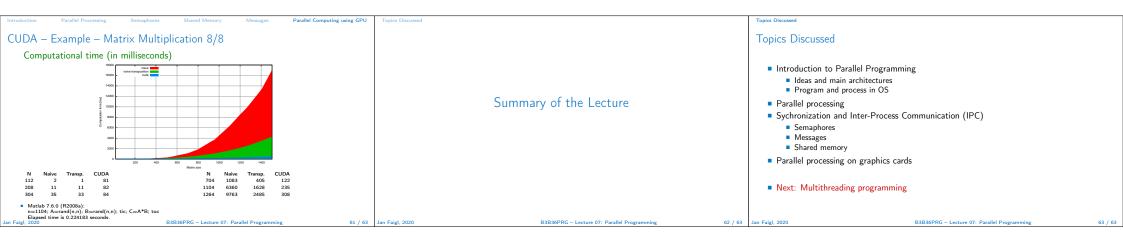

Parallel Programming Jan Faigl Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague Lecture 07 B3B36PRG – C Programming Language	Overview of the Lecture Part 1 – Introduction to Parallel Programming Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Part I Part 1 – Introduction to Parallel Programming
Jan Faigl 2020 B3B30PRG - Lecture 07: Parallel Programming 1 / 63	Jan Faigl, 2020 B3B30PRG - Lecture 07: Parallel Programming 2 / 63 Introduction Parallel Processing Semanheres Shared Memory Messages Parallel Computing units GPU	B3B36PRG – Lecture 07: Parallel Programming 3 / 63
Parallel Programming	Introduction Parallel Processing Semanores Shared Memory Messages Parallel Computing using GPU Motivation Why to Deal with Parallel Programming	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPO Process – Executed Program
 The idea of parallel programming comes from the 60s with the first multi-program and pseudo-parallel systems Parallelism Hardware based - true hardware parallelism of multiprocessor systems Software based - pseudo-parallelism Pseudo-parallelism - A program with parallel constructions may run in pseudo-parallel environment on single or multi-processor systems 	 Increase computational power Having multi-processor system we can solve the computational problem faster Efficient usage of the computational power Even a running program may wait for data E.g., a usual program with user-interaction typically waits for the user input Simultaneous processing of many requests Handling requests from individual clients in client/server architecture 	 Process is executed program running in a dedicated memory space Process is an entity of the Operating System (OS) that is schedule for independent execution Process is usually in one of three basic states: Executing - currently running on the processor (CPU) Blocked - waiting for the periphery Waiting - waiting for the processor A process is identified in the OS by its identifier, e.g., PID Scheduler of the OS manage running processes to be allocated to the available processors
Jan Faigl, 2020 B3B30PRG – Lecture 07: Parallel Programming 5 / 63	B3B36PRG – Lecture 07: Parallel Programming 6 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 7 / 63
Introduction Parallel Processing Semaphores Shared Memory Nexages Parallel Computing using CPU Process States Data become ready Figure 1 and the processes Transition to the head queue with ready processes Scheduler picks Scheduler picks System call that cannot be handled immediatelly Process asked for termination System call that can be performed immediatelly States 07. Parallel Programming	Introduction Parallel Processing Smaphoes Shared Memory Messages Parallel Computing using GPU Multi-processor Systems Allow true parallelism • Multi-processor systems allow true parallelism • It is necessary to synchronize processors and support data communication • Resources for activity synchronization • Resources for communication between processors (processes)	Introduction Parallel Processing Samphores Stand Memory Messages Parallel Computing using CPU Possible Architectures for Parallel Executions • Control of individual instructions • SIMD – Single-Instruction, Multiple-Data – same instructions are simultaneously performed on different data. • "Processors" are identical and run synchronously • Eg., "Vectorization" such as MMX, SSE, 3Dnowl, and AVX, etc. • MIMD – Multiple-Instruction, Multiple-Data – processors run independently and asynchronously • Memory Control Access • Systems with shared memory – central shared memory Eg., multi-core CPUs • Systems with distributed memory – each processor has its memory Eg., computational grids



