
Data types: Struct, Union, Enum, Bit Fields.
Preprocessor and Building Programs

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 05

B3B36PRG – C Programming Language

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 1 / 53

Overview of the Lecture

� Part 1 – Data types
Structures – struct

Unions

Type definition – typedef

Enumerations – enum

Bit-Fields K. N. King: chapters 16 and 20

� Part 2 – Preprocessor and Building Programs
Organization of Source Files

Preprocessor

Building Programs K. N. King: chapters 10, 14, and 15

� Part 3 – Assignment HW 05

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 2 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Part I

Data types – Struct, Union, Enum and Bit Fields

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 3 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Structures, Unions, and Enumerations

� Structure is a collection of values, possibly of different types
� It is defined with the keyword struct
� Structures represent records of data fields

� Union is also a collection of values, but its members share the same storage
Union can store one member at a time, but not all simultaneously.

� Enumeration represents named integer values

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 4 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

struct
� Structure struct is a finite set of data field members that can be of different type
� Structure is defined by the programmer as a new data type
� It allows storing a collection of the related data fields
� Each structure has a separate name space for its members
� Declaration of the struct variable is

#define USERNAME_LEN 8
struct {

int login_count;
char username[USERNAME_LEN + 1];
int last_login; // date as the number of seconds

// from 1.1.1970 (unix time)
} user_account; // variable of the struct defined type

� The declaration follows other variable declaration where struct {...} specifies the
type and user_account the variable name

� We access the members using the . operator, e.g.,
user_account.login_count = 0;

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 6 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Initialization of the Structure Variables and Assignment Operator
� Structure variables can be initialized in the declaration
� In C99, we can also use the designated initializers

struct {
int login_count;
char name[USENAME_LEN + 1];
int last_login;

} user1 = { 0, "admin", 1477134134 }, //get unix time ‘date +%s‘
// designated initializers in C99
user2 = { .name = "root", .login_count = 128 };

printf("User1 ’%s’ last login on: %d\n", user1.name, user1.last_login);
printf("User2 ’%s’ last login on: %d\n", user2.name, user2.last_login);

user2 = user1; // assignment operator structures
printf("User2 ’%s’ last login on: %d\n", user2.name, user2.last_login);

lec05/structure_init.c

� The assignment operator = is defined for the structure variables of the same type
No other operator like != or == is defined for the structures!

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 7 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Structure Tag

� Declaring a structure tag allows to identify a particular structure and avoids repeating
all the data fields in the structure variable
struct user_account {

int login_count;
char username[USERNAME_LEN + 1];
int last_login;

}; Notice VLA is not allowed in structure type.

� After creating the user_account tag, variables can be declared

struct user_account user1, user2;

� The defined tag is not a type name, therefore it has to be used with the struct keyword
� The new type can be defined using the typedef keyword as

typedef struct { ... } new_type_name;

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 8 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example of Defining Structure
� Without definition of the new type (using typedef) adding the keyword struct
before the structure tag is mandatory

struct record {
int number;
double value;

};

typedef struct {
int n;
double v;

} item;

record r; /* THIS IS NOT ALLOWED! */
/* Type record is not known */

struct record r; /* Keyword struct is required */
item i; /* type item defined using typedef */

� Introducing new type by typedef, the defined struct type can be used without the
struct keyword

lec05/struct.c
Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 9 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Structure Tag and Structure Type
� Using struct record we defined a new structure tag record

struct record {
int number;
double value;

};
� The tag identifier record is defined in the name space of the structure tags

It is not mixed with other type names

� Using the typedef, we introduce a new type named record
typedef struct record record;

� We define a new global identifier record as the type name for the struct record

� Structure tag and definition of the type can be combined
typedef struct record {

int number;
double value;

} record;

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 10 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example struct – Assignment

� The assignment operator = can be used for two variables of the same struct type
struct record {

int number;
double value;

};

typedef struct {
int n;
double v;

} item;

struct record rec1 = { 10, 7.12 };
struct record rec2 = { 5, 13.1 };
item i;
print_record(rec1); /* number(10), value(7.120000) */
print_record(rec2); /* number(5), value(13.100000) */
rec1 = rec2;
i = rec1; /* THIS IS NOT ALLOWED! */
print_record(rec1); /* number(5), value(13.100000) */

lec05/struct.c

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 11 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example struct – Direct Copy of the Memory
� Having two structure variables of the same size, the content can be directly copied
using memory copy

