Search Problems (Where reasoning consists of exploring alternatives)

1

- Declarative knowledge creates alternatives:
 - Which pieces of knowledge to use?
 - How to use them?
- Search is a about exploring alternatives.
 It is a major approach to exploit knowledge

Example: 8-Puzzle

State: Any arrangement of 8 numbered tiles and an empty tile on a 3x3 board

8-Puzzle: Successor Function

8-Puzzle: Successor Function

Search is about the exploration of alternatives

Across history, puzzles and games requiring the exploration of alternatives have been considered a challenge for human intelligence:

- Chess originated in Persia and India about 4000 years ago
- Checkers appear in 3600-year-old Egyptian paintings
- Go originated in China over 3000 years ago

So, it's not surprising that AI uses games to design and test algorithms

	м	A	\$	н		s	0	м	A	т	1	с		м	A	р	s	
Ρ	1	×	T.	Е		w	٨	γ	s	1	D	Е		Ε	s	٨	U	
0	D	E	L	L		A	R	т	I.	с	L	E		L	1	т		
w	1	L.	L.	1	Α	м	\$	н	A	ĸ	E	s	Ρ	Ε	A	R	Ε	
				×	\$								\$	Ε	N	1	0	R
A	м	F	м		1	R	С		R	1	G	н	т			A	N	Y
\$	A	L	м	A	Ν	R	υ	8	н	D	1	ε			А	R	\$	Е
A	L	υ	м	N	1		8	υ	Y	1	Ν				R	С		
				0	Ν	Е	I.		м	0					Ρ	н		
		E	R	Ν	E	s	т	н	Ε	м	1	Ν	G	w	A	Y		
	٨	8	Ε					Е	\$		м	0	٨					
ŝ	м	8	D				υ	L	т	R	А		Y	0	N	D	ε	R
м	1	\$	s			А	L	L	Е	N	G	1	N	s	в	Ε	R	G
υ	Ν				0	D	E	A	R		E	٧	E		с	R	A	B
т	0	١	ι	Е	R								\$	0				
		8	A	R	8	А	R	A	κ	1	Ν	G	\$	0	L	٧	Е	R
Е	ι	Е	N	A		м	A	L	A	R	1	A		м	0	1	R	Ε
R	ε	A	C	т		0	N	A	Ν	1	8	т		P	L	A	\$	м
R	0	м	E	0		к	1	N	E	s	1	s		н	A	L.	т	

Sunday, February 26, 12

8	2	
3	4	7
5	1	6

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

7

I5-Puzzle

Introduced (?) in 1878 by Sam Loyd, who dubbed himself "America's greatest puzzle-expert"

SAM LOYD,

Journalist and Advertising Expert,

ORIGINAL Games, Noveities, Supplements, Souvenirs, Etc., for Newspapers.

Unique Sketches, Novelties, Puzzles,&c., FOR ADVERTISING PURPOSES.

Author of the famous " Get Off The Earth Mystery." " Trick Dankeys." "IS Block Puzzle," " Pigs in Clover." " Parchcepi." Rec., Elc..

P. O. 36X 876.

New York, What 15 1903

I5-Puzzle

Sam Loyd offered \$1,000 of his own money to the first person who would solve the following problem:

But no one ever won the prize !!

10

Sunday, February 26, 12

П

State space S
 Successor function:
 x ∈ S → successors(x) ∈ 2^S

Ш

- State space S
- Successor function:
 - $x \in S \rightarrow \text{successors}(x) \in 2^S$
- Initial state s₀
- Goal test:

- State space S
- Successor function:
 - $x \in S \rightarrow \text{successors}(x) \in 2^S$
- Initial state s₀
- Goal test:
 - $x \in S \rightarrow GOAL?(x) = T \text{ or } F$

- State space S
- Successor function:
 - $x \in S \rightarrow \text{successors}(x) \in 2^S$
- Initial state s₀
- Goal test:
 - $x \in S \rightarrow GOAL?(x) = T \text{ or } F$
- Arc cost

State Graph

- Each state is represented by a distinct node
- An arc (or edge) connects a node s
 to a node s' if
 s' ∈ SUCCESSORS(s)
- The state graph may contain more than one connected component

 A solution is a path connecting the initial node to a goal node (any one)

 A solution is a path connecting the initial node to a goal node (any one)

- A solution is a path connecting the initial node to a goal node (any one)
- The cost of a path is the sum of the arc costs along this path

- A solution is a path connecting the initial node to a goal node (any one)
- The cost of a path is the sum of the arc costs along this path
- An optimal solution is a solution path of minimum cost

- A solution is a path connecting the initial node to a goal node (any one)
- The cost of a path is the sum of the arc costs along this path
- An optimal solution is a solution path of minimum cost
- There might be no solution !

