
Introduction to C Programming

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 01

B3B36PRG – C Programming Language

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 1 / 82



Overview of the Lecture

� Part 1 – Course Organization
Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

� Part 2 – Introduction to C Programming
Program in C

Values and Variables

Expressions

Standard Input/Output
K. N. King: chapters 1, 2, and 3

� Part 3 – Assignment HW 01

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 2 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Part I

Part 1 – Course Organization

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 3 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course and Lecturer

B3B36PRG – Programming in C

� Course web page https://cw.fel.cvut.cz/wiki/courses/b3b36prg
https://cw.fel.cvut.cz/wiki/courses/bab36prga

� Submission of the homeworks – BRUTE Upload System
https://cw.felk.cvut.cz/brute and individually during the labs for the homeworks
HW08-10 with STM32F446 board (B3B36PRG) and HW8 (BAB36PRGA)

� Lecturer:

� prof. Ing. Jan Faigl, Ph.D.

� Department of Computer Science – http://cs.fel.cvut.cz
� Artificial Intelligence Center (AIC) http://aic.fel.cvut.cz
� Center for Robotics and Autonomous Systems (CRAS) http://robotics.fel.cvut.cz
� Computational Robotics Laboratory (ComRob) http://comrob.fel.cvut.cz

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 5 / 82

https://cw.fel.cvut.cz/wiki/courses/b3b36prg
https://cw.fel.cvut.cz/wiki/courses/bab36prga
https://cw.felk.cvut.cz/brute
http://cs.fel.cvut.cz
http://aic.fel.cvut.cz
http://robotics.fel.cvut.cz
http://comrob.fel.cvut.cz


Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course Goals
� Master (yourself) programming skills

Labs, homeworks, exam

� Acquire knowledge of C programming language
� Acquire experience of C programming to use it efficiently

Your own experience!

� Gain experience to read, write, and understand small C programs
� Acquire programming habits to write

� easy to read and understandable source codes
� reusable programs

� Experience programming with
� Workstation/desktop computers – using services of operating system

E.g., system calls, read/write files, input and outputs
� Multithreading applications
� Embedded applications – STM32F446 Nucleo (B3B36PRG)

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 6 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course Organization and Evaluation
� B3B36PRG – Programming in C
� BAB36PRGA – Programming in C
� Extent of teaching: 2(lec)+2(lab)+5(hw)
� Completion: Z,ZK
� Credits: 6

Z – ungraded assessment, ZK – exam

� Ongoing work during the semester
� Homeworks mandatory, optional, and bonus parts
� Semestral project – an application for a workstation (and STM32F446 – B3B36PRG)

� Exam test and implementation exam
Be able to independently work with the computer in the lab (class room)

� Attendance to labs, submission of homeworks, and semestral project

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 7 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Resources and Literature

� Textbook
„C Programming: A Modern Approach“ (King, 2008)

C Programming: A Modern Approach, 2nd Edition, K. N. King,
W. W. Norton & Company, 2008, ISBN 860-1406428577

The main course textbook

� Lectures – support for the textbook, slides, comments, and your notes
Demonstration source codes are provided as a part of the lecture materials!

� Laboratory exercises – gain practical skills by doing homeworks (yourself)

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 9 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Further Books

Programming in C, 4th Edition,
Stephen G. Kochan, Addison-Wesley, 2014,
ISBN 978-0321776419

21st Century C: C Tips from the New School, Ben Klemens,
O’Reilly Media, 2012,
ISBN 978-1449327149

The C Programming Language, 2nd Edition (ANSI C) , Brian W.
Kernighan, Dennis M. Ritchie, Prentice Hall, 1988 (1st edition –
1978)

Advanced Programming in the UNIX Environment, 3rd edition,
W. Richard Stevens, Stephen A. Rago Addison-Wesley, 2013,
ISBN 978-0-321-63773-4

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 10 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Further Resources

The C++ Programming Language, 4th Edition (C++11) ,
Bjarne Stroustrup, Addison-Wesley, 2013, ISBN 978-0321563842

Introduction to Algorithms, 3rd Edition, Cormen, Leiserson,
Rivest, and Stein, The MIT Press, 2009, ISBN 978-0262033848

Algorithms, 4th Edition , Robert Sedgewick, Kevin Wayne,
Addison-Wesley, 2011, ISBN 978-0321573513

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 11 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Lectures – Spring Semester Academic Year 2019/2020

� Schedule for the academic year 2019/2020
http://www.fel.cvut.cz/en/education/calendar.html

� Lectures:
� Dejvice, Lecture Hall No. T2:D3-209, Tuesday, 14:30-16:00

� 14 teaching weeks
12+1 lectures (the last lecture for exam test?

� Thursday 9.4.2020 – classes as on Friday (even calendar week)
� Tuesday 5.5.2020 – classes as on Friday (odd calendar week)

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 12 / 82

http://www.fel.cvut.cz/en/education/calendar.html


Course Goals Means of Achieving the Course Goals Evaluation and Exam

Teachers

� Ing. Jan Bayer

� Bc. Miroslav Tržil

� Ing. Petr Čížek

� Bc. David Valouch

� Bc. Martin Zoula

� Bc. Jiří Kubík

� Bc. Jindřiška Deckerová

� Bc. Jakub Sláma

� Ing. Rudolf J. Szadkowski
Lectures 1 and 2

� Ing. Petr Váňa
Former author of the automated evaluation
in BRUTE Upload System

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 13 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Communicating Any Issues Related to the Course

� Ask the lab teacher or the lecturer
� Use e-mail for communication

� Use your faculty e-mail
� Put PRG or B3B36PRG or BAB36PRGA to the subject of your message
� Send copy (Cc) to lecturer/teacher

