:E-107	
6	Two-player Games II	28.3 .2017	$14: 30$	KN:E-107	
7	Knowledge representation - introduction	4.4 .2017	$14: 30$	KN:E-107	
8	Knowledge representation in FOL	11.4 .2017	$14: 30$	KN:E-107	
9	Rational decisions under uncertainty	18.4 .2017	$14: 30$	KN:E-107	
10	Sequential decisions under uncertainty	25.4 .2017	$14: 30$	KN:E-107	
11	--	2.5 .2017	-	-	
12	Knowledge in Multiagent Systems	9.5 .2017	$14: 30$	KN:E-107	Tue
13	Formal system for MOL, Temporal Logic for Real-life Problems	17.5 .2017	$14: 30$	KN:E-107	
14	Al an Applications	23.5 .2017	$14: 30$	KN:E-107	

http://aima.cs.berkeley.edu

Artificial Intelligence
A Modern Approach

Stuart Russell • Peter Norvig

Artificial Intelligence
A Modern Approach

Stuart Russell • Peter Norvig

Artificial Intelligence
A Modern Approach THIRDEDITION

Stuart J. Russell Peter Norvig

Introduction to AI Uninformed Search

R\&N: Chap. 3, Sect. 3.1-3.6

Why Search Matters in AI?

AI Today?

Why Search Matters in AI?

AI Today?

1. Machine Learning
(Computational Statistics, Mathematical Optimisation) perception, understanding, prediction, classification
2. Automated Reasoning
(Symbolic AI, Search based AI) problem solving, decision making, planning

Why Search Matters in AI?

AI Today?

1. Machine Learning
(Computational Statistics, Mathematical Optimisation) perception, understanding, prediction, classification
2. Automated Reasoning
(Symbolic AI, Search based AI) problem solving, decision making, planning
3. Machine Learning + Automated Reasoning

Example: 8-Puzzle

Initial state

Goal state

State: Any arrangement of 8 numbered tiles and an empty tile on a 3×3 board

8-Puzzle: Successor Function

Search is about the exploration of alternatives

$\left(n^{2}-1\right)$-puzzle

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

15-Puzzle

Sam Loyd offered \$1,000 of his own money to the first person who would solve the following problem:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Stating a Problem as
 a Search Problem

State Graph

- Each state is represented by a distinct node
- An arc (or edge) connects a nodes to a node s' if $s^{\prime} \in \operatorname{SUCCESSORS}(s)$
- The state graph may contain more than one
 connected component

Solution to the Search Problem

- A solution is a path connecting the initial node to a goal node (any one)

Solution to the Search Problem

- A solution is a path connecting the initial node to a goal node (any one)
- The cost of a path is the sum of the arc costs along this path
- An optimal solution is a solution path of minimum cos \dagger
- There might be no solution!

How big is the state space of the $\left(n^{2}-1\right)$ puzzle?

- 8-puzzle \rightarrow 9! $=362,880$ states
- 15-puzzle $\rightarrow 16$! $\sim 2.09 \times 10^{13}$ states
- 24-puzzle $\rightarrow 25$! ~ 10^{25} states

But only half of these states are reachable from any given state
(but you may not know that in advance)

8-, 15-, 24-Puzzles

$$
\text { 8-puzzle } \rightarrow 362,880 \text { states }
$$

15-puzzle $\rightarrow 2.09 \times 10^{13}$ states

~ 55 hours
$>10^{9}$ years
100 millions states/sec

Searching the State Space

- Often it is not feasible (or too expensive) to build a complete representation of the state graph
- A problem solver must construct a solution by exploring a small portion of the graph

Searching the State Space

Other examples

8-Queens Problem

Place 8 queens in a chessboard so that no two queens are in the same row, column, or diagonal.

A solution

Not a solution

Formulation \#1

- States: all arrangements of 0,1,

$$
\rightarrow \sim 64 \times 63 x \ldots \times 57 \sim 3 \times 10^{14} \text { states }
$$

Formulation \#2

- States: all arrangements of $k=0,1$,

$\rightarrow 2,057$ states

n-Queens Problem

- A solution is a goal node, not a path to this node (typical of design problem)
- Number of states in state space:
- 8-queens \rightarrow 2,057
- 100-queens $\rightarrow 10^{52}$
- But techniques exist to solve n-queens problems efficiently for large values of n They exploit the fact that there are many solutions well distributed in the state space

Path Planning

What is the state space?