14

• 8-puzzle $\rightarrow ??$ states

- 8-puzzle → 9! = 362,880 states
- 15-puzzle \rightarrow 16! ~ 2.09 x 10¹³ states

- 8-puzzle → 9! = 362,880 states
- I5-puzzle \rightarrow I6! ~ 2.09 x I0¹³ states
- 24-puzzle \rightarrow 25! \sim 10²⁵ states

- 8-puzzle → 9! = 362,880 states
- I5-puzzle \rightarrow I6! ~ 2.09 x I0¹³ states
- 24-puzzle \rightarrow 25! \sim 10²⁵ states

- 8-puzzle → 9! = 362,880 states
- I5-puzzle \rightarrow I6! ~ 2.09 x I0¹³ states
- 24-puzzle \rightarrow 25! \sim 10²⁵ states

But <u>only half</u> of these states are reachable from any given state (but you may not know that in advance)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1
 2
 3
 4

$$n_2 = 0$$
 $n_3 = 0$
 $n_4 = 0$

 5
 10
 7
 8
 $n_5 = 0$
 $n_6 = 0$
 $n_7 = 1$

 9
 6
 11
 12
 $n_8 = 1$
 $n_9 = 1$
 $n_{10} = 4$

 13
 14
 15
 $n_{14} = 0$
 $n_{15} = 0$
 $n_{15} = 0$

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1
 2
 3
 4

$$n_2 = 0$$
 $n_3 = 0$
 $n_4 = 0$

 5
 10
 7
 8
 $n_5 = 0$
 $n_6 = 0$
 $n_7 = 1$

 9
 6
 11
 12
 $n_8 = 1$
 $n_9 = 1$
 $n_{10} = 4$

 13
 14
 15
 $n_{14} = 0$
 $n_{15} = 0$
 $n_{15} = 0$

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1
 2
 3
 4

$$n_2 = 0$$
 $n_3 = 0$
 $n_4 = 0$

 5
 10
 7
 8
 $n_5 = 0$
 $n_6 = 0$
 $n_7 = 1$

 9
 6
 11
 12
 $n_8 = 1$
 $n_9 = 1$
 $n_{10} = 4$

 13
 14
 15
 $n_{14} = 0$
 $n_{15} = 0$
 $n_{15} = 0$

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1
 2
 3
 4

$$n_2 = 0$$
 $n_3 = 0$
 $n_4 = 0$

 5
 10
 7
 8
 $n_5 = 0$
 $n_6 = 0$
 $n_7 = 1$

 9
 6
 11
 12
 $n_8 = 1$
 $n_9 = 1$
 $n_{10} = 4$

 13
 14
 15
 $n_{14} = 0$
 $n_{15} = 0$
 $n_{15} = 0$
• Let the goal be:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1
 2
 3
 4

$$n_2 = 0$$
 $n_3 = 0$
 $n_4 = 0$

 5
 10
 7
 8
 $n_5 = 0$
 $n_6 = 0$
 $n_7 = 1$

 9
 6
 11
 12
 $n_8 = 1$
 $n_9 = 1$
 $n_{10} = 4$

 13
 14
 15
 $n_{14} = 0$
 $n_{15} = 0$
 $n_{15} = 0$

• Let the goal be:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

• A tile j appears after a tile i if either j appears on the same row as i to the right of i, or on another row below the row of i.

• Let the goal be:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

- A tile j appears after a tile i if either j appears on the same row as i to the right of i, or on another row below the row of i.
- For every i = 1, 2, ..., 15, let n_i be the number of tiles j < i that appear after tile i (permutation inversions)

• Let the goal be:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

- A tile j appears after a tile i if either j appears on the same row as i to the right of i, or on another row below the row of i.
- For every i = 1, 2, ..., 15, let n_i be the number of tiles j < i that appear after tile i (permutation inversions)
- $N = n_2 + n_3 + \dots + n_{15} + row$ number of empty tile

- Proposition: (N mod 2) is invariant under any legal move of the empty tile
- Proof:
 - Any horizontal move of the empty tile leaves N unchanged
 - A vertical move of the empty tile changes N by an even increment (± I ± I ± I ± I)

$$N(s') = N(s) + 3 + 1$$

 Proposition: (N mod 2) is invariant under any legal move of the empty tile Proposition: (N mod 2) is invariant under any legal move of the empty tile

- Proposition: (N mod 2) is invariant under any legal move of the empty tile
- → For a goal state g to be reachable from a state s, a necessary condition is that N(g) and N(s) have the same parity