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 14 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Computers and Development Tools
� Network boot with home directories (NFS v4)

Data transfer and file synchronizations – ownCloud, SSH, FTP, USB
� Compilers gcc or clang https://gcc.gnu.org or http://clang.llvm.org
� Project building make (GNU make) Examples of usage on lectures and labs

� Text editor – gedit, atom, sublime, vim https://atom.io/, http://www.sublimetext.com/
http://www.root.cz/clanky/textovy-editor-vim-jako-ide

� C/C++ development environments – WARNING: Do Not Use An IDE
http://c.learncodethehardway.org/book/ex0.html

At least at the beginning, to become familiar with syntax� Debugging – code gdb, gdbgui, cgdb, ddd
� Visual Studio Code – code
� CLion – https://www.jetbrains.com/clion
� Code::Blocks, CodeLite http://www.codeblocks.org, http://codelite.org
� NetBeans (C/C++), Eclipse–CDT

� Embedded development for the Nucleo (B3B36PRG only)
� ARMmbed – https://developer.mbed.org/platforms/ST-Nucleo-F446RE
� System Workbench for STM32 (based on Eclipse)
� Direct cross-compiling using makefiles

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 15 / 82

https://gcc.gnu.org
http://clang.llvm.org
https://atom.io/
http://www.sublimetext.com/
http://www.root.cz/clanky/textovy-editor-vim-jako-ide
http://c.learncodethehardway.org/book/ex0.html
https://www.jetbrains.com/clion
http://www.codeblocks.org
http://codelite.org
https://developer.mbed.org/platforms/ST-Nucleo-F446RE


Course Goals Means of Achieving the Course Goals Evaluation and Exam

Services – Academic Network, FEE, CTU

� http://www.fel.cvut.cz/cz/user-info/index.html
� Cloud storage ownCloud – https://owncloud.cesnet.cz
� Sending large files – https://filesender.cesnet.cz
� Schedule, deadlines – FEL Portal, https://portal.fel.cvut.cz
� FEL Google Account – access to Google Apps for Education

See http://google-apps.fel.cvut.cz/

� Gitlab FEL – https://gitlab.fel.cvut.cz/

� Information resources (IEEE Xplore, ACM, Science Direct, Springer Link)
https://dialog.cvut.cz

� Academic and campus software license https://download.cvut.cz

� National Super Computing Grid Infrastructure – MetaCentrum
http://www.metacentrum.cz/cs/index.html

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 16 / 82

http://www.fel.cvut.cz/cz/user-info/index.html
https://owncloud.cesnet.cz
https://filesender.cesnet.cz
https://portal.fel.cvut.cz
http://google-apps.fel.cvut.cz/
https://gitlab.fel.cvut.cz/
https://dialog.cvut.cz
https://download.cvut.cz
http://www.metacentrum.cz/cs/index.html


Course Goals Means of Achieving the Course Goals Evaluation and Exam

Homeworks - B3B36PRG (KyR)
� 10+1 homeworks - seven for the workstation and three for the Nucleo platform

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/start1. HW 00 – Testing (0 points)
2. HW 01 – ASCII Art (2 points)
3. HW 02 – Prime Factorization (2 points + 4 points optional)

Coding style penalization – up to -100% from the gain points

4. HW 03 – Caesar Cipher (2 points + 2 points optional) Coding style penalization
5. HW 04 – Text Search (2 points + 3 points optional)
6. HW 05 – Matrix Calculator (2 points + 2 points optional + 5 points bonus)
7. HW 06 – Circular Buffer (2 points + 2 points optional)
8. HW 07 – Linked List Queue with Priorities (2 pts + 2 pts optional) Coding style penalization!
9. HW 08 – Nucleo – LED and Button (2 points)
10. HW 09 – Nucleo – Single Byte Serial Communication (2 points) Coding style penalization!
11. HW 10 – Nucleo – Computation and Communication: (2 points) Coding style penalization!

� All homeworks must be submitted to award an ungraded assessment
Late submission is penalized!

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 17 / 82

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/start


Course Goals Means of Achieving the Course Goals Evaluation and Exam

Homeworks - BAB36PRGA (Bio)
� 8+1 homeworks - all for the workstation

https://cw.fel.cvut.cz/wiki/courses/bab36prga/hw/start
1. HW 0 – Testing (0 points)
2. HW 1 – ASCII Art (2 points)
3. HW 2 – Prime Factorization (2 points + 4 points optional)

Coding style penalization – up to -100% from the gain points
4. HW 3 – Caesar Cipher (2 points + 2 points optional) Coding style penalization
5. HW 4 – Text Search (2 points + 3 points optional)
6. HW 5 – Matrix Calculator (2 points + 4 points optional + 5 points bonus)
7. HW 6 – Circular Buffer (2 points + 2 points optional)
8. HW 7 – Linked List Queue with Priorities (2 pts + 2 pts optional) Coding style penalization!
9. HW 8 – Interactive application with Inter Process Communication (ICP) (3 points)

Coding style penalization!

� All homeworks must be submitted to award an ungraded assessment
Late submission is penalized!

� Optional assisgnments to gain points
Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 18 / 82

https://cw.fel.cvut.cz/wiki/courses/bab36prga/hw/start


Course Goals Means of Achieving the Course Goals Evaluation and Exam

Semester Project (B3B36PRG)

� A combination of application for workstation (multi-threading / communication /
interaction ) and program for the Nucleo STM32F446

� Computation on the embedded platform via control application
� Mandatory task can be awarded up to 20 points
� Bonus part can be awarded for additional 10 points

Up to 30 points in the total for the semestral project

� E.g., distributed computation using several Nucleo STM32F446 boards

� Minimum required points: 15!