	1	
Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU
<pre>Example - Open MP - Matrix Multiplication 2/2</pre>	 Languages with Explicit Support for Parallelism It has support for creation of new processes Running process create a copy of itself Both processes execute the identical code (copied) The parent process and child process are distinguished by the process identifier (PID) The code segment is explicitly linked with the new process Regardless how new process is created – the most important is Does the parent process stops its execution till the end of the child process Is the memory shared by the child and parent processes Granularity of the processes – parallelism ranging from the level of the instructions to the parallelism of programs 	<pre>Parallelism - Statement Level Example - parbegin-parend block parbegin S_1: S_2: S_i parend • Statement S_1 are S_n executed in parallel • Execution of the main program is interrupted until all statements S_1 to S_n are terminated • Statement S_1 are S_n executed in parallel Example - doparallel t for i = 1 to n dogralel { for j = 1 to n do { s c[i,j] = 0; 4 for k = 1 to n do { s c[i,j] = c[i,j] + a[i,k]*b[k,j]; } } Parallel execution of the outer loop over all i Exg. OpenMP in C</pre>
Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 21 / 63 Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 22 / 63 Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 23 / 63 Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU
Parallelism – Procedure Level	Parallelism – Program (Process) Level	Example - fork()
 A procedure is coupled with the execution process procedure P; PiD x_{pid} = newprocess(P); killprocess(x_{pid}); P is a procedure and x_{pid} is a process identifier Assignment of the procedure/function to the process at the declaration PID x_{pid} process (P). The process is created at the creation of the variable x The process is terminated at the end of x or sooner <i>Lg., Threads (pthreads) in C</i> 	 A new process can be only a whole program A new program is created by a system call, which creates a complete copy of itself including all variable and data at the moment of the call Example - Creating a copy of the process by fork system call if (fork() == 0) { /* code executed by the child process */ } else { /* code executed by the parent process */ Leg., fork() in C 	<pre>1 #define NUMPROCS 4 2 for (int i = 0; i < NUMPROCS; ++i) { 3 pid.t pid = fork(); 4 if (pid == 0) { 5 compute(i, n); 6 exit(0); 7 } else { 8 printf("Child %d created\n", pid); 9 } 10 } 11 printf("All processes created\n"); 12 for (int i = 0; i < NUMPROCS; ++i) { 13 pid.t pid = wait(&r); 14 printf("Wait for pid %d return: %d\n", pid, r); 15 } 16 void compute(int myid, int n) 17 { 18 printf("Process myid %d start computing\n", myid); 19 } 10 printf("Process myid %d start computing\n", myid); 10 printf("Process myid %d start computing\n", myid); 11 printf("Process myid %d start computing\n", myid); 12 for (int i = 0; i < NUMPROCS; ++i) { 13 pid.t pid = wait(&r); 14 printf("Process myid %d start computing\n", myid); 15 } 16 void compute(int myid, int n) 17 { 18 printf("Process myid %d start computing\n", myid); 19 printf("Process myid %d start computing\n", myid); 10 printf("Process myid %d start computing\n", myid); 11 printf("Process myid %d start computing\n", myid); 12 printf("Process myid %d start computing\n", myid); 13 printf("Process myid %d start computing\n", myid); 14 printf("Process myid %d start computing\n", myid); 15 printf("Process myid %d start computing\n", myid); 16 void compute(int myid, int n) 17 { 18 printf("Process