E.g., using memcpy() from the <string.h>

struct record r = { 7, 21.4};
item i = { 1, 2.3 };
print_record(r); /* number(7), value(21.400000) */
print_item(&i); /* n(1), v(2.300000) */
if (sizeof(i) == sizeof(r)) {

printf("i and r are of the same size\n");
memcpy(&i, &r, sizeof(i));
print_item(&i); /* n(7), v(21.400000) */

}

� Notice, in this example, the interpretation of the stored data in both structures is
identical. In general, it may not be always the case.

lec05/struct.c
Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 12 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Size of Structure Variables
� Data representation of the structure may be different from the sum of sizes of the
particular data fields (types of the members)

struct record {
int number;
double value;

};

typedef struct {
int n;
double v;

} item;
printf("Size of int: %lu size of double: %lu\n", sizeof(int), sizeof(

double));
printf("Size of record: %lu\n", sizeof(struct record));
printf("Size of item: %lu\n", sizeof(item));

Size of int: 4 size of double: 8
Size of record: 16
Size of item: 16

lec05/struct.c
Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 13 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Size of Structure Variables 1/2
� Compiler may align the data fields to the size of the word (address) of the particularly
used architecture

E.g., 8 bytes for 64-bits CPUs.

� A compact memory representation can be explicitly prescribed for the clang and gcc
compilers by the __attribute__((packed))

struct record_packed {
int n;
double v;

} __attribute__((packed));

� Or typedef struct __attribute__((packed)) {
int n;
double v;

} item_packed;
lec05/struct.c

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 14 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Size of Structure Variables 2/2

printf("Size of int: %lu size of double: %lu\n",
sizeof(int), sizeof(double));

printf("record_packed: %lu\n", sizeof(struct record_packed));

printf("item_packed: %lu\n", sizeof(item_packed));

Size of int: 4 size of double: 8
Size of record_packed: 12
Size of item_packed: 12

lec05/struct.c

� The address alignment provides better performance for addressing the particular mem-
bers at the cost of higher memory requirements

http://www.catb.org/esr/structure-packing

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 15 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Accessing Members using Pointer to Structure

� The operator –> can be used to access structure members using a pointer

typedef struct {
int number;
double value;

} record_s;

record_s a;
record_s *p = &a;

printf("Number %d\n", p->number);

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 16 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Structure Variables as a Function Parameter
� Structure variable can be pass to a function and also returned
� We can pass/return the struct itself

void print_record(struct record rec) {
printf("record: number(%d), value(%lf)\n",
rec.number, rec.value);

}
� or as a pointer to a structure

void print_item(item *v) {
printf("item: n(%d), v(%lf)\n", v->n, v->v);

}

� Passing the structure by
� value, a new variable is allocated on the stack and data are copied

Be aware of shallow copy of pointer data fields.
� pointer only the address is passed to the function

lec05/struct.c
Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 17 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Union – variables with Shared Memory

� Union is a set of members, possibly of different types
� All the members share the same memory

Members are overlapping

� The size of the union is according to the largest member
� Union is similar to the struct and particular members can be accessed using . or ->
for pointers

� The declaration, union tag, and type definition is also similar to the struct
1 union Nums {
2 char c;
3 int i;
4 };
5 Nums nums; /* THIS IS NOT ALLOWED! Type Nums is not known! */
6 union Nums nums;

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 19 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example union 1/2
� A union composed of variables of the types: char, int, and double
1 int main(int argc, char *argv[])
2 {
3 union Numbers {
4 char c;
5 int i;
6 double d;
7 };
8 printf("size of char %lu\n", sizeof(char));
9 printf("size of int %lu\n", sizeof(int));

10 printf("size of double %lu\n", sizeof(double));
11 printf("size of Numbers %lu\n", sizeof(union Numbers));
12
13 union Numbers numbers;
14

15 printf("Numbers c: %d i: %d d: %lf\n", numbers.c, numbers.i, numbers.d);
� Example output:

size of char 1
size of int 4
size of double 8
size of Numbers 8
Numbers c: 48 i: 740313136 d: 0.000000 lec05/union.c