Formulation \#1

Cost of one horizontal/vertical step $=1$ Cost of one diagonal step $=\sqrt{ } 2$

Optimal Solution

This path is the shortest in the discretized state space, but not in the original continuous space

Formulation \#2

States

Successor Function

Solution Path

A path-smoothing post-processing step is usually needed to shorten the path further

Formulation \#3

Cost of one step: length of segment

Formulation \#3

Cost of one step: length of segment

Solution Path

The shortest path in this state space is also the shortest in the original continuous space

Simple Problem-Solving-Agent

1. $s_{0} \leftarrow$ sense/read initial state
2. GOAL? \leftarrow select/read goal test
3. Succ \leftarrow read successor function
4. solution $\leftarrow \operatorname{search}\left(s_{0}, G O A L ?, S u c c\right)$
5. perform(solution)

Search Nodes and States

Data Structure of a Node

8	2	
3	4	7
5	1	6

Depth of a node N
= length of path from root to N
(depth of the root $=0$)

Node expansion

The expansion of a node N of the search tree consists of:

8		2
3	4	7
5	1	6

1) Evaluating the successor function on STATE(N)
2) Generating a child of N for each state returned by the function
node generation \neq node expansion

	8	2
3	4	7
5	1	6

8	4	2
3		7
5	1	6

8	2	
3	4	7
5	1	6

Open-List of Search Tree

- The Open-List is the set of all search nodes that haven't been expanded yet

Search Strategy

- The Open-List is the set of all search nodes that haven't been expanded yet
- The Open-List is implemented as a priority queue
- INSERT(node,Open-List)
- REMOVE(Open-List)
- The ordering of the nodes in Open-List defines the search strategy

Search Algorithm \#1

SEARCH\#1

1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,Open-List)
3. Repeat:
a. If empty(Open-List) then return failure
b. $N \leftarrow \operatorname{REMOVE}$ (Open-List)
c. $s \leftarrow \operatorname{STATE}(N)$
d. For every state s' in SUCCESSORS(s)
i. Create a new node N^{\prime} as a child of N
ii. If GOAL?(s') then return path or goal state
iii. INSERT(N',Open-List)

Performance Measures

- Completeness

A search algorithm is complete if it finds a solution whenever one exists
[What about the case when no solution exists?]

- Optimality

A search algorithm is optimal if it returns a minimum-cost path whenever a solution exists

- Complexity

It measures the time and amount of memory required by the algorithm

Blind vs. Heuristic Strategies

- Blind (or un-informed) strategies do not exploit state descriptions to order OpenList. They only exploit the positions of the nodes in the search tree
- Heuristic (or informed) strategies exploit state descriptions to order Open-List (the most "promising" nodes are placed at the beginning of Open-List)

Example

For a blind strategy, N_{1} and N_{2}
 are just two nodes (at some position in the search tree)

Goal state

Example

For a heuristic strategy counting the number of misplaced tiles, N_{2} is more promising than N_{1}
N_{1}

Goal state

Remark

- Some search problems, such as the $\left(n^{2}-1\right)$ puzzle, are NP-hard
- One can't expect to solve all instances of such problems in less than exponential time (in n)
- One may still strive to solve each instance as efficiently as possible
\rightarrow This is the purpose of the search strategy

Blind Strategies

- Breadth-first
- Bidirectional
- Depth-first
- Depth-limited
- Iterative deepening

Arc cost $=1$

- Uniform-Cost

Arc cos \dagger (variant of breadth-first) $\int=c($ action $) \geq \varepsilon>0$

Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List = (1)

Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List = $(2,3)$

Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List $=(3,4,5)$

Breadth-First Strategy

New nodes are inserted at the end of Open-List

Open-List $=(4,5,6,7)$

Important Parameters

1) Maximum number of successors of any state
\rightarrow branching factor b of the search tree
2) Minimal length (\neq cost) of a path between the initial and a goal state
\rightarrow depth d of the shallowest goal node in the search tree

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
- Complete? Not complete?
- Optimal? Not optimal?

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
- Complete
- Optimal if step cost is 1
- Number of nodes generated:
???