- Proposition: (N mod 2) is invariant under any legal move of the empty tile
- → For a goal state g to be reachable from a state s, a necessary condition is that N(g) and N(s) have the same parity
- It can be shown that this is also a sufficient condition

- Proposition: (N mod 2) is invariant under any legal move of the empty tile
- → For a goal state g to be reachable from a state s, a necessary condition is that N(g) and N(s) have the same parity
- It can be shown that this is also a sufficient condition

- Proposition: (N mod 2) is invariant under any legal move of the empty tile
- → For a goal state g to be reachable from a state s, a necessary condition is that N(g) and N(s) have the same parity
- It can be shown that this is also a sufficient condition
- → The state graph consists of two connected components of equal size

15-Puzzle

Sam Loyd offered \$1,000 of his own money to the first person who would solve the following problem:

15-Puzzle

Sam Loyd offered \$1,000 of his own money to the first person who would solve the following problem:

N = 4

N = 5

15-Puzzle

Sam Loyd offered \$1,000 of his own money to the first person who would solve the following problem:

N = 4

N = 5

So, the second state is not reachable from the first, and Sam Loyd took no risk with his money ...

a) The set of all states?

[e.g., a set of 16! states for the 15-puzzle]

- a) The set of all states?
 [e.g., a set of 16! states for the 15-puzzle]
- b) The set of all states reachable from a given initial state?
 [e.g., a set of 16!/2 states for the 15-puzzle]

- a) The set of all states?
 [e.g., a set of 16! states for the 15-puzzle]
- b) The set of all states reachable from a given initial state?
 [e.g., a set of 16!/2 states for the 15-puzzle]

- a) The set of all states? [e.g., a set of 16! states for the 15-puzzle]
- b) The set of all states reachable from a given initial state?
 [e.g., a set of 16!/2 states for the 15-puzzle]
- In general, the answer is a)

[because one does not know in advance which states are reachable]

- a) The set of all states? [e.g., a set of 16! states for the 15-puzzle]
- b) The set of all states reachable from a given initial state?
 [e.g., a set of 16!/2 states for the 15-puzzle]
- In general, the answer is a)

[because one does not know in advance which states are reachable]

- a) The set of all states?
 [e.g., a set of 16! states for the 15-puzzle]
- b) The set of all states reachable from a given initial state?
 [e.g., a set of 16!/2 states for the 15-puzzle]

In general, the answer is a)

[because one does not know in advance which states are reachable]

But a fast test determining whether a state is reachable from another is very useful, as search techniques are often **inefficient** when a problem has no solution

It is often not feasible (or too expensive) to build a complete representation of the state graph

8-, 15-, 24-Puzzles

100 millions states/sec

8-, 15-, 24-Puzzles

8-puzzle \rightarrow 362,880 states 0.036 sec 100 millions states/sec

- Often it is not feasible (or too expensive) to build a complete representation of the state graph
- A problem solver must construct a solution by exploring a small portion of the graph

Simple Problem-Solving-Agent Algorithm

- 1. I ← sense/read initial state
- 2. GOAL? ← select/read goal test
- 3. Succ ← select/read successor function
- 4. solution ← **search**(I, GOAL?, Succ)
- 5. perform(solution)

 Each state is an abstract representation of a collection of possible worlds sharing some crucial properties and differing on non-important details only

- Each state is an abstract representation of a collection of possible worlds sharing some crucial properties and differing on non-important details only
 - E.g.: In assembly planning, a state does not define exactly the absolute position of each part

- Each state is an abstract representation of a collection of possible worlds sharing some crucial properties and differing on non-important details only
 - E.g.: In assembly planning, a state does not define exactly the absolute position of each part

- Each state is an abstract representation of a collection of possible worlds sharing some crucial properties and differing on non-important details only
 - E.g.: In assembly planning, a state does not define exactly the absolute position of each part

- Each state is an abstract representation of a collection of possible worlds sharing some crucial properties and differing on non-important details only
 - E.g.: In assembly planning, a state does not define exactly the absolute position of each part

Successor Function

It implicitly represents all the actions that are feasible in each state

Successor Function

- It implicitly represents all the actions that are feasible in each state
- Only the results of the actions (the successor states) and their costs are returned by the function
- The successor function is a "black box": its content is unknown

E.g., in assembly planning, the successor function may be quite complex (collision, stability, grasping, ...)

- An arc cost is a positive number measuring the "cost" of performing the action corresponding to the arc, e.g.:
 - I in the 8-puzzle example
 - expected time to merge two sub-assemblies

- An arc cost is a positive number measuring the "cost" of performing the action corresponding to the arc, e.g.:
 - I in the 8-puzzle example
 - expected time to merge two sub-assemblies
- We will assume that for any given problem the cost c of an arc always verifies: c ≥ ε > 0, where ε is a constant

Why is this needed?

