
Two-player Games

ZUI 2012/2013

Game-tree Search / Adversarial Search

 until now – only the searching player acts in the environment

 there could be others:

 Nature – stochastic environment (MDP, POMDP, …)

 other agents – rational opponents

 Game Theory

 mathematical framework that describes optimal behavior of
rational self-interested agents

 Mag. OI A4M36MAS (Multi-agent Systems)

Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

 What is the goal?

Game-tree Search / Adversarial Search

 What are the basic games categories?

 perfect / imperfect information

 deterministic / stochastic

 zero-sum / general-sum

 finite / infinite

 two-player / n-player

 …

 What is the goal?

 Finding an optimal strategy (i.e., what to play in which
situation)

Game-tree Search / Adversarial Search

 Players are rational – each player wants to maximize her/his
utility value

Game-tree Search / Adversarial Search

 Players are rational – each player wants to maximize her/his
utility value

 function minimax(node, Player)

 if (node is a terminal node) return utility value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, minimax(child, switch(Player)))



 return α

 else

 for each child of node

 β := min(β, minimax(child, switch(Player)))



 return β

Minimax

Minimax in Real Games

 search space in games is typically very large

 exponential in branching factor bd

 e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa

 we have to limit the depth of the search

 we need an evaluation function

Minimax in Real Games

 search space in games is typically very large

 exponential in branching factor bd

 e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa

 we have to limit the depth of the search

 we need an evaluation function

 function minimax(node, depth, Player)

 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, minimax(child, depth-1, switch(Player)))



 return α

 else

 for each child of node

 β := min(β, minimax(child, depth-1, switch(Player)))



 return β

Minimax

Minimax in Real Games - Problems

 good evaluation function

 depth?

 horizon problem

 iterative deepening

 not always searching deeper improve the results

 caching the results (transposition tables)

 …

Alpha-Beta Pruning

Alpha-Beta Pruning

 function alphabeta(node, depth, α, β, Player)

 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, alphabeta(child, depth-1, α, β, switch(Player)))

 if (β≤α) break

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, switch(Player)))

 if (β≤α) break

 return β

Alpha-Beta Pruning

 function negamax(node, depth, α, β, Player)

 if (depth = 0 or node is a terminal node) return the heuristic value of node

 if (Player = MaxPlayer)

 for each child of node

 α := max(α, -negamax(child, depth-1, -β, -α, switch(Player)))

 if (β≤α) break

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player)))

 if (β≤α) break

 return β

Negamax

 [α, β] interval – window

 alphabeta initialization [-∞, +∞]

 what if we use [α
0
, β

0
]

 x = alphabeta(node, depth, α
0
, β

0
,player)

 α
0
≤ x ≤ β

0
- we found a solution

 x ≤ α
0
- failing low (run again with [-∞, x])

 x ≥ β
0
- failing high (run again with [x, +∞])

Aspiration Search

 assume we are in a MAX node

 we are about to search a child 'c'

 we already have obtained a lower bound 'α'

 Is it worth searching the branch 'c'?

 we need to have some test ...

Scout – Idea

 what we really need at that moment is a bound (not the precise

value)

 Remember Aspiration Search?

 x ≤ α
0
- failing low (we know, that solution is ≤ x)

 x ≥ β
0
- failing high (we know, that solution is ≥ x)

 What if we use a null-window [α, α+1] (or [α,α])?

 we obtain a bound …

Scout –Test

function negascout(node, depth, α, β, Player)

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := -negascout(child, depth-1, -b, -α, switch(Player)))

 if ((α < v) and (child is not the first child))

 v := -negascout(child, depth-1, -β, -α, switch(Player)))

 α := max(α, v)

 if (β≤α) break

 b := α + 1

 return α

NegaScout

 also termed Principal Variation Search (PVS)

 dominates alpha-beta

 never evaluates more different nodes than alpha-beta

 can evaluate some nodes more than once

 depends on the move ordering

 can benefit from transposition tables

 generally 10-20% faster compared to alpha-beta

NegaScout

 Memory-enhanced Test Driver

 Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial Intelligence,

Volume 87, Issues 1-2, November 1996, Pages 255-293

MTD

Other Games - Chance nodes

 durative moves (asynchronous chess, Google AI Challenge, ...)

 General Game Playing

 an algorithm receives rules of the game and has to play

 ARIMAA (created in 2002)

 BF ≈ 17,000; no opening books; very few patterns

 easy for people, very difficult for an algorithm

 using a 'real-AI-algorithms' in computer video-games

 very few examples: F.E.A.R., World In Conflict, ...

Challenges?

 sequential games

 with simultaneous moves

 with imperfect information (Poker, Security Games)

 more general types of ‘solutions’

Game Theory in ATG

