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Game-tree Search / Adversarial Search 

 until now – only the searching player acts in the environment 

 there could be others: 

 Nature – stochastic environment (MDP, POMDP, …) 

 other agents – rational opponents 

 

 Game Theory 

 mathematical framework that describes optimal behavior of 
rational self-interested agents 

 Mag. OI      A4M36MAS (Multi-agent Systems) 

 



Game-tree Search / Adversarial Search 

 What are the basic games categories? 

 perfect / imperfect information  

 deterministic / stochastic 

 zero-sum / general-sum 

 finite / infinite 

 two-player / n-player 

 … 
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 What are the basic games categories? 

 perfect / imperfect information  

 deterministic / stochastic 

 zero-sum / general-sum 

 finite / infinite 

 two-player / n-player 

 … 

 

 What is the goal? 

 Finding an optimal strategy (i.e., what to play in which 
situation) 

 



Game-tree Search / Adversarial Search 

 Players are rational – each player wants to maximize her/his 
utility value 

 



Game-tree Search / Adversarial Search 

 Players are rational – each player wants to maximize her/his 
utility value 

 



 function minimax(node, Player)          

     if (node is a terminal node) return utility value of node 

     if (Player = MaxPlayer) 

         for each child of node 

             α := max(α, minimax(child, switch(Player) ))      

                                   

         return α 

     else 

         for each child of node 

             β := min(β, minimax(child, switch(Player) ))      

                                    

         return β  

Minimax 



Minimax in Real Games 

 search space in games is typically very large 

 exponential in branching factor bd 

 e.g., 35 in chess, up to 360 in Go, up to 45000 in Arimaa 

 we have to limit the depth of the search 

 we need an evaluation function  
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 function minimax(node, depth, Player)          

     if (depth = 0 or node is a terminal node) return evaluation value of node 

     if (Player = MaxPlayer) 

         for each child of node 

             α := max(α, minimax(child, depth-1, switch(Player) ))      

                                   

         return α 

     else 

         for each child of node 

             β := min(β, minimax(child, depth-1, switch(Player) ))      

                                    

         return β  

Minimax 



Minimax in Real Games - Problems 

 good evaluation function 

 depth? 

 horizon problem 

 iterative deepening 

 not always searching deeper improve the results 

 caching the results (transposition tables) 

 … 



Alpha-Beta Pruning  



Alpha-Beta Pruning  



 function alphabeta(node, depth, α, β, Player)          

     if (depth = 0 or node is a terminal node) return evaluation value of node 

     if (Player = MaxPlayer) 

         for each child of node 

             α := max(α, alphabeta(child, depth-1, α, β, switch(Player) ))      

             if (β≤α)  break                      

         return α 

     else 

         for each child of node 

             β := min(β, alphabeta(child, depth-1, α, β, switch(Player) ))      

             if (β≤α)   break                              

         return β  

Alpha-Beta Pruning  



 function negamax(node, depth, α, β, Player)          

     if (depth = 0 or node is a terminal node) return the heuristic value of node 

     if (Player = MaxPlayer) 

         for each child of node 

             α := max(α, -negamax(child, depth-1, -β, -α, switch(Player) ))      

             if (β≤α)  break                      

         return α 

     else 

         for each child of node 

             β := min(β, alphabeta(child, depth-1, α, β, not(Player) ))      

             if (β≤α)   break                              

         return β  

Negamax 



 [α, β] interval – window 

 alphabeta initialization [-∞, +∞] 

 what if we use [α
0
, β

0
] 

 x = alphabeta(node, depth, α
0
, β

0
,player) 

 α
0 
≤ x ≤ β

0  
- we found a solution 

 x ≤ α
0 
- failing low (run again with [-∞, x]) 

 x ≥ β
0 
- failing high (run again with [x, +∞]) 

Aspiration Search 



 assume we are in a MAX node 

 we are about to search a child 'c' 

 we already have obtained a lower bound 'α' 

 

 Is it worth searching the branch 'c'? 

 

 we need to have some test ... 

Scout – Idea 



 what we really need at that moment is a bound (not the precise 

value) 

 Remember Aspiration Search? 

 x ≤ α
0 
- failing low (we know, that solution is ≤ x) 

 x ≥ β
0 
- failing high (we know, that solution is ≥ x) 

 What if we use a null-window [α, α+1] (or [α,α])? 

 we obtain a bound …  

Scout –Test 



function negascout(node, depth, α, β, Player)          

      if ((depth = 0) or (node is a terminal node)) return eval(node) 

      b := β 

      for each child of node 

        v := -negascout(child, depth-1, -b, -α, switch(Player))) 

         if (( α < v ) and (child is not the first child)) 

               v := -negascout(child, depth-1, -β, -α, switch(Player))) 

            α := max(α, v) 

                if (β≤α)  break                      

                b := α + 1 

      return α 

NegaScout 



 also termed Principal Variation Search (PVS) 

 dominates alpha-beta  

 never evaluates more different nodes than alpha-beta 

 can evaluate some nodes more than once 

 depends on the move ordering 

 can benefit from transposition tables 

 generally 10-20% faster compared to alpha-beta 

NegaScout 



 Memory-enhanced Test Driver  

 

 

 

 

 

 Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial Intelligence, 

Volume 87, Issues 1-2, November 1996, Pages 255-293   

MTD 



Other Games - Chance nodes 



 durative moves (asynchronous chess, Google AI Challenge, ...)  

 General Game Playing 

 an algorithm receives rules of the game and has to play 

 ARIMAA (created in 2002) 

 BF ≈ 17,000; no opening books; very few patterns 

 easy for people, very difficult for an algorithm 

 using a 'real-AI-algorithms' in computer video-games 

 very few examples: F.E.A.R., World In Conflict, ... 

Challenges? 



 sequential games  

 with simultaneous moves 

 with imperfect information (Poker, Security Games) 

 

 more general types of  ‘solutions’ 

Game Theory in ATG 