- An arc cost is a positive number measuring the "cost" of performing the action corresponding to the arc, e.g.:
 - I in the 8-puzzle example
 - expected time to merge two sub-assemblies

Why is this needed?

- An arc cost is a positive number measuring the "cost" of performing the action corresponding to the arc, e.g.:
 - I in the 8-puzzle example
 - expected time to merge two sub-assemblies
- We will assume that for any given problem the cost c of an arc always verifies: c ≥ ε > 0, where ε is a constant

- An arc cost is a positive number measuring the "cost" of performing the action corresponding to the arc, e.g.:
 - I in the 8-puzzle example
 - expected time to merge two sub-assemblies
- We will assume that for any given problem the cost c of an arc always verifies: c ≥ ε > 0, where ε is a constant

[This condition guarantees that, if path becomes arbitrarily long, its cost also becomes arbitrarily large]

It may be explicitly described:

("a" stands for "any" other than 1, 5, and 8)

It may be explicitly described:

("a" stands for "any" other than 1, 5, and 8)

It may be explicitly described:

or partially described:

("a" stands for "any" other than 1, 5, and 8)

It may be explicitly described:

or partially described:

("a" stands for "any" other than 1, 5, and 8)

It may be explicitly described:

or partially described:

("a" stands for "any" other than 1, 5, and 8)

or defined by a condition,
 e.g., the sum of every row, of every column, and of every diagonal equals 30

15	1	2	12
4	10	9	7
8	6	5	11
3	13	14	

Other examples

8-Queens Problem

Place 8 queens in a chessboard so that no two queens are in the same row, column, or diagonal.

Formulation #I

- States: all arrangements of 0, 1,
 2, ..., 8 queens on the board
- Initial state: 0 queens on the board
- Successor function: each of the successors is obtained by adding one queen in an empty square
- Arc cost: irrelevant
- Goal test: 8 queens are on the board, with no queens attacking each other

Formulation #I

+

T

T

- States: all arrangements of 0, 1,
 2, ..., 8 queens on the board
- Initial state: 0 queens on the board
- Successor function: each of the successors is obtained by adding one queen in an empty square
- Arc cost: irrelevant
- Goal test: 8 queens are on the board, with no queens attacking each other

\rightarrow ~ 64×63×...×57 ~ 3×10¹⁴ states

Formulation #2

- States: all arrangements of k = 0, I, 2, ..., 8 queens in the k leftmost columns with no two queens attacking each other
- Initial state: 0 queens on the board
- Successor function: each successor is obtained by adding one queen in any square that is not attacked by any queen already in the board, in the leftmost empty column
 - Arc cost: irrelevant

Formulation #2

- States: all arrangements of k = 0, I, 2, ..., 8 queens in the k leftmost columns with no two queens attacking each other
- Initial state: 0 queens on the board
- Successor function: each successor is obtained by adding one queen in any square that is not attacked by any queen already in the board, in the leftmost empty column
 - Arc cost: irrelevant

\rightarrow 2,057 states

n-Queens Problem

- A solution is a goal node, not a path to this node (typical of design problem)
- Number of states in state space:
 - 8-queens → 2,057
 - 100-queens \rightarrow 10⁵²
- But techniques exist to solve n-queens problems efficiently for large values of n

They exploit the fact that there are many solutions well distributed in the state space

Path Planning

Path Planning

What is the state space?

Formulation #I

Formulation #I

Optimal Solution

This path is the shortest in the discretized state space, but not in the original continuous space

Formulation #2

46

46

Successor Function

Solution Path

A path-smoothing post-processing step is usually needed to shorten the path further

Cost of one step: length of segment

Cost of one step: length of segment

Cost of one step: length of segment

Solution Path

The shortest path in this state space is also the shortest in the original continuous space 53

Assumptions in Basic Search

- The world is static
- The world is discretizable
- The world is observable
- The actions are deterministic

But many of these assumptions can be removed, and search still remains an important problem-solving tool

Search and Al

- Search methods are ubiquitous in AI systems. They often are the backbones of both core and peripheral modules
- An autonomous robot uses search methods:
 - to decide which actions to take and which sensing operations to perform,
 - to quickly anticipate collision,
 - to plan trajectories,
 - to interpret large numerical datasets provided by sensors into compact symbolic representations,
 - to diagnose why something did not happen as expected,
 - etc...
- Many searches may occur concurrently and sequentially

Applications

Search plays a key role in many applications, e.g.:

- Route finding: airline travel, networks
- Package/mail distribution
- Pipe routing, VLSI routing
- Comparison and classification of protein folds
- Pharmaceutical drug design
- Design of protein-like molecules
- Video games