myid %d start computing\n", myid); 19 printf("Process myid %d start computing\n", myid); 14 printf("Process myid %d start computing\n", myid); 15 } 16 void compute(int myid, int n) 16 printf("Process myid %d start computing\n", myid); 17 { 18 printf("Process myid %d start computing\n", myid); 19 printf("Process myid %d start computing\n", myid); 10 printf(print printf("Process myid %d start computing\n", myid); 11 printf("Process myid %d start computing\n", myid); 12 printf("Process myid %d start computing\n", myid); 13 printf("Process myid %d start computing\n", myid); 14 printf(printfor printf(printfor printfor prin</pre>
Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU
 Semaphore E. W. Dijkstra – semaphore is a mechanism to synchronize parallel processes with shared memory Semaphore is an integer variable with the following operations InitSem - initialization Wait { If S > 0 then S ← S - 1 (resources are available, in this case, acquire one) Otherwise suspend execution of the calling process (wait for S become S > 0) Signal { If there is a waiting process, awake it (let the process acquire one resource) Otherwise increase value of S by one, i.e., S ← S + 1 (release one resource) Semaphores can be used to control access to shared resource S < 0 - shared resource is nu use. The process asks for the access to the resources and waits for its release S > 0 - shared resource is available. The process releases the resource The value of the semaphore can represent the number of available resources. Then, we can acquire (or wait for) k resources - wait(k): S ← S - k for S > k, and also releases k resource - signal(k): S ← S + k 	 Semaphores Implementation Operations with a semaphore must be atomic The processor cannot be interrupted during execution of the operation Machine instruction TestAndSet reads and stores a content of the addressed memory space and set the memory to a non-zero value During execution of the TestAndSet instructions the processor holds the system bus and access to the memory is not allowed for any other processor 	<pre>Usage of Semaphores • Semaphores can be utilized for defining a critical sections • Critical sections is a part of the program where exclusive access to the shared memory (resources) must be guaranteed Example of critical section protected by a semaphore InitSem(S,1); Wait(S); • Code of the critical section */ Signal(S); • Synchronization of the processes using semaphores Example of synchronization of processes</pre>
		. Sees p wate for termination of the process q
Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 28 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 29 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 30 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU
Example – Semaphore 1/4 (System Calls)	Example – Semaphore 2/4 (Synchronization Protocol)	Example – Semaphore 3/4 (Master Process)
 Semaphore is an entity of the Operating System (OS) 	 Example when the main (master) process waits for two other processes (slaves) become ready 	<pre>int main(int algo, chait argv()) 2 { 3 struct sembuf sem[2]; // structure for semaphore atomic operations 4 int id = semget(1000, 1, IPC_CREAT 0666); // create semaphore</pre>
1 #include <sys types.h=""></sys>	1. Master process suspend the execution and waits for two other processes slaves become	<pre>5 if (id != -1) { 6 int r = semctl(id, 0, SETVAL, 0) == 0;</pre>
<pre>2 #include <sys ipc.h=""> 3 #include <sys sem.h=""></sys></sys></pre>	ready	7