Deadline – best before 13.5.2020
Further updates and additional points possible!

Deadline – latest 17.5.2020

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 19 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Semester Project (BAB36PRGA)

� An application for workstation (multi-threading / communication / interaction ) and
computational program (a module simulating behaviour of Nucleo STM32F446)

� Mandatory task can be awarded up to 12 points
� Extra part can be awarded for additional 8 points

Up to 20 points in the total for the semestral project

� E.g., interactive selection of the image size, animation, saving images, window refreshing.

� Minimum required points: 10!

Deadline – best before 13.5.2020
Further updates and additional points possible!

Deadline – latest 17.5.2020

Except the communication, the applications can be almost identical with the computational module
(communication via pipe-based IPC) and STM32F446 Nucleo board (communication via serial line).

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 20 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course Evaluation (B3B36PRG)

Points Maximum Required Minimum
Points Points Points

Homeworks 40 20
Semester Project 30 15

Exam test 20 10
Implementation exam 20 10

Total 110 points 35 points is F!

� 20 points from the homeworks and 15 points from the semestral project are required
for awarding ungraded assessment

� The course can be passed with ungraded assessment and exam
� All homeworks must be submitted and they have to pass the mandatory assessment

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 22 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course Evaluation (BAB36PRGA)

Points Maximum Required Minimum
Points Points Points

Homeworks 50 25
Semester Project 20 10

Exam test 20 10
Implementation exam 20 10

Total 110 points 35 points is F!

� 25 points from the homeworks and 10 points from the semestral project are required
for awarding ungraded assessment There is a strong recommendation for optional assignments

Mandatory assignments are for 17 points, optional for additional 18 points

� The course can be passed with ungraded assessment and exam
� All homeworks must be submitted and they have to pass the mandatory assessment

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 23 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Grading Scale
Grade Points Mark Evaluation

A ≥ 90 1 Excellent
B 80–89 1,5 Very Good
C 70–79 2 Good
D 60–69 2,5 Satisfactory
E 50–59 3 Sufficient
F <50 4 Fail

� All homeworks passed the mandatory assessment and some of them with optional
parts (for additional 10 points) Gain around 30 points out of 40 (50) points

� Semestral project for up 30 points In an average, around 10-20 points or 25 with the bonus part

� Exam: test (15 points) and implementation (10 points)
Realistic (average good) expected scoring

� Around 75 points (C – Good) 30 + 20 + 15 + 10

� Optional and bonus tasks are needed for around 95 points

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 24 / 82



Course Goals Means of Achieving the Course Goals Evaluation and Exam

Overview of the Lectures
1. Course information, Introduction to C programming K. N. King: chapters 1, 2, and 3
2. Writing your program in C, control structures (loops), expressions K. N. King: chapters 4, 5, 6, and 20
3. Data types, arrays, pointer, memory storage classes, function call

K. N. King: chapters 7, 8, 9, 10, 11, and 18
4. Data types: arrays, strings, and pointers K. N. King: chapters 8, 11, 12, 13, and 17
5. Data types: Struct, Union, Enum, Bit fields. Preprocessor and Large Programs

K. N. King: chapters 10, 14, 15, 16, and 20
6. Input/Output – reading/writting from/to files and other communication channels, Standard C library – selected

functions K. N. King: chapters 21, 22, 23, 24, 26, and 27
7. Parallel and multi-thread programming – methods and synchronizations primitives
8. Multi-thread application models, POSIX threads and C11 threads
9. Examples - C programming language wrap up

10. ANSI C, C99, C11 and differences between C and C++. Introduction to C++.
11. Quick introduction to C++
12. C++ examples
13. Exam test or Reserve

All supporting materials for the lectures are available at
https://cw.fel.cvut.cz/b192/courses/b3b36prg/lectures/start

Read them before the lecture!
Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 25 / 82

https://cw.fel.cvut.cz/b192/courses/b3b36prg/lectures/start


Program in C Values and Variables Expressions Standard Input/Output

Part II

Part 2 – Introduction to C Programming

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 26 / 82



Program in C Values and Variables Expressions Standard Input/Output

C Programming Language
� Low-level programming language
� System programming language (operating system)

Language for (embedded) systems — MCU, cross-compilation

� A user (programmer) can do almost everything
Initialization of the variables, release of the dynamically allocated memory, etc.

� Very close to the hardware resources of the computer
Direct calls of OS services, direct access to registers and ports

� Dealing with memory is crucial for correct behaviour of the program
One of the goals of the PRG course is to acquire fundamental principles that can be further generalized
for other programming languages. The C programming language provides great opportunity to became
familiar with the memory model and key elements for writting efficient programs.

It is highly recommended to have compilation of your program fully under
control

It may look difficult at the beginning, but it is relatively easy and straightforward. Therefore, we highly
recommend to use fundamental tools for your program compilation. After you acquire basic skills, you
can profit from them also in more complex development environments.