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 20 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example union 2/2
� The particular members of the union
1 numbers.c = ’a’;
2 printf("\nSet the numbers.c to ’a’\n");
3 printf("Numbers c: %d i: %d d: %lf\n", numbers.c, numbers.i, numbers.d);
4
5 numbers.i = 5;
6 printf("\nSet the numbers.i to 5\n");
7 printf("Numbers c: %d i: %d d: %lf\n", numbers.c, numbers.i, numbers.d);
8
9 numbers.d = 3.14;

10 printf("\nSet the numbers.d to 3.14\n");
11 printf("Numbers c: %d i: %d d: %lf\n", numbers.c, numbers.i, numbers.d);

� Example output:
Set the numbers.c to ’a’
Numbers c: 97 i: 1374389601 d: 3.140000

Set the numbers.i to 5
Numbers c: 5 i: 5 d: 3.139999

Set the numbers.d to 3.14
Numbers c: 31 i: 1374389535 d: 3.140000

lec05/union.c

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 21 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Initialization of Unions

� The union variable can be initialized in the declaration
1 union {
2 char c;
3 int i;
4 double d;
5 } numbers = { ’a’ };

Only the first member can be initialized

� In C99, we can use the designated initializers
1 union {
2 char c;
3 int i;
4 double d;
5 } numbers = { .d = 10.3 };

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 22 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Type Definition – typedef
� The typedef can also be used to define new data types, not only structures and unions
but also pointers or pointers to functions

� Example of the data type for pointers to double or a new type name for int:
1 typedef double* double_p;
2 typedef int integer;
3 double_p x, y;
4 integer i, j;

� The usage is identical to the default data types
1 double *x, *y;
2 int i, j;

� Definition of the new data types (using typedef) in header files allows a systematic use
of new data types in the whole program

See, e.g., <inttypes.h>

� The main advantage of defining a new type is for complex data types such as structures
and pointers to functions

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 24 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Enumeration Tags and Type Names
� Enum allows to define a subset of integer values and named them
� We can define enumeration tag similarly to struct and union

enum suit { SPADES, CLUBS, HEARTS, DIAMONDS };
enum s1, s2;

� A new enumeration type can be defined using the typedef keyword
typedef enum { SPADES, CLUBS, HEARTS, DIAMONDS } suit_t;
suit_t s1, s2;

� The enumeration can be considered as an int value
However, we should avoid to directly set enum variable as an integer, as e.g., value 10 does
not correspond to any suit.

� Enumeration can be used in a structure to declare “tag fields”
typedef struct {

enum { SPADES, CLUBS, HEARTS, DIAMONDS } suit;
enum { RED, BLACK} color;

} card; By using enum we clarify meaning of the suit and color data fields.
Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 26 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example – Enumerated Type as Subscript 1/3
� Enumeration constants are integers, and they can be used as subscripts
� We can also use them to initialize an array of structures

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 enum weekdays { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY };
6
7 typedef struct {
8 char *name;
9 char *abbr; // abbreviation

10 } week_day_s;
11
12 const week_day_s days_en[] = {
13 [MONDAY] = { "Monday", "mon" },
14 [TUESDAY] = { "Tuesday", "tue" },
15 [WEDNESDAY] = { "Wednesday", "wed" },
16 [THURSDAY] = { "Thursday", "thr" },
17 [FRIDAY] = { "Friday", "fri" },
18 }; lec05/demo-struct.c

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 27 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example – Enumerated Type as Subscript 2/3

� We can prepare an array of structures for particular language
� The program prints the name of the week day and particular abbreviation

19 const week_day_s days_cs[] = {
20 [MONDAY] = { "Pondeli", "po" },
21 [TUESDAY] = { "Utery", "ut" },
22 [WEDNESDAY] = { "Streda", "st" },
23 [THURSDAY] = { "Ctvrtek", "ct" },
24 [FRIDAY] = { "Patek", "pa" },
25 };
26
27 int main(int argc, char *argv[], char **envp)
28 {
29 int day_of_week = argc > 1 ? atoi(argv[1]) : 1;
30 if (day_of_week < 1 || day_of_week > 5) {
31 fprintf(stderr, "(EE) File: ’%s’ Line: %d -- Given day of week out of range\n"

, __FILE__, __LINE__);
32 return 101;
33 }
34 day_of_week -= 1; // start from 0 lec05/demo-struct.c

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 28 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Example – Enumerated Type as Subscript 3/3

� Detection of the user “locale” is based on the set environment variables
For simplicity we just detect Czech based on occurrence of ’cs’ substring in LC_CTYPE
environment variable.