3 #Include <sys <="" sem.n="" td=""><td> Slave processes then wait to be released by the master process Proposed synchronization "protocol" </td><td><pre>sem[0].sem_num = 0; // operation to acquire semaphore sem[0].sem_op = -2; // once its value will be >= 2 io sem[0].sem_flg = 0; // representing two slaves are ready</pre></td></sys>	 Slave processes then wait to be released by the master process Proposed synchronization "protocol" 	<pre>sem[0].sem_num = 0; // operation to acquire semaphore sem[0].sem_op = -2; // once its value will be >= 2 io sem[0].sem_flg = 0; // representing two slaves are ready</pre>
5 /* create or get existing set of semphores */	 Define our way to synchronize the processes using the system semaphores 	<pre>11 12 sem[1].sem_num = 0; // the next operation in the atomic set</pre>
<pre>6 int semget(key_t key, int nsems, int flag);</pre>	Slave process increments semaphore by 1	<pre>13 sem[1].sem_op = 2; // of operations increases the value of 14 sem[1].sem_flg = 0; // the semaphore about 2</pre>
7 8 /* atomic array of operations on a set of semphores */	 Slave process waits the semaphore become 0 and then it is terminated Master process waits for two slave processes and decrements the semaphore about 2 	<pre>15 16 printf("Wait for semvalue >= 2\n");</pre>
<pre>9 int semop(int semid, struct sembuf *array, size_t nops);</pre>	It must also ensure the semaphore value is not 0; otherwise slaves would be terminated	<pre>17 r = semop(id, sem, 2); // perform all operations atomically 18 printf("Press ENTER to set semaphore to 0\n");</pre>
10	prematurely We need to use the atomic operations with the semaphore 	<pre>getchar(); 19 getchar(); 20 r = semctl(id, 0, SETVAL, 0) == 0; // set the value of semaphore</pre>
<pre>11 /* control operations on a st of semaphores */</pre>		<pre>21 r = semctl(id, 0, IPC_RMID, 0) == 0; // remove the semaphore</pre>
<pre>12 int semctl(int semid, int semnum, int cmd,);</pre>	lec07/sem-master.c lec07/sem-slave.c	22 } 23 return 0; 24 } 16c07/sem-master.c
Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 31 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 32 / 63	24 } lec07/sem-master.c Jan Faigl, 2020 B3B36PRG - Lecture 07: Parallel Programming 33 / 63
Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU
Example – Semaphore 4/4 (Slave Process)	Issues with Semaphores	Shared Memory
<pre>int main(int argc, char* argv[]) 2 f</pre>		Labeled part of the memory accessible from different processes
<pre>struct sembuf sem; int id = semget(1000, 1, 0);</pre>	The main issues are arising from a wrong usage	 OS service provided by system calls
5 int r; 6 if (id != -1) {	 Typical mistakes are: 	Example of System Calls
$z = 0 \cdot 1/2$ add the slave	 Wrongly identified a critical section 	1 /* obtain a shared memory identifier */
<pre>s sem.sem.op = 1; // to the "pool" of resources s sem.sem.flg = 0;</pre>	 Process may block by multiple calls of Wait(S). E.g., the deadlock issues may arise from situations like 	<pre>2 int shmget(key_t key, size_t size, int flag); 3</pre>
<pre>10 printf("Increase semafore value (add resource)\n"); 11 r = semop(id, &sem, 1); 12 r = semop(id, &sem, 1);</pre>	Example – Deadlock	<pre>4 /* attach shared memory */ 5 void* shmat(int shmid, const void *addr, int flag);</pre>
<pre>sem.sem_op = 0; printf("Semaphore value is %d\n", semctl(id, 0, GETVAL, 0));</pre>	/* process 1*/ /* process 2*/	6 7 /* detach shared memory */
<pre>14 printf("Wait for semaphore value 0\n"); 15 r = semop(id, &sem, 1);</pre>	Wait(S1); Wait(S2);	<pre>int shmdt(const void *addr);</pre>
<pre>16</pre>	Wait(S2); Wait(S1); Signal(S2); Signal(S1);	<pre>10 /* shared memory control */ 11 int shmctl(int shmid, int cmd, struct shmid_ds *buf);</pre>
18 return 0; 19 } lec07/sem-master.c	Signal (S1); Signal (S1);	
