Guide to Constraint Programming © Roman Bartak, 1998
Contents Prev Up Next

Constraint Satisfaction

Binarization of Constraints

Most algorithms of constraint satisfaction restrict to the CSPs in which each constraint is either unary
or binary. Such CSP is usually referred as a binary CSP.

Consequently, a binary CSP can be depicted by a constraint graph (sometimes referred as a constraint
network), in which each node represents a variable, and each arc represents a constraint between
variables represented by the end points of the arc. A unary constraint is formally represented by an arc
originating and terminating at the same node. Clearly, the unary constraint can be immediately
satisfied by reducing the domain of the constrained variable (node consistency), and thus, arcs
representing unary constraints can be removed from the constraint network to simplify the constraint
satisfaction algorithms.

Example:

constraint system: constraint network:

X#Y X=Y X=Z
Y#Z
X#Z,

YeZ

Because it is possible to convert any CSP with n-ary constraints to another equivalent binary CSP, the
restriction to binary CSPs is not limitative at all.

The conversion of arbitrary CSP to an equivalent binary CSP is based on the idea of introducing a
new variable that encapsulates the set of constrained variables. This newly introduced variable, we
call it an encapsulated variable, has assigned a domain that is a Cartesian product of the domains of
individual variables. Note, that if the domains of individual variables are finite than the Cartesian
product of the domains, and thus the resulting domain, is still finite.

Example:

original (individual) variables and their encapsulated variable and its domain:
domains:

, U [(1,3,5),(1.3.6).
’ 4] (1.4.5).(1,4.6),
» 6] (2.3.5).(2.3.6)
,6] (2.4.5).(2.4.6)]

N =< <
(e

Now, arbitrary n-ary constraint can be converted to equivalent unary constraint that constrains the
variable which appears as an encapsulation of the original individual variables. As we mentioned
above, this unary constraint can be immediately satisfied by reducing the domain of encapsulated

http://ktiml.mff.cuni.cz/~bartak/constraints/consistent.html#nc
http://ktiml.mff.cuni.cz/~bartak/constraints/index.html
http://ktiml.mff.cuni.cz/~bartak/constraints/backtrack.html
http://ktiml.mff.cuni.cz/~bartak/constraints/constrsat.html
http://ktiml.mff.cuni.cz/~bartak/constraints/constrsat.html

variable. Briefly speaking, n-ary constraint can be substituted by an encapsulated variable with the
domain corresponding to the constraint.

Example:

original constraint and variables: encapsulated variable and reduced domain:
X+Y=Z U::[(1,4,5),(2,3,5),(2,4,6)]
X::[1,2]; Y::[3,4]; Z::]5,6]

In fact, this transformation solves individual constraints. Now, it remains to combine these individual
solutions to the solution of the constraint system. There are two ways how to bind the encapsulated
variables:

» With original variables (hidden variable encoding)

Combination of the original and encapsulated variables naturally expresses the original
non-binary CSP as the encapsulated variables directly correspond to the original
constraints. Newly introduced constraints just bind the original and encapsulated
variables in a following way:

X=1i_th_argument_of(U),

where X is the original variable, U is the encapsulated variable and i is the "position of X
within U".

Example:
original (non-binary) equivalent binary CSP:
CSP:

X+Y=/, X<Y
X::[1,2]; Y::[3.,4]; Z::[5,6]

[5.5]

Z=3rd(U)

U={GCYZ) & XY= 1 1(1,4,5).(2.3.5).(2.4.5)]

X=15t{U) Y=2nd(U)

[1.2] [3.4]

The advantage of this approach is the preservation of the original variables, so the
solution of the original CSP can be directly obtained from the solution of the binary CSP
(the evaluation of the encapsulated variables is omitted). Another advantage is the
preservation of the binary constraints from the original CSP.

» Without original variables (dual encoding)

The other approach to represent converted binary CSP is based on using encapsulated
variables only. Then, the newly introduced constraints just binds these variables via
common components in a following way"

i_th_argument_of(U)=j_th_argument_of(V),

where U and V are encapsulated variables and i and j respectively are the "positions of
common component".

Example:

original (non-binary) equivalent binary CSP:

CSP U={[X.Y.Z) & X+Y¥=7} [(1,4,5).[2,3,5) (2 4,6)]
X+Y:Z’ X<Y 1st{U)=1stV} 2nd{U)=2nd(V}

X: [1’2]’ Y[3’4]’ Z:: V={{X.Y) & X<¥} [(1.3).01.8)(2,3).(2.4)]

[5,6]

In this approach, each constraint from the original CSP is represented by an encapsulated
variable. The resulting constraint network is smaller than the network constructed by the
previous method, however, the solution, i.e., the valuation of original variables, has to be
extracted from the valuation of encapsulated variables.

The possibility to express constraints of higher arity in terms of binary constraints is important from
the theoretical point of view as it enables us to restrict to binary CSPs. Hence, in some sence, binary
CSPs are representative of all CSPs. Nevertheless, in practice the binarization is not likely to be worth
doing.

Further reading:

On the equivalence of constraint satisfaction problems,
F. Rossi, V. Dahr and C. Petrie, in Proc. European Conference on Artificial Intelligence (ECAI-90),
Stockholm, 1990. Also MCC Technical Report ACT-AI-222-89.

On the conversion between Non-Binary and Binary Constraint Satisfaction Problems,
F. Bacchus, P. van Beek, in Proc. National Conference on Artifical Intelligence (AAAI-98), Madison,
Wisconsin, 1998.

Encodings of Non-Binary Constraint Satisfaction Problems,
K. Stergiou, T. Walsh, in Proc. National Conference on Artifical Intelligence (AAAI-99), Orlando,
Florida, 1999.

Using auxiliary variables and implied constraints to model non-binary problems,
B. Smith, K. Stergiou, T. Walsh, in Proc. National Conference on Artifical Intelligence (AAAI-00),
Austin, Texas, 2000.

Non-Binary Constraints,
C. Bessiere, in Proc. Principles and Practice of Constraint Programming (CP-99), Alexandria,

Virginia, USA, 1999.

Contents Prev Up Next

Designed and maintained by Roman Bartdak

http://ktiml.mff.cuni.cz/~bartak/constraints/backtrack.html
http://ktiml.mff.cuni.cz/~bartak/constraints/constrsat.html
http://ktiml.mff.cuni.cz/~bartak/constraints/index.html
mailto:bartak@kti.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak/constraints/constrsat.html