35 _Bool cz = 0;
36 while (*envp != NULL) {
37 if (strstr(*envp, "LC_CTYPE") && strstr(*envp, "cs")) {
38 cz = 1;
39 break;
40 }
41 envp++;
42 }
43 const week_day_s *days = cz ? days_cs : days_en;
44

45 printf("%d %s %s\n",
46 day_of_week,
47 days[day_of_week].name,
48 days[day_of_week].abbr);
49 return 0;
50 } lec05/demo-struct.c

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 29 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Bitwise Operators
� In low-level programming, such as programs for MCU (micro controller units), we may
need to store information as single bits or collection of bits

� To set or extract particular bit, we can use bitwise operators,
e.g., a 16-bit unsigned integer variable uint16_t i

� Set the 4 bit of i
if (i & 0x0010) ...

� Clear the 4 bit of i
i &= ∼0x0010;

� We can give names to particular bits
35 #define RED 1
36 #define GREEN 2
37 #define BLUE 3
38

39 i |= RED; // sets the RED bit
40 i &= ~GREEN; // clears the GREEN bit
41 if (i & BLUE) ... // test BLUE bit

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 31 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Bit-Fields in Structures
� In addition to bitwise operators, we can declare structures whose members represent
bit-fields

� E.g., time stored in 16 bits
typedef struct {

uint16_t seconds: 5; // use 5 bits to store seconds
uint16_t minutes: 6; // use 6 bits to store minutes
uint16_t hours: 5; //use 5 bits to store hours

} file_time_t;

file_time_t time;
� We can access the members as a regular structure variable

time.seconds = 10;
� The only restriction is that the bit-fields do not have address in the usual sense, and
therefore, using address operator & is not allowed

scanf("%d", &time.hours); // NOT ALLOWED!
Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 32 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Bit-Fields Memory Representation

� The way how a compiler handle bit-fields depends on the notion of the storage units
� Storage units are implementation defined (e.g., 8 bits, 16 bits, etc.)
� We can omit the name of the bit-field for padding, i.e., to ensure other bit fields are
properly positioned

typedef struct {
unsigned int seconds: 5;
unsigned int minutes: 6;
unsigned int hours: 5;

} file_time_int_s;

// size 4 bytes
printf("Size %lu\n", sizeof(

file_time_int_s));

typedef struct {
unsigned int seconds: 5;
unsigned int : 0;
unsigned int minutes: 6;
unsigned int hours: 5;

} file_time_int_skip_s;

// size 8 bytes because of padding
printf("Size %lu\n", sizeof(

file_time_int_skip_s));

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 33 / 53

Structures – struct Unions Type definition – typedef Enumerations – enum Bit-Fields

Bit-Fields Example
typedef struct {

unsigned int seconds: 5;
unsigned int minutes: 6;
unsigned int hours: 5;

} file_time_int_s;

void print_time(const file_time_s *t)
{

printf("%02u:%02u:%02u\n", t->hours, t->minutes, t->seconds);
}

int main(void)
{

file_time_s time = { // designated initializers
.hours = 23, .minutes = 7, .seconds = 10 };

print_time(&time);
time.minutes += 30;
print_time(&time);

// size 2 bytes (for 16 bit short
printf("Size of file_time_s %lu\n", sizeof(time));
return 0;

} lec05/bitfields.c
Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 34 / 53

Organization of Source Files Preprocessor Building Programs

Part II

Preprocessor and Building Programs

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 35 / 53

Organization of Source Files Preprocessor Building Programs

Variables – Scope and Visibility

� Local variables
� A variable declared in the body of a function is the local variable
� Using the keyword static we can declared static local variables
� Local variables are visible (and accessible) only within the function

� External variables (global variables)
� Variables declared outside the body of any function
� They have static storage duration; the value is stored as the program is running

Like a local static variable
� External variable has file scope, i.e., it is visible from its point of the declaration to the

end of the enclosing file
� We can refer to the external variable from other files by using the extern keyword
� In a one file, we define the variable, e.g., as int var;
� In other files, we declare the external variable as extern int var;