The IPC entities can be listed by ipcs		OS manages information about usage of shared memory
clang sem-master.c -o sem-master clang sem-slave.c -o sem-slave		 OS also manages permissions and access rights
Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 34 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 35 / 63 Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Jan Faigl, 2020 B3B36PRG - Lecture 07: Parallel Programming 37 / 63
incoduction ratalie rocessing Jentaphones Jitaled memory messages ratalie computing using Gro		induction ratalies rocessing Jentaphores Jinared memory messages ratalies computing using or o
Example – Shared Memory 1/4 (Write)	Example – Shared Memory 2/4 (Read)	Example – Shared Memory 3/4 (Demo)
 Write a line read from stdin to the shared memory 	Read a line from the shared memory and put it to the stdout	1. The Arms in the Arms in the Content of the device of the second
1 #include <sys types.h=""> 2 #include <sys ipc.h=""></sys></sys>	1 #include <sys types.h=""> 2 #include <sys shm.h=""></sys></sys>	 Use shm-write to write a text string to the shared memory Use shm-read to read data (string) from the shared memory
3 #include <sys shm.h=""></sys>	2 #include <sys snm.n=""> 3 #include <stdio.h></stdio.h></sys>	3. Remove shared memory segment
<pre>4 #include <stdio.h> 5 6 #define SIZE 512</stdio.h></pre>	s #define SIZE 512	ipcrm -M 1000
<pre>% #define Size Size 7 8 int main(int argc, char *argv[])</pre>	<pre>7 int main(int argc, char *argv[]) 8 {</pre>	4. Try to read data from the shared memory
<pre>9 {</pre>	8 ℃ 9 int id; 10 char *buf;	1 % clang -o shm-write shm-write.c 1 % clang -o shm-read shm-read.c 2 % ./shm-write 2 % ./shm-read
11 int id;	<pre>if ((id = shmget(1000, 512, 0)) != -1) {</pre>	2 % ./shm-write 2 % ./shm-read 3 Hello! I like programming in C! 3 mem:Hello! I like programming in C!
<pre>if ((id = shmget(1000, SIZE, IPC_CREAT 0666)) != -1) { if ((buf = (char*)shmat(id, 0, 0))) { </pre>	<pre>12 if ((buf = (char*)shmat(id, 0, 0))) { 13</pre>	4 5 % ./shm-read 6 mem:Hello! I like programming in C!
<pre>14 fgets(buf, SIZE, stdin); 15 shmdt(buf);</pre>	14 } 15 shmdt(buf);	7 8 % ipcrm -M 1000
16 } 17 }	<pre>16 } else { 17 fprintf(stderr, "Cannot access to shared memory!\n");</pre>	9 % ./shm-read 0 Cannot access to shared memory!
¹ / ₁₈ return 0;	18 }	lec07/shm-write.c lec07/shm-read.c
lecU//snm-write.c	19 return 0; 20 } lec07/shm-read.c	
Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 38 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 39 / 63	Jan Faigl, 2020 B3B36PRG - Lecture 07: Parallel Programming 40 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU
Example – Shared Memory 4/4 (Status)	Sensing Messages and Queues of Messages	Example – Messages Passing 1/4 (Synchronization, Master)
 A list of accesses to the shared memory using ipcs command after creating shared memory segment and before writing the text m 65539 1000rw-rw-rw if if if 1 	 Processes can communicate via messages send/received to/from system messages queues Queues are entities of the OS with defined system calls Example of System Calls #include <sys types.h=""></sys> #include <sys type.h=""></sys> 	 Two processes are synchronized using messages The master process waits for the message from the slave process The master process informs slave to solve the task The slave process informs master about the solution The master process sends message about termination
512 1239 1239 22:18:48 no-entry 22:18:48	<pre>3 #include <sys msg.h=""> 4 5 /* Create a new message queue */</sys></pre>	Example of master process 1/2
