

Two-player Games

ZUI 2012/2013

- until now only the searching player acts in the environment
- there could be others:
 - Nature stochastic environment (MDP, POMDP, ...)
 - other agents rational opponents

Game Theory

- mathematical framework that describes optimal behavior of rational self-interested agents
- Mag. OI → A4M36MAS (Multi-agent Systems)

- What are the basic games categories?
 - perfect / imperfect information
 - deterministic / stochastic
 - zero-sum / general-sum
 - finite / infinite
 - two-player / n-player
 - • • •

- What are the basic games categories?
 - perfect / imperfect information
 - deterministic / stochastic
 - zero-sum / general-sum
 - finite / infinite
 - two-player / n-player
 - • •

- What are the basic games categories?
 - perfect / imperfect information
 - deterministic / stochastic
 - zero-sum / general-sum
 - finite / infinite
 - two-player / n-player
 - • • •

• What is the goal?

- What are the basic games categories?
 - perfect / imperfect information
 - deterministic / stochastic
 - zero-sum / general-sum
 - finite / infinite
 - two-player / n-player
 - • • •

- What is the goal?
 - Finding an optimal **strategy** (i.e., what to play in which situation)

Players are rational – each player wants to maximize her/his utility value

Players are rational – each player wants to maximize her/his utility value

Minimax

- function minimax(node, Player)
- **if** (node is a terminal node) **return** utility value of node
- **if** (Player = MaxPlayer)
- for each child of node
- $\alpha := \max(\alpha, \min(\alpha, \min(\alpha, s)))$
- •
- **return** α
- else
- **for each** child of node
- $\beta := \min(\beta, \min(\alpha, \min(\beta, \min(\alpha, \beta))))$
- •
- return β

Minimax in Real Games

- search space in games is typically very large
 - exponential in branching factor b^d
 - e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa
- we have to limit the depth of the search
- we need an evaluation function

Minimax in Real Games

- search space in games is typically very large
 - exponential in branching factor b^d
 - e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa
- we have to limit the depth of the search
- we need an evaluation function

Minimax

- **function** minimax(node, depth, Player)
- **if** (depth = 0 or node is a terminal node) **return** evaluation value of node
- **if** (Player = MaxPlayer)
- for each child of node
- $\alpha := \max(\alpha, \min(\alpha, \min(\alpha, depth-1, switch(Player))))$
- •
- **return** α
- else
- **for each** child of node
- $\beta := \min(\beta, \min(\alpha, \operatorname{child}, \operatorname{depth-I}, \operatorname{switch}(\operatorname{Player})))$
- •
- return β

Minimax in Real Games - Problems

- good evaluation function
- depth?
 - horizon problem
 - iterative deepening
 - not always searching deeper improve the results
- caching the results (transposition tables)
- • • •

Alpha-Beta Pruning

Alpha-Beta Pruning

Alpha-Beta Pruning

- function alphabeta(node, depth, α , β , Player)
- **if** (depth = 0 or node is a terminal node) **return** evaluation value of node
- **if** (Player = MaxPlayer)
- for each child of node
- $\alpha := \max(\alpha, \alpha, \alpha)$ alphabeta(child, depth-I, α, β , switch(Player)))
- if (β≤α) break
- **return** α
- else
- **for each** child of node
- $\beta := \min(\beta, alphabeta(child, depth-I, \alpha, \beta, switch(Player)))$
- if (β≤α) break
- return β

Negamax

- function negamax(node, depth, α , β , Player)
- **if** (depth = 0 or node is a terminal node) **return** the heuristic value of node
- **if** (Player = MaxPlayer)
- **for each** child of node
- $\alpha := \max(\alpha, -\operatorname{negamax}(\operatorname{child}, \operatorname{depth-I}, -\beta, -\alpha, \operatorname{switch}(\operatorname{Player})))$
- if (β≤α) break
- **return** α
- else
- for each child of node
- $\beta := \min(\beta, alphabeta(child, depth-l, \alpha, \beta, not(Player)))$
- if (β≤α) break
- return β

Aspiration Search

- $[\alpha, \beta]$ interval window
- alphabeta initialization $[-\infty, +\infty]$
- what if we use $[\alpha_0, \beta_0]$
 - $x = alphabeta(node, depth, \alpha_0, \beta_0, player)$
 - $\alpha_0 \le x \le \beta_0$ we found a solution
 - $x \leq \alpha_0$ failing low (run again with $[-\infty, x]$)
 - $x \ge \beta_0$ failing high (run again with $[x, +\infty]$)

Scout – Idea

- assume we are in a MAX node
- we are about to search a child 'c'
- we already have obtained a lower bound ' α '

• Is it worth searching the branch 'c'?

• we need to have some test ...

Scout –Test

- what we really need at that moment is a bound (not the precise value)
- Remember Aspiration Search?
 - $x \le \alpha_0$ failing low (we know, that solution is $\le x$)
 - $x \ge \beta_0$ failing high (we know, that solution is $\ge x$)
- What if we use a null-window $[\alpha, \alpha+1]$ (or $[\alpha, \alpha]$)?
 - we obtain a bound ...

NegaScout

function negascout(node, depth, α , β , Player)

- **if** ((depth = 0) or (node is a terminal node)) **return** eval(node)
- b := β
- for each child of node
- v := -negascout(child, depth-1, -b, -α, switch(Player)))
 if ((α < v) and (child is not the first child))
- v := -negascout(child, depth-I, -β, -α, switch(Player)))
- $\alpha := \max(\alpha, v)$
- if (β≤α) break
- b := α + I
- **return** α

NegaScout

- also termed Principal Variation Search (PVS)
- dominates alpha-beta
 - never evaluates more different nodes than alpha-beta
 - can evaluate some nodes more than once
- depends on the move ordering
- can benefit from transposition tables
- generally 10-20% faster compared to alpha-beta

MTD

Memory-enhanced Test Driver

 Best-first fixed-depth minimax algorithms. Plaat et. al., In Artificial Intelligence, Volume 87, Issues 1-2, November 1996, Pages 255-293

Other Games - Chance nodes

Challenges?

- durative moves (asynchronous chess, Google Al Challenge, ...)
- General Game Playing
 - an algorithm receives rules of the game and has to play
- ARIMAA (created in 2002)
 - BF \approx 17,000; no opening books; very few patterns
 - easy for people, very difficult for an algorithm
- using a 'real-Al-algorithms' in computer video-games
 - very few examples: F.E.A.R., World In Conflict, ...

Game Theory in ATG

- sequential games
 - with simultaneous moves
 - with imperfect information (Poker, Security Games)

• more general types of 'solutions'