� We can restrict the visibility of the global variable to be within the single file only by
the static keyword

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 37 / 53

Organization of Source Files Preprocessor Building Programs

Organizing C Program

� Particular source files can be organized in many ways
� A possible ordering of particular parts can be as follows:

1. #include directives
2. #define directives
3. Type definitions
4. Declarations of external variables
5. Prototypes for functions other than main() (if any)
6. Definition of the main() function (if any)
7. Definition of other functions

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 38 / 53

Organization of Source Files Preprocessor Building Programs

Header Files

� Header files provide the way how to share defined macros, variables, and use functions
defined in other modules (source files) and libraries

� #include directive has two forms
� #include <filename> – to include header files that are searched from system directives
� #include "filename" – to include header files that are searched from the current

directory

� The places to be searched for the header files can be altered, e.g., using the command
line options such as -Ipath

� It is not recommended to use brackets for including own header files
� It is also not recommended to use absolute paths

Neither windows nor unix like absolute paths

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 39 / 53

Organization of Source Files Preprocessor Building Programs

Example of Sharing Macros and Type Definition, Function Prototypes and
External Variables

� Let have three files graph.h, graph.c, and main.c
� We like to share macros and types, and also functions and external variables defined in
graph.c in main.c

� graph.h
#define GRAPH_SIZE 1000

typedef struct {
...

} edget_s;

typedef struct {
edges_s *edges;
int size;

} graph_s;

// make the graph_global extern
extern graph_s graph_global;

// declare function prototype
graph_s* load_graph(const char *filename);

� graph.c
#include "graph.h"

graph_s graph_global = { NULL, GRAPH_SIZE };

graph_s* load_graph(const char *filename)
{

...
}

� main.c
#include "graph.h"

int main(int argc, char *argv[])
{

// we can use function from graph.c
graph_s *graph = load_graph(...
// we can also use the global variable
// declared as extern in the graph.h
if (global_graph.size != GRAPH_SIZE) { ...

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 40 / 53

Organization of Source Files Preprocessor Building Programs

Protecting Header Files

� Header files can be included from other header files
� It may happen that the same type can be defined multiple times due to including
header files

� We can protect header files from multiple includes by using the preprocessor macros
#ifndef GRAPH_H
#define GRAPH_H
...
// header file body here
// it is processed only if GRAPH_H is not defined
// therefore, after the first include,
// the macro GRAPH_H is defined
// and the body is not processed during therepeated includes
...
#endif

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 41 / 53

Organization of Source Files Preprocessor Building Programs

Macros

� Macro definitions – #define
� The macros can be parametrized, i.e., function-like macros
� Already defined macros can be undefined by the #undef command

� File inclusion – #include
� Conditional compilation – #if, #ifdef, #ifndef, #elif, #else, #endif
� Miscellaneous directives

� #error – produces error message, e.g., combined with #if to test sufficient size of
MAX_INT

� #line – alter the way how lines are numbered (__LINE__ and __FILE__ macros)
� #pragma – provides a way to request a special behaviour from the compiler

C99 introduces _Pragma operator used for “destringing” the string literals and pass them
to #pragma operator.

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 43 / 53

Organization of Source Files Preprocessor Building Programs

Predefined Macros

� There are several predefined macros that provide information about the compilation and
compiler as integer constant or string literal

� __LINE__ – Line number of the file being compiled (processed)
� __FILE__ – Name of the file being compiled
� __DATE__ – Date of the compilation (in the form "Mmm dd yyyy")
� __TIME__ – Time of the compilation (in the form "hh:mm:ss")
� __STDC__ – 1 if the compiler conforms to the C standard (C89 or C99)

� C99 introduces further macros, e.g.,
� __STDC_VERSION__ – Version of C standard supported

� For C89 it is 199409L
� For C99 it is 199901L

� It also introduces identifier __func__ which provides the name of the actual function
It is actually not a macro, but behaves similarly

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 44 / 53

Organization of Source Files Preprocessor Building Programs

Defining Macros Outside a Program

� We can control the compilation using the preprocessor macros
� The macros can be defined outside a program, e.g., during the compilation by passing
particular arguments to the compiler