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 28 / 82



Program in C Values and Variables Expressions Standard Input/Output

Writing Your C Program

� Source code of the C program is written in text files
� Header files usually with the suffix .h
� Sources files usually named with the suffix .c

� Header and source files together with declaration and definition (of functions) support

� Organization of sources into several files (modules) and libraries
� Modularity – Header file declares a visible interface to others

A description (list) of functions and their arguments without particular implementation

� Reusability
� Only the “interface” declared in the header files is need to use functions from available

binary libraries

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 29 / 82



Program in C Values and Variables Expressions Standard Input/Output

� Escape sequences for writting special symbols
� \o, \oo, where o is an octal numeral
� \xh, \xhh, where h is a hexadecimal numeral

1 int i = ’a’;
2 int h = 0x61;
3 int o = 0141;
4
5 printf("i: %i h: %i o: %i c: %c\n", i, h, o, i);
6 printf("oct: \141 hex: \x61\n");

E.g., \141, \x61 lec01/esqdho.c

� \0 – character reserved for the end of the text string (null character)

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 30 / 82



Program in C Values and Variables Expressions Standard Input/Output

Writing Identifiers in C
� Identifiers are names of variables (custom types and functions)

Types and functions, viz further lectures

� Rules for the identifiers
� Characters a–z, A–Z, 0–9 a _
� The first character is not a numeral
� Case sensitive
� Length of the identifier is not limited

First 31 characters are significant – depends on the implementation / compiler

� Keywords32
auto break case char const continue default do double else enum
extern float for goto if int long register return short signed sizeof
static struct switch typedef union unsigned void volatile while C98

C99 introduces, e.g., inline, restrict, _Bool, _Complex, _Imaginary
C11 further adds, e.g., _Alignas, _Alignof, _Atomic, _Generic, _Static_assert,
_Thread_local

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 31 / 82



Program in C Values and Variables Expressions Standard Input/Output

Simple C Program

1 #include <stdio.h>
2

3 int main(void)
4 {
5 printf("I like B3B36PRG!\n");
6

7 return 0;
8 }

lec01/program.c

� Source files are compiled by the compiler to the so-called object files usually with the
suffix .o

Object code contains relative addresses and function calls or just references to function
without known implementations.

� The final executable program is created from the object files by the linker

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 32 / 82



Program in C Values and Variables Expressions Standard Input/Output

Program Compilation and Execution
� Source file program.c is compiled into runnable form by the compiler, e.g., clang or
gcc

clang program.c
� There is a new file a.out that can be executed, e.g.,

./a.out
Alternatively the program can be run only by a.out in the case the actual working directory
is set in the search path of executable files

� The program prints the argument of the function printf()
./a.out
I like B3B36PRG!

� If you prefer to run the program just by a.out instead of ./a.out you need to add your actual
working directory to the search paths defined by the environment variable PATH

export PATH="$PATH:‘pwd‘"
Notice, this is not recommended, because of potentially many working directories

� The command pwd prints the actual working directory, see man pwd

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 33 / 82



Program in C Values and Variables Expressions Standard Input/Output

Structure of the Source Code – Commented Example
� Commented source file program.c

1 /* Comment is inside the markers (two characters)
2 and it can be split to multiple lines */
3 // In C99 - you can use single line comment
4 #include <stdio.h> /* The #include direct causes to include header file

stdio.h from the C standard library */
5

6 int main(void) // simplified declaration
7 { // of the main function
8 printf("I like B3B36PRG!\n"); /* calling printf() function from the

stdio.h library to print string to the standard output. \n denotes
a new line */

9 return 0; /* termination of the function. Return value 0 to the
operating system */

10 }
Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 34 / 82



Program in C Values and Variables Expressions Standard Input/Output

Program Building: Compiling and Linking

� The previous example combines three particular steps of the program building in a single
call of the command (clang or gcc)

� The particular steps can be performed individually

1. Text preprocessing by the preprocessor, which utilizes its own macro language
(commands with the prefix #)

All referenced header files are included into a single source file

2. Compilation of the source file into the object file
Names of the object files usually have the suffix .o

clang -c program.c -o program.o
The command combines preprocessor and compiler

3. Executable file is linked from the particular object files and referenced libraries by the
linker (linking), e.g.,

clang program.o -o program

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 35 / 82



Program in C Values and Variables Expressions Standard Input/Output

Compilation and Linking Programs
� Program development is editing of the source code (files with suffixes .c and .h)Human readable

� Compilation of the particular source files (.c) into object files (.o or .obj)Machine readable

� Linking the compiled files into executable binary file
� Execution and debugging of the application and repeated editing of the source code

a.out
Preprocesor

Compiler

Header files

.h.c

Source file

Linker

Object files

Lib files

.a/.lib

Object

File

.o/.obj

.o/.obj

Executable binary file

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 36 / 82



Program in C Values and Variables Expressions Standard Input/Output

Steps of Compiling and Linking

� Preprocessor – allows to define macros and adjust compilation the particular environ-
ment

The output is text (“source”) file.

� Compiler – Translates source (text) file into machine readable form
Native (machine) code of the platform, bytecode, or assembler alternatively

� Linker – links the final application from the object files
Under OS, it can still reference library functions (dynamic libraries linked during the program
execution), it can also contain OS calls (libraries).

� Particular steps preprocessor, compiler, and linker are usually implemented by a “sin-
gle” program that is called with appropriate arguments

E.g., clang or gcc

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 37 / 82



Program in C Values and Variables Expressions Standard Input/Output

Compilers of C Program Language

� In PRG, we mostly use compilers from the families of compilers:
� gcc – GNU Compiler Collection

https://gcc.gnu.org
� clang – C language family frontend for LLVM

http://clang.llvm.org

Under Win, two derived environments can be utilized: cygwin https://www.cygwin.com/ or
MinGW http://www.mingw.org/

� Basic usage (flags and arguments) are identical for both compilers
clang is compatible with gcc

� Example
� compile: gcc -c main.c -o main.o
� link: gcc main.o -o main

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 38 / 82

https://gcc.gnu.org
http://clang.llvm.org
https://www.cygwin.com/
http://www.mingw.org/


Program in C Values and Variables Expressions Standard Input/Output

Functions, Modules, and Compiling and Linking

� Function is the fundamental building block of the modular programming language
Modular program is composed of several modules/source files

� Function definition consists of the
� Function header
� Function body Definition is the function implementation.