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
- Complete
- Optimal if step cost is 1
- Number of nodes generated:

$$
1+b+b^{2}+\ldots+b^{d}=? ? ?
$$

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
- Complete
- Optimal if step cost is 1
- Number of nodes generated:

$$
1+b+b^{2}+\ldots+b^{d}=\left(b^{d+1}-1\right) /(b-1)=O\left(b^{d}\right)
$$

- \rightarrow Time and space complexity is $O\left(b^{d}\right)$

Big O Notation

$g(n)=O(f(n))$ if there exist two positive constants a and N such that:
for all $n>N: \quad g(n) \leq a \times f(n)$

Time and Memory Requirements

d	$\#$ Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	$\sim 10^{6}$	1 sec	100 Mb
8	$\sim 10^{8}$	100 sec	10 Gbytes
10	$\sim 10^{10}$	2.8 hours	1 Tbyte
12	$\sim 10^{12}$	11.6 days	100 Tbytes
14	$\sim 10^{14}$	3.2 years	10,000 Tbytes

Assumptions: $b=10 ; 1,000,000$ nodes/sec; 100bytes/node

Time and Memory Requirements

d	$\#$ Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	$\sim 10^{6}$	1 sec	100 Mb
8	$\sim 10^{8}$	100 sec	10 Gbytes
10	$\sim 10^{10}$	2.8 hours	1 Tbyte
12	$\sim 10^{12}$	11.6 days	100 Tbytes
14	$\sim 10^{14}$	3.2 years	10,000 Tbytes

Assumptions: $b=10 ; 1,000,000$ nodes/sec; 100bytes/node

Remark

If a problem has no solution, breadth-first may run for ever (if the state space is infinite or states can be revisited arbitrary many times)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Bidirectional Strategy

2 Open-List queues: Open-List1 and Open-List2

Time and space complexity is $O\left(b^{d / 2}\right) \ll O\left(b^{d}\right)$ if both trees have the same branching factor b
Question: What happens if the branching factor is different in each direction?

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Depth-First Strategy

New nodes are inserted at the front of Open-

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
- Complete?
- Optimal?

Evaluation

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
- Complete only for finite search tree
- Not optimal
- Number of nodes generated (worst case):
$1+b+b^{2}+\ldots+b^{m}=O\left(b^{m}\right)$
- Time complexity is $O\left(b^{m}\right)$
- Space complexity is $O(\mathrm{bm})$ [or $O(\mathrm{~m})$]
[Reminder: Breadth-first requires $O\left(b^{d}\right)$ time and space]

Depth-Limited Search

- Depth-first with depth cutoff k (depth at which nodes are not expanded)
- Three possible outcomes:
- Solution
- Failure (no solution)
- Cutoff (no solution within cutoff)

Iterative Deepening Search

Provides the best of both breadth-first and depthfirst search

IDS:
For $k=0,1,2, .$. do:
Perform depth-first search with depth cutoff k
(i.e., only generate nodes with depth $\leq k$)

Iterative Deepening

Iterative Deepening

Iterative Deepening

Performance

- Iterative deepening search is:
- Complete
- Optimal if step cost $=1$
- Time complexity is:
$(d+1)(1)+d b+(d-1) b^{2}+\ldots+(1) b^{d}=O\left(b^{d}\right)$
- Space complexity is: $O(b d)$ or $O(d)$

Calculation

$$
\begin{aligned}
d b & +(d-1) b^{2}+\ldots+(1) b^{d} \\
& =b^{d}+2 b^{d-1}+3 b^{d-2}+\ldots+d b \\
& =\left(1+2 b^{-1}+3 b^{-2}+\ldots+d b^{-d}\right) \times b^{d} \\
& \leq\left(\sum_{i=1, \ldots, \infty} i b^{(1-i)}\right) \times b^{d}=b^{d}(b /(b-1))^{2}
\end{aligned}
$$

Number of Generated Nodes (Breadth-First \& Iterative Deepening)

BF	ID
1	$1 \times 6=6$
$d=5$ and $b=2$	
	$2 \times 5=10$
4	$4 \times 4=16$
8	$8 \times 3=24$
16	$16 \times 2=32$
32	$32 \times 1=32$
$120 / 63 \sim 2$	
	120

Number of Generated Nodes (Breadth-First \& Iterative Deepening)

BF	ID
$\mathrm{d}=5$ and $\mathrm{b}=10$	
	6
10	50
100	400
1,000	3,000
10,000	20,000
100,000	100,000
111,111	123,456

Comparison of Strategies

- Breadth-first is complete and optimal, but has high space complexity
- Depth-first is space efficient, but is neither complete, nor optimal
- Iterative deepening is complete and optimal, with the same space complexity as depthfirst and almost the same time complexity as breadth-first

Revisited States

Avoiding Revisited States

- Requires comparing state descriptions

Breadth-first search:

- Store all states associated with generated nodes in Closed-List
- If the state of a new node is in Closed-List, then discard the node

Avoiding Revisited States

- Requires comparing state descriptions

Breadth-first search:

- Store all states associated with generated nodes in Closed-List
- If the state of a new node is in Closed-List, then discard the node

Avoiding Revisited States

- Depth-first search:

Solution 1:

- Store all states associated with nodes in current path in Closed-List
- If the state of a new node is in Closed-List, then discard the node

Avoiding Revisited States

- Depth-first search:

Solution 1:

- Store all states associated with nodes in current path in Closed-List
- If the state of a new node is in Closed-List, then discard the node
Only avoids loops

Solution 2:

- Store all generated states in Closed-List
- If the state of a new node is in Closed-List, then discard the node
Same space complexity as breadth-first!

Uniform-Cost Search

- Each arc has some cost $c \geq \varepsilon>0$
- The cost of the path to each node N is

$$
g(N)=\Sigma \text { costs of arcs }
$$

- The goal is to generate a solution path of minimal cost
- The nodes N in the queue Open-List are sorted in increasing $g(N)$

-Need to modify search algorithm

Search Algorithm \#1

SEARCH\#1

1. If GOAL? (initial-state) then return initial-state
2. INSERT(initial-node,Open-List)
3. Repeat:
a. If empty(Open-List) then return failure
b. $N \leftarrow$ REMOVE(Open-List)
c. $s \leftarrow S T A T E(N)$
d. For every state s' in SUCCESSORS(s)
i. Create a new node N^{\prime} as a child of N
ii. If GOAL? (s') then return path or goal state
iii. INSERT(N',Open-List)

Search Algorithm \#2

SEARCH\#2

1. INSERT(initial-node,Open-List)
2. Repeat:
a. If empty(Open-List) then return failure
b. $N \leftarrow R E M O V E($ Open-List)
c. $s \leftarrow \operatorname{STATE}(N)$
d. If GOAL?(s) then return path or goal state
e. For every state s' in SUCCESSORS(s)
i. Create a node N^{\prime} as a successor of N
ii. INSERT(N',Open-List)

Avoiding Revisited States in Uniform-Cost Search

- For any state S, when the first node N such that $\operatorname{STATE}(\mathrm{N})=\mathrm{S}$ is expanded, the path to N is the best path from the initial state to s
- So:
- When a node is expanded, store its state into CLOSED
- When a new node N is generated:
- If state(N) is in CLOSED, discard N
- If there exits a node N^{\prime} in the Open-List such that $\operatorname{state}\left(N^{\prime}\right)=\operatorname{state}(N)$, discard the node (N or N^{\prime}) with the highest-cost path

Homework

Permutation Inversions

- A tile j appears after a tile i if either j appears on the same row as i to the right of i, or on another row below the row of i.
- For every $i=1,2, \ldots, 15$, let n_{i} be the number of tiles j < i that appear after tile i (permutation inversions)
- $N=n_{2}+n_{3}+\ldots+n_{15}+$ row number of empty tile

1	2	3	4
5	10	7	8
9	6	11	12
13	14	15	

$$
\begin{aligned}
& n_{2}=0 n_{3}=0 n_{4}=0 \\
& n_{5}=0 n_{6}=0 n_{7}=1 \\
& n_{8}=1 n_{9}=1 n_{10}=4 \\
& n_{11}=0 n_{12}=0 n_{13}=0 \\
& n_{14}=0 \quad n_{15}=0 \\
& \rightarrow N=7+4
\end{aligned}
$$

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

- Proposition: (N mod 2) is invariant under any legal move of the empty tile
- Proof:
- Any horizontal move of the empty tile leaves N unchanged
- A vertical move of the empty tile changes N by an even increment $(\pm 1 \pm 1 \pm 1 \pm 1)$

$s=$| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | | 7 |
| 9 | 10 | 11 | 8 |
| 13 | 14 | 15 | 12 |

$s^{\prime}=$| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | 11 | 7 |
| 9 | 10 | | 8 |
| 13 | 14 | 15 | 12 |

$N\left(s^{\prime}\right)=N(s)+3+1$

- Proposition: (N mod 2) is invariant under any legal move of the empty tile
- \rightarrow For a goal state g to be reachable from a state s, a necessary condition is that $N(g)$ and $N(s)$ have the same parity
- It can be shown that this is also a sufficient condition