� For gcc and clang it is the -D argument, e.g.,
� gcc -DDEBUG=1 main.c – define macro DEBUG and set it to 1
� gcc -DNDEBUG main.c – define NDEBUG to disable assert() macro

See man assert

� The macros can be also undefined, e.g., by the -U argument

� Having the option to define the macros by compiler options, we can control the compi-
lation process according to the particular environment and desired target platform

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 45 / 53

Organization of Source Files Preprocessor Building Programs

Compiling and Linking

� Programs composed of several modules (source files) can be build by an individual
compilation of particular files, e.g., using -c option of the compiler

� Then, all object files can be linked to a single binary executable file
� Using the -llib, we can add a particular lib library
� E.g., let have source files module1.c, module2.c, and main.c that also depends on
the math library (-lm)

� The program can be build as follows
clang -c module1.c -o module1.o
clang -c module2.c -o module2.o
clang -c main.c -o main.o

clang main.o module2.o module1.o -lm -o main

Be aware that the order of the files is important for resolving dependencies! It is incremental,
i.e., only the function needed in first modules are linked from the other modules.

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 47 / 53

Organization of Source Files Preprocessor Building Programs

Makefile
� Some building system may be suitable for project with several files
� One of the most common tools is the GNU make or the make

Notice, there are many building systems that may provide different features, e.g., designed for the fast
evaluation of the dependencies like ninja

� For make, the building rules are written in the Makefile files
http://www.gnu.org/software/make/make.html

� The rules define targets, dependencies, and action to build the targets based on the
dependencies

target : dependencies colon

action tabulator
� Target can be symbolic name or file name

main.o : main.c
clang -c main.c -o main.o

� The receipt to build the program can be simple, e.g., using explicitly the file names
and compiler options

The main advantage of the Makefiles is flexibility arising from unified variables, internal make variables,
and templates as most of the sources can be compiled in pretty much similar way.

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 48 / 53

Organization of Source Files Preprocessor Building Programs

Example Makefile
� Pattern rule for compiling source files .c to object files .o
� Wildcards are used to compile all source files in the directory

Can be suitable for small project. In general, explicit listings of the files is more appropriate.

CC:=ccache $(CC)
CFLAGS+=-O2

OBJS=$(patsubst %.c,%.o,$(wildcard *.c))

TARGET=program

bin: $(TARGET)

$(OBJS): %.o: %.c
$(CC) -c $< $(CFLAGS) $(CPPFLAGS) -o $@

$(TARGET): $(OBJS)
$(CC) $(OBJS) $(LDFLAGS) -o $@

clean:
$(RM) $(OBJS) $(TARGET)

ccache

CC=clang make vs CC=gcc make

� The order of the files is important during the linking!
Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 49 / 53

Part III

Part 3 – Assignment HW 05

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 50 / 53

HW 05 – Assignment
Topic: Matrix Operations Mandatory: 2 points; Optional: 2 points; Bonus : 5

� Motivation: Variable Length Array (VLA) and 2D arrays
� Goal: Familiar yourself with VLA and pointers

Eventually with dynamic allocation and structures� Assignment:
https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw05

� Read matrix expression – matrices and operators (+, -, and *) from standard input (di-
mensions of the matrices are provided)

� Compute the result of the matrix expression or report an error
Dynamic allocation is not needed!

Functions for implementing +, *, and - operators are highly recommended!

� Optional assignment – compute the matrix expression with respect to the priority of *
operator over + and - operators

Dynamic allocation is not need, but it can be helpful.

� Bonus assignment – Read declaration of matrices prior the matrix expression
Dynamic allocation can be helpful, structures are not needed but can be helpful.

� Deadline: 04.04.2020, 23:59:59 PDT, Bonus part 16.05.2020
PDT – Pacific Daylight Time

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 51 / 53

Topics Discussed

Summary of the Lecture

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 52 / 53

Topics Discussed

Topics Discussed

� Data types
� Structure variables
� Unions
� Enumeration
� Type definition
� Bit-Fields

� Building Programs
� Variables and their scope and visibility
� Organizing source codes and using header files
� Preprocessor macros
� Makefiles

� Next: Input/output operations and standard library

Jan Faigl, 2020 B3B36PRG – Lecture 05: Data types 53 / 53