� Function prototype (declaration) is the function header to provide information how
the function can be called

It allows to use the function prior its definition, i.e., it allows to compile the code without the
function implementation, which may be located in other place of the source code, or in other
module.

� Declaration is the function header and it has the form

type function_name(arguments);

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 39 / 82



Program in C Values and Variables Expressions Standard Input/Output

Functions in C
� Function definition inside other function is not allowed in C.
� Function names can be exported to other modules

Module is an independent file (compiled independently)

� Function are implicitly declared as extern, i.e., visible
� Using the static specifier, the visibility of the function can be limited to the particular
module Local module function

� Function arguments are local variables initialized by the values passed to the function
Arguments are passed by value (call by value)

� C allows recursions – local variables are automatically allocated at the stack
Further details about storage classes in next lectures.

� Arguments of the function are not mandatory – void arguments
fnc(void)

� The return type of the function can be void, i.e., a function without return value –
void fnc(void);

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 40 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example of Program / Module

1 #include <stdio.h> /* header file */
2 #define NUMBER 5 /* symbolic constatnt */
3

4 int compute(int a); /* function header/prototype */
5

6 int main(int argc, char *argv[])
7 { /* main function */
8 int v = 10; /* variable declaration */
9 int r;

10 r = compute(v); /* function call */
11 return 0; /* termination of the main function */
12 }
13

14 int compute(int a)
15 { /* definition of the function */
16 int b = 10 + a; /* function body */
17 return b; /* function return value */
18 }

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 41 / 82



Program in C Values and Variables Expressions Standard Input/Output

Program Starting Point – main()

� Each executable program must contain a single definition of the function and that
function must be the main()

� The main() function is the starting point of the program with two basic forms
1. Full variant for programs running under an Operating System (OS)

int main(int argc, char *argv[])
{

...
}

2. For embedded systems without OS

int main(void)
{

...
}

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 42 / 82



Program in C Values and Variables Expressions Standard Input/Output

Arguments of the main() Function
� During the program execution, the OS passes to the program the number of
arguments (argc) and the arguments (argv)

In the case we are using OS
� The first argument is the name of the program

1 int main(int argc, char *argv[])
2 {
3 int v;
4 v = 10;
5 v = v + 1;
6 return argc;
7 }

lec01/var.c

� The program is terminated by the return in the main() function
� The returned value is passed back to the OS and it can be further use, e.g., to control
the program execution.

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 43 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example of Compilation and Program Execution
� Building the program by the clang compiler – it automatically joins the compilation
and linking of the program to the file a.out

clang var.c
� The output file can be specified, e.g., program file var

clang var.c -o var
� Then, the program can be executed

./var
� The compilation and execution can be joined to a single command

clang var.c -o var; ./var
� The execution can be conditioned to successful compilation

clang var.c -o var && ./var

Programs return value — 0 means OK

Logical operator && depends on the command interpret, e.g., sh, bash, zsh

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 44 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example – Program Execution under Shell
� The return value of the program is stored in the variable $?

sh, bash, zsh

� Example of the program execution with different number of arguments

./var

./var; echo $?
1

./var 1 2 3; echo $?
4

./var a; echo $?
2

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 45 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example – Processing the Source Code by Preprocessor
� Using the -E flag, we can perform only the preprocessor step

gcc -E var.c
Alternatively clang -E var.c

1 # 1 "var.c"
2 # 1 "<built-in>"
3 # 1 "<command-line>"
4 # 1 "var.c"
5 int main(int argc, char **argv) {
6 int v;
7 v = 10;
8 v = v + 1;
9 return argc;

10 }
lec01/var.c

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 46 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example – Compilation of the Source Code to Assembler
� Using the -S flag, the source code can be compiled to Assembler

clang -S var.c -o var.s
1 .file "var.c"
2 .text
3 .globl main
4 .align 16, 0x90
5 .type main,@function
6 main:

# @main
7 .cfi_startproc
8 # BB#0:
9 pushq %rbp

10 .Ltmp2:
11 .cfi_def_cfa_offset 16
12 .Ltmp3:
13 .cfi_offset %rbp, -16
14 movq %rsp, %rbp
15 .Ltmp4:
16 .cfi_def_cfa_register %rbp
17 movl $0, -4(%rbp)
18 movl %edi, -8(%rbp)

19 movq %rsi, -16(%rbp)
20 movl $10, -20(%rbp)
21 movl -20(%rbp), %edi
22 addl $1, %edi
23 movl %edi, -20(%rbp)
24 movl -8(%rbp), %eax
25 popq %rbp
26 ret
27 .Ltmp5:
28 .size main, .Ltmp5-main
29 .cfi_endproc
30
31
32 .ident "FreeBSD clang version 3.4.1 (

tags/RELEASE_34/dot1-final 208032)
20140512"

33 .section ".note.GNU-stack","",
@progbits

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 47 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example – Compilation to Object File
� The souce file is compiled to the object file

clang -c var.c -o var.o
% clang -c var.c -o var.o
% file var.o
var.o: ELF 64-bit LSB relocatable, x86-64, version 1 (FreeBSD), not

stripped

� Linking the object file(s) provides the executable file
clang var.o -o var

% clang var.o -o var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),

dynamically linked (uses shared libs), for FreeBSD 10.1 (1001504)
, not stripped

dynamically linked
not stripped

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 48 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example – Executable File under OS 1/2
� By default, executable files are “tied” to the C library and OS services
� The dependencies can be shown by ldd var

ldd – list dynamic object dependenciesldd var
var:

libc.so.7 => /lib/libc.so.7 (0x2c41d000)