4 after writing the text to the shared memory 5 m 65539 1000rw-rw-rw- jf jf jf jf 0 512 1239 1239 22:18:48 22:19:37 22:18:48 7 after reading the text	<pre>6 int msgget(key_t key, int msgflg); 7 8 /* Send a message to the queue block/non-block (IPC_NOWAIT) */ 9 int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);</pre>	<pre>struct msgbuf { long mtype; char mtext[SIZE]; }</pre>
7 arter reading the text 8 m 65539 1000rw-rw-rw- jf jf jf jf 0 512 1239 1260 22:20:07 22:20:07 22:18:48	<pre>10 11 /* Receive message from the queue block/non-block (IPC_NOWAIT) */ 12 int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg); 13</pre>	<pre>4 }; 5 6 int main(int argc, char *argv[]) 7 {</pre>
	<pre>13 14 /* Control operations (e.g., destroy) the message queue */ 15 int msgctl(int msqid, int cmd, struct msqid_ds *buf);</pre>	<pre>8 struct msgbuf msg; 9 int id = msgget(KEY, IPC CREAT 0666);</pre>
	Another message passing system can be implemented by a user library, e.g., using network communication.	10 int r; (d != -1) {
Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 41 / 63 Introduction Parallel Processing Semanhores Shared Memory Messages Parallel Computing using GPU	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 43 / 63 Introduction Parallel Processing Semanhores Shared Memory Messages Parallel Computing using GPU	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 44 / 63 Introduction Parallel Processing Semanhores Shared Memory Messages Parallel Computing using CPU
<pre>Example - Messages Passing 2/4 (Master) Example of master process 2/2 msg.mtype = 3; //type must be > 0 print("Whit for other process \n"); r = msgrcv(id, kmsg, SIZE, 3, 0); print("Press ENTER to send work\n"); getchar(); strcpy(msg.mtext, "Do work"); msg.mtype = 4; //work msg is type 4 r = msgrad(id, kmsg, sizeof(msg.mtext), 0); fprint(forther, "msgmd r:Xd/u, r); print("Wait for receive work results\n",r); msg.mtype = 5; r = msgrcv(id, kmsg, sizeof(msg.mtext), 5, 0); print("Received message:Xs\n", msg.mtxpt = 5; r = msgrcv(id, kmsg, sizeof(msg.mtext), 5, 0); print("Press ENTER to send exit msg\n"); getchar(); msg.mtype = EXIT_MSG; //I choose type 10 as exit msg r = msgnal(id, kmsg, 0, 0); return 0; // lecO7/msg-master.c </pre>	<pre>Example - Messages Passing 3/4 (Slave) int main(int argc, char *argv[]) { f int main(int argc, char *argv[]) { f msg.mtype = 3; f printf("Inform main process\n"); f strong/msg.mtext, "I'm here, ready to work"); r r = msgend(id, kmsg, sizeof(msg.mtext), 0); r r = msgrev(id, kmsg, sizeof(msg.mtext), 4, 0); printf("work done; send wait for exit\n"); f of (i = 0; i < 4; i++) { saleep(1); printf(""work done, send wait for exit\n"); f fluah(stdout);</pre>	Example - Messages Passing 4/4 (Demo) 1. Execute the master process 2. Execute the slave process 3. Perform the computation 4. Remove the created message queue identified by the msgid #define KEY 1000 1 % clang msg-master.c - 0 master 2 % ./waster 3 Wait for other process 4 Slave msg received, press ENTER to send 4 Slave msg received, press ENTER to send 5 msgend r:0 7 Wait for rotic receive work results 8 Received message:Do work 5 msgend r:0 7 Wait for rotic msg 9 Press ENTER to send exit msg 9 Press ENTER to send exit msg 9 Kiperm -Q 1000 12 % iperm -Q 1000 13 % iperm -Q 1000 14 % iperm -Q 1000 15 % iperm -Q 1000 16 % iperm -Q 1000 17 % iperm -Q 1000 18 % iperm -Q 1000 19 % iperm required exit msg 10 % iperm -Q 1000 10 % iperm : msge(1000): : No such file or 14 % iperm -Q 1000 15 % iperm msg fuelow): No such file or 16 % iper / Work done send wait for wit 17 % iperm -Q 1000 18 % iperm -Q 1000 19 % iperm -Q 1000 10 % iperm msg (1000): : No such file or 10 % iperd rectory 10
Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 45 / 63 Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Jan Faigl, 2020 B3B36PRG - Lecture 07: Parallel Programming 46 / 63 Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 47 / 63 Introduction Parallel Processing Semaohores Shared Memory Messages Parallel Computing using GPU
Massive parallelism using graphics cards	Computational Power (2008) What is the reported processor computational power? 	CUDA
Image rendering performed pixel-by-pixel can be easily parallelized Coupling Dependence (CDU) has similar (as one history dependence)	 Graphics (stream) processors CSX700 GGS700 GigaFLOPs Cell 102 GigaFLOPs 	 NVIDIA Compute Unified Device Architecture. Extension of the C to access to the parallel computational units of the GPU
 Graphics Processing Units (GPU) has similar (or even higher) degree of integration with the main processors (CPU) 	CSX700 96 GigaFLOPs Cell 102 GigaFLOPs GeForce 8800 GTX 518 GigaFLOPs Radeon HD 4670 480 GigaFLOPs Peak catalogue values	Computation (kernel) is executed by the GPU
 They have huge number of parallel processors E.g., GeForce GTX 1060 ~ 1280 cores The computational power can also be used in another applications 	 Main processors : Phenom X4 9950 (@2.6 GHz) 21 GigaFLOPs Core 2 Duo E8600 (@3.3 GHz) 22 GigaFLOPs Cure 2 Quad QX9650 (@3.3 GHz) 35 GigaFLOPs 	 Kernel is performed in parallel using available computational units Host - Main processor (process) Device - GPU
 Processing stream of data (SIMD instructions - processors). GPGPU - General Purpose computation on GPU http://www.gpgpu.org OpenCL (Open Computing Language) - GPGPU abstract interface 	Cure 2 Quad QX9650 (@3.3 GHz) 35 GigaFLOPs Core i7 970 (@3.2 GHz) 42 GigaFLOPs Test linpack 32-bit	• Data must be in the memory accessible by the GPU Host memory \rightarrow Device memory
 Open C (Open Computing Language) - Group district interface CUDA - Parallel programming interface for NVIDIA graphics cards http://www.nvidia.com/object/cuda_home.html 	Is the reported power really achievable? (float vs double)	 The result (of the computation) is stored in the GPU memory
, ,	 How about other indicators E.g., computational power / power consumption 	<i>Host</i> memory ← <i>Device</i> memory
Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 49 / 63	CSX700 has typical power consumption around 9W Jan Faigl. 2020 B3B36PRG - Lecture 07: Parallel Programming 50 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 51 / 63

 A Cond (conjunction) of which into local Conjunction of departs a particle control of the part of the cash. Construction of the cash. Construction of the cash. Construction of the cash. Construction of the cash. Construct			
$ \frac{1}{\sqrt{1 + 1}} 1$	 CUDA – Computational Model Kernel (computation) is divided into blocks Each block represent a parallel computation of the part of the result <i>E.g., a part of the matrix multiplication</i> Each block consists of computational threads Parallel computations are synchronization within the block Blocks are organized into the grid. Scalability is realized by dividing the computation into blocks Blocks may not be necessarily computed in parallel. Based on the available number of parallel units, particular blocks can be computed sequentially. 	CUDA – Grid, Blocks, Threads, and Memory Access	 CUDA - Example - Matrix Multiplication 1/8 NVIDIA CUDA SDK - Version 2.0, matrixMul. Simple matrix multiplication C = A · B, Matrices have identical dimensions n × n, where n is the multiple of the block size Comparison naive implementation in C (3× for loop), naive implementation in C with matrix transpose CUDA implementation Hardware CPU - Intel Core 2 Duo @ 3 GHz, 4 GB RAM, GPU - NVIDIA G84 (GeForce 8600 GT), 512 MB RAM.