� The so-called static linking can be enabled by the -static
clang -static var.o -o var
% ldd var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),

statically linked, for FreeBSD 10.1 (1001504), not stripped
% ldd var
ldd: var: not a dynamic ELF executable

Check the size of the created binary files!
Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 49 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example – Executable File under OS 2/2

� The compiled program (object file) contains symbolic names (by default)
E.g., usable for debugging.

clang var.c -o var
wc -c var

7240 var
wc – word, line, character, and byte count

-c – byte count

� Symbols can be removed by the tool (program) strip

strip var
wc -c var

4888 var

Alternatively, you can show size of the file by the command ls -l

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 50 / 82



Program in C Values and Variables Expressions Standard Input/Output

Writting Values of the Numeric Data Types – Literals

� Values of the data types are called literals
� C has 6 type of constants (literals)

� Integer
� Rational

We cannot simply write irrational numbers
� Characters
� Text strings
� Enumerated Enum

� Symbolic – #define NUMBER 10
Preprocessor

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 52 / 82



Program in C Values and Variables Expressions Standard Input/Output

Integer Literals

� Integer values are stored as one of the integer type (keywords): int, long, short,
char and their signed and unsigned variants

Further integer data types are possible

� Integer values (literals)
� Decimal 123 450932
� Hexadecimal 0x12 0xFAFF (starts with 0x or 0X)
� Octal 0123 0567 (starts with 0)
� unsigned 12345U (suffix U or u)
� long 12345L (suffix L or l)
� unsigned long 12345ul (suffix UL or ul)
� long long 12345LL (suffix LL or ll)

� Without suffix, the literal is of the type typu int

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 53 / 82



Program in C Values and Variables Expressions Standard Input/Output

Literals of Rational Numbers

� Rational numbers can be written
� with floating point – 13.1
� or with mantissa and exponent – 31.4e-3 or 31.4E-3

Scientific notation

� Floating point numeric types depends on the implementation, but they usually follow
IEEE-754-1985 float, double

� Data types of the rational literals:
� double – by default, if not explicitly specified to be another type
� float – suffix F or f

float f = 10f;
� long double – suffix L or l

long double ld = 10l;

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 54 / 82



Program in C Values and Variables Expressions Standard Input/Output

Character Literals

� Format – single (or multiple) character in apostrophe
’A’, ’B’ or ’\n’

� Value of the single character literal is the code of the character
’0’∼ 48, ’A’∼ 65

Value of character out of ASCII (greater than 127) depends on the compiler.

� Type of the character constant (literal)
� character constant is the int type

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 55 / 82



Program in C Values and Variables Expressions Standard Input/Output

String literals
� Format – a sequence of character and control characters (escape sequences) enclosed
in quotation (citation) marks

"This is a string constant with the end of line character \n"
� String constants separated by white spaces are joined to single constant, e.g.,

"String literal" "with the end of the line character\n"

is concatenate into

"String literal with end of the line character\n"
� Type

� String literal is stored in the array of the type char terminated by the null character
’\0’
E.g., String literal "word" is stored as

’w’ ’o’ ’r’ ’d’ ’\0’

The size of the array must be about 1 item longer to store \0!
More about text strings in the following lectures and labs

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 56 / 82



Program in C Values and Variables Expressions Standard Input/Output

Constants of the Enumerated Type
� By default, values of the enumerated type starts from 0 and each other item increase
the value about one, values can be explicitly prescribed

enum {
SPADES,
CLUBS,
HEARTS,
DIAMONDS

};

enum {
SPADES = 10,
CLUBS, /* the value is 11 */
HEARTS = 15,
DIAMONDS = 13

};

The enumeration values are usually written in uppercase.

� Type – enumerated constant is the int type
� Value of the enumerated literal can be used in loops

enum { SPADES = 0, CLUBS, HEARTS, DIAMONDS, NUM_COLORS };

for (int i = SPADES; i < NUM_COLORS; ++i) {
...

}
Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 57 / 82



Program in C Values and Variables Expressions Standard Input/Output

Symbolic Constant – #define

� Format – the constant is established by the preprocessor command #define
� It is macro command without argument
� Each #define must be on a new line

#define SCORE 1

Usually written in uppercase

� Symbolic constants can express constant expressions
#define MAX_1 ((10*6) - 3)

� Symbolic constants can be nested
#define MAX_2 (MAX_1 + 1)

� Preprocessor performs the text replacement of the define constant by its value

#define MAX_2 (MAX_1 + 1)
It is highly recommended to use brackets to ensure correct evaluation of the expression, e.g., the
symbolic constant 5*MAX_1 with the outer brackets is 5*((10*6) - 3)=285 vs 5*(10*6) - 3=297.

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 58 / 82



Program in C Values and Variables Expressions Standard Input/Output

Variable with a constant value
modifier (keyword) (const)

� Using the keyword const, a variable can be marked as constant
Compiler checks assignment and do not allow to set a new value to the variable.