CUDA - Example - Matrix Multiplication 2/8 Noise implementation if your interface with the second and the second if the second			Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 54 / 63 Introduction Parallel Processing Samarbores Shared Memory Messages Parallel Computing using CPU
 a for (int i = 0; i t s; i + s) { for (int i = 0; i + s) { for (int i = 0; i + s) { for (int i = 0; i + s) { for (int i = 0; i + s) { for (int i = 0; i + s) { for (int i = 0; i + s) { for (int i = 0; i + s) {	CUDA - Example - Matrix Multiplication 2/8 Naive implementation ¹ void simple_multiply(const int n, ² const float *A, const float *B, float *C)	CUDA - Example - Matrix Multiplication 3/8 Naive implementation with transpose void simple_multiply_trans(const int n, const float *a, const float *b, float *c) { float * bT = create_matrix(n); float * bT = create_ma	 CUDA – computation strategy Divide matrices into blocks Each block computes a single
Instruction Parallel Presenting Stand Manary Managen Parallel Comparing undg CPU Instruction Parallel Comparing undg CPU CUDA = Lxample = Matrix Multiplication 7/8 CUDA = Lxample = Matrix Multiplication = nain function constitute = nain function constitut = nain function constitute = nain function	<pre>4 for (int i = 0; i < n; ++i) { 5 for (int j = 0; j < n; ++j) { 6 float prod = 0; 7 for (int k = 0; k < n; ++k) { 8 prod += A[i * n + k] * B[k * n + j]; 9 } 10 C[i * n + j] = prod; 11 } 12 } 13 }</pre>	<pre>7 for (int j = i + 1; j < n; ++j) { 8 bT[i*n + i] = b[i*n + i]; 9 bT[j*n + i] = b[i*n + j]; 10 } 11 } 12</pre>	Each thread of the individual blocks
CUDA - Implementation - main function void cudamiliply(const int n, const float *hostA, const float *hostB, float *hostC) (const float *hostB, float *hostB, float *hos			Jan Faigt, 2020 B3B36PRG – Lecture 07: Parallel Programming 57 / 63 Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU
n Faigl, 2220 B3830PRG - Lecture 07: Parallel Programming \$6 / 63 Jan Faigl, 220 B3830PRG - Lecture 07: Parallel Programming \$6 / 63 0 / 63	<pre>void cuda_multiply(const int n, const float *hostA, const float *hostB, float *hostC) { const int size = n * n * sizeof(float); float *devA, *devB, *devC; cudaMalloc((void**)&devA, size); cudaMalloc((void**)&devC, size); cudaMemcpy(devA, hostA, size, cudaMemcpyHostToDevice); cudaMemcpy(devA, hostA, size, cudaMemcpyHostToDevice); dim3 threads(BLOCK_SIZE, BLOCK_SIZE); // BLOCK_SIZE == 16 dim3 grid(n / threads.x, n /threads.y); // Call kernel function matrixMul matrixMul<<grid, threads="">>(n, devA, devB, devC); cudaMemcpy(hostC, devC, size, cudaMemcpyDeviceToHost); cudaMemcpy(hostC, devC, size, cudaMemcpyDeviceToHost); cudaFree(devA); cudaFree(devC); cudaFree(devC);</grid,></pre>	<pre>CUDA implementation - kernel function glebal void matrixMu(int n, float* A, float* B, float* C) { glebal void matrixMu(int n, float* A, float* B, float* C) { int br = block(BX;; int br = block(BX;); int tar = threadIdx,x; int br = block(BX;); int taBegin = n + BLOCK_SIZE by; //beginning of sub-matrix in the block int aBegin = n + BLOCK_SIZE by; //beginning of sub-matrix in the block float (Sub = 0; for (</pre>	<pre>CUDA source codes Example - Dedicated source file cuda_func.cu 1. Declaration of the external function extern "C" { // declaration of the external function (cuda kernel) void cuda_multiply(const int n, const float *A, const float *B, float *C); 2. Compile the CUDA code to the C++ code 1 nvcccuda cuda_func.cu -o cuda_func.cu.cc</pre>
	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 58 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 59 / 63	Jan Faigl, 2020 B3B36PRG – Lecture 07: Parallel Programming 60 / 63