� A constant value can be defined as follows
const float pi = 3.14159265;

� In contrast to the symbolic constant
#define PI 3.14159265

� Constant values have type, and thus it supports type checking

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 59 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example: Sum of Two Values
1 #include <stdio.h>
2

3 int main(void)
4 {
5 int sum; // definition of local variable of the int type
6

7 sum = 100 + 43; /* set value of the expression to sum */
8 printf("The sum of 100 and 43 is %i\n", sum);
9 /* %i formatting commend to print integer number */

10 return 0;
11 }

� The variable sum of the type int represents an integer number. Its value is stored in
the memory

� sum is selected symbolic name of the memory location, where the integer value (type
int) is stored

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 60 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example of Sum of Two Variables

1 #include <stdio.h>
2

3 int main(void)
4 {
5 int var1;
6 int var2 = 10; /* inicialization of the variable */
7 int sum;
8
9 var1 = 13;

10
11 sum = var1 + var2;
12

13 printf("The sum of %i and %i is %i\n", var1, var2, sum);
14
15 return 0;
16 }

� Variables var1, var2 and sum represent three different locations in the memory (allo-
cated automatically), where three integer values are stored

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 61 / 82



Program in C Values and Variables Expressions Standard Input/Output

Variable Declaration

� The variable declaration has general form
declaration-specifiers declarators;

� Declaration specifiers are:
� Storage classes: at most one of the auto, static, extern, register
� Type quantifiers: const, volatile, restrict

None or more type quantifiers are allowed
� Type specifiers: void, char, short, int, long, float, double, signed, unsigned.

In addition, struct and union type specifiers can be used. Finally, own types defined by
typedef can be used as well.

Detailed description in further lectures.

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 62 / 82



Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 unsigned char var1;
2 unsigned char var2;
3 unsigned char sum;
4

5 var1 = 13;
6 var2 = 10;
7

8 sum = var1 + var2;

� Each variable allocate 1 byte
� Content of the memory is not defined after
allocation

� Name of the variable “references” to the
particular memory location

� Value of the variable is the content of the
memory location

13 10 23

var1 var2 sum

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 63 / 82



Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 int var1;
2 int var2;
3 int sum;
4

5 // 00 00 00 13
6 var1 = 13;
7

8 // x00 x00 x01 xF4
9 var2 = 500;

10

11 sum = var1 + var2;

� Variables of the int types allocate 4 bytes
Size can be find out by the operator sizeof(int)

� Memory content is not defined after the definition of
the variable to the memory

13 0 0 0 0xf4 0x01 0x00 0x00

var1 var2

0x1 0x2 0x0 0x0 0xC 0xD 0xE 0xF

sum

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types) are stored in the
little-endian order.

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 64 / 82



Program in C Values and Variables Expressions Standard Input/Output

Expressions
� Expression prescribes calculation value of some given input
� Expression is composed of operands, operators, and brackets
� Expression can be formed of

� literals

� variables

� constants

� unary and binary operators

� function calling

� brackets

� The order of operation evaluation is prescribed by the operator precedence and
associativity.

Example
10 + x * y // order of the evaluation 10 + (x * y)
10 + x + y // order of the evaluation (10 + x) + y

* has higher priority than +
+ is associative from the left-to-right

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 66 / 82



Program in C Values and Variables Expressions Standard Input/Output

Operators
� Operators are selected characters (or a sequences of characters) dedicated for writting
expressions

� Five types of binary operators can be distinguished
� Arithmetic operators – additive (addition/subtraction) and multiplicative (multiplica-

tion/division)
� Relational operators – comparison of values (less than, greater than, . . . )
� Logical operators – logical AND and OR
� Bitwise operators – bitwise AND, OR, XOR, bitwise shift (left, right)
� Assignment operator = – a variables (l-value) is on its left side

� Unary operators
� Indicating positive/negative value: + and −

Operator − modifies the sign of the expression
� Modifying a variable : ++ and −−
� Logical negation: !
� Bitwise negation: ∼

� Ternary operator – conditional expression ? :
Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 67 / 82



Program in C Values and Variables Expressions Standard Input/Output

Variables, Assignment Operator, and Assignment Statement
� Variables are defined by the type and name

� Name of the variable are in lowercase
� Multi-word names can be written with underscore _ Or we can use CamelCase
� Each variable is defined at new line

int n;
int number_of_items;
int numberOfItems;

� Assignment is setting the value to the variable, i.e., the value is stored at the memory
location referenced by the variable name

� Assignment operator
〈l-value〉 = 〈expression〉

Expression is literal, variable, function calling, . . .
� The side is the so-called l-value – location-value, left-value

It must represent a memory location where the value can be stored.
� Assignment is an expression and we can use it everywhere it is allowed to use the

expression of the particular type.
� Assignment statement is the assignment operator = and ;

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 68 / 82



Program in C Values and Variables Expressions Standard Input/Output

Basic Arithmetic Expressions

� For an operator of the numeric types int and double, the following operators are
defined

Also for char, short, and float numeric types.

� Unary operator for changing the sign −
� Binary addition + and subtraction −
� Binary multiplication * and division /

� For integer operator, there is also
� Binary module (integer reminder) %

� If both operands are of the same type, the results of the arithmetic operation is the
same type

� In a case of combined data types int and double, the data type int is converted to
double and the results is of the double type.

Implicit type conversion

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 69 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example – Arithmetic Operators 1/2
1 int a = 10;
2 int b = 3;
3 int c = 4;
4 int d = 5;
5 int result;
6
7 result = a - b; // subtraction
8 printf("a - b = %i\n", result);
9

10 result = a * b; // multiplication
11 printf("a * b = %i\n", result);
12
13 result = a / b; // integer divison
14 printf("a / b = %i\n", result);
15
16 result = a + b * c; // priority of the operators
17 printf("a + b * c = %i\n", result);
18
19 printf("a * b + c * d = %i\n", a * b + c * d); // -> 50
20 printf("(a * b) + (c * d) = %i\n", (a * b) + (c * d)); // -> 50
21 printf("a * (b + c) * d = %i\n", a * (b + c) * d); // -> 350

lec01/arithmetic_operators.c

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 70 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example – Arithmetic Operators 2/2
1 #include <stdio.h>
2
3 int main(void)
4 {
5 int x1 = 1;
6 double y1 = 2.2357;
7 float x2 = 2.5343f;
8 double y2 = 2;
9

10 printf("P1 = (%i, %f)\n", x1, y1);
11 printf("P1 = (%i, %i)\n", x1, (int)y1);
12 printf("P1 = (%f, %f)\n", (double)x1, (double)y1);
13 printf("P1 = (%.3f, %.3f)\n", (double)x1, (double)y1);
14
15 printf("P2 = (%f, %f)\n", x2, y2);
16
17 double dx = (x1 - x2); // implicit data conversion to float
18 double dy = (y1 - y2); // and finally to double
19
20 printf("(P1 - P2)=(%.3f, %0.3f)\n", dx, dy);
21 printf("|P1 - P2|^2=%.2f\n", dx * dx + dy * dy);
22 return 0;
23 }

lec01/points.c
Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 71 / 82



Program in C Values and Variables Expressions Standard Input/Output

Standard Input and Output

� An executed program within Operating System (OS) environments has assigned (usually
text-oriented) standard input (stdin) and output (stdout)

Programs for MCU without OS does not have them

� The stdin and stdout streams can be utilized for communication with a user
� Basic function for text-based input is getchar() and for the output putchar()

Both are defined in the standard C library <stdio.h>

� For parsing numeric values the scanf() function can be utilized
� The function printf() provides formatted output, e.g., a number of decimal places

They are library functions, not keywords of the C language.

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 73 / 82



Program in C Values and Variables Expressions Standard Input/Output

Formatted Output – printf()

� Numeric values can be printed to the standard output using printf()
man printf or man 3 printf

� The first argument is the format string that defines how the values are printed
� The conversion specification starts with the character ’%’
� Text string not starting with % is printed as it is
� Basic format strings to print values of particular types are

char %c
_Bool %i, %u
int %i, %x, %o
float %f, %e, %g, %a
double %f, %e, %g, %a

� Specification of the number of digits is possible, as well as an alignment to left (right),
etc. Further options in homeworks and lab exercises.

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 74 / 82



Program in C Values and Variables Expressions Standard Input/Output

Formatted Input – scanf()
� Numeric values from the standard input can be read using the scanf() function

man scanf or man 3 scanf

� The argument of the function is a format string Syntax is similar to printf()

� A memory address of the variable has to be provided to set its value from the stdin
� Example of readings integer value and value of the double type

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int i;
6 double d;
7
8 printf("Enter int value: ");
9 scanf("%i", &i); // operator & returns the address of i

10
11 printf("Enter a double value: ");
12 scanf("%lf", &d);
13 printf("You entered %02i and %0.1f\n", i, d);
14
15 return 0;
16 } lec01/scanf.c

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 75 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example: Program with Output to the stdout 1/2

� Instead of printf() we can use fprintf() with explicit output stream stdout, or
alternatively stderr; both functions from the <stdio.h>

1 #include <stdio.h>
2

3 int main(int argc, char **argv) {
4 fprintf(stdout, "My first program in C!\n");
5 fprintf(stdout, "Its name is \"%s\"\n", argv[0]);
6 fprintf(stdout, "Run with %d arguments\n", argc);
7 if (argc > 1) {
8 fprintf(stdout, "The arguments are:\n");
9 for (int i = 1; i < argc; ++i) {

10 fprintf(stdout, "Arg: %d is \"%s\"\n", i, argv[i]);
11 }
12 }
13 }

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 76 / 82



Program in C Values and Variables Expressions Standard Input/Output

Example: Program with Output to the stdout 2/2

� Notice, using the header file <stdio.h>, several other files are included as well to define
types and functions for input and output Check by, e.g., clang -E print_args.c

clang print_args.c -o print_args
./print_args first second
My first program in C!
Its name is "./print_args"
It has been run with 3 arguments
The arguments are:
Arg: 1 is "first"
Arg: 2 is "second"

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 77 / 82



Program in C Values and Variables Expressions Standard Input/Output

Extended Variants of the main() Function

� Extended declaration of the main() function provides access to the environment
variables For Unix and MS Windows like OS

int main(int argc, char **argv, char **envp) { ... }

The environment variables can be accessed using the function getenv() from the standard library
<stdlib.h>.

lec01/main_env.c

� For Mac OS X, there are further arguments
int main(int argc, char **argv, char **envp, char **apple)
{

...
}

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 78 / 82



Part III

Part 3 – Assignment HW 01

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 79 / 82



HW 01 – Assignment

Topic: ASCII art
Mandatory: 2 points; Optional: none; Bonus : none

� Motivation: Have a fun with loops and user parametrization of the program
� Goal: Acquire experience using loops and inner loops
� Assignment: https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw01

� Read parameters specifying a picture of small house using selected ASCII chars
https://en.wikipedia.org/wiki/ASCII_art

� Assesment of the input values

� Deadline: 07.03.2020, 23:59:59 PST
PST – Pacific Standard Time

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 80 / 82

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw01
https://en.wikipedia.org/wiki/ASCII_art


Topics Discussed

Summary of the Lecture

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 81 / 82



Topics Discussed

Topics Discussed

� Information about the Course
� Introduction to C Programming

� Program, source codes and compilation of the program
� Structure of the souce code and writting program
� Variables and basic types
� Variables, assignment, and memory
� Basic Expressions
� Standard input and output of the program
� Formating input and output

� Next: Expressions and Bitwise Operations, Selection Statements and Loops

Jan Faigl, 2020 B3B36PRG – Lecture 01: Introduction to C Programming 82 / 82


	1
	Course Goals
	Means of Achieving the Course Goals
	Evaluation and Exam

	2
	Program in C
	Values and Variables
	Expressions
	Standard Input/Output

	3
	Summary
	Topics Discussed


