$k-N N$ and Linear Classifiers, Learning

Tomáš Svoboda and Matěj Hoffmann
thanks to Daniel Novák and Filip Železný, Ondřej Drbohlav
Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 20, 2020

K-Nearest neighbors classification

For a query \vec{x} :

- Find K nearest \vec{x} from the tranining (labeled) data.
- Classify to the class with the most exemplars in the set above.

$K-$ Nearest Neighbor and Bayes $j^{*}=\operatorname{argmax}_{j} P\left(s_{j} \mid \vec{x}\right)$

Assume data:

- N points \vec{x} in total.
- N_{j} points in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

We want classify \vec{x}. We draw a sphere centered at \vec{x} containing K points irrespective of class. V is the volume of this sphere. $P\left(s_{j} \mid \vec{x}\right)=$?

$$
P\left(s_{j} \mid \vec{x}\right)=\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})}
$$

$K-$ Nearest Neighbor and Bayes $j^{*}=\operatorname{argmax}_{j} P\left(s_{j} \mid \vec{x}\right)$

Assume data:

- N points \vec{x} in total.
- N_{j} points in s_{j} class. Hence, $\sum_{j} N_{j}=N$.

We want classify \vec{x}. We draw a sphere centered at \vec{x} containing K points irrespective of class. V is the volume of this sphere. $P\left(s_{j} \mid \vec{x}\right)=$?

$$
P\left(s_{j} \mid \vec{x}\right)=\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})}
$$

$$
\begin{aligned}
P\left(s_{j}\right) & =\frac{N_{j}}{N} \\
P(\vec{x}) & =\frac{K}{N V} \\
P\left(\vec{x} \mid s_{j}\right) & =\frac{K_{j}}{N_{j} V} \\
P\left(s_{j} \mid \vec{x}\right) & =\frac{P\left(\vec{x} \mid s_{j}\right) P\left(s_{j}\right)}{P(\vec{x})}=\frac{K_{j}}{K}
\end{aligned}
$$

NN classification example

(a)

(b)

[^0]
NN classification example

What is nearest? Metrics for NN classification ...

A function D which is: nonnegative, reflexive, symmetrical, satisfying triangle inequality:
$D(\vec{a}, \vec{b}) \geq 0$
$D(\vec{a}, \vec{b})=0$ iff $\vec{a}=\vec{b}$
$D(\vec{a}, \vec{b})=D(\vec{b}, \vec{a})$
$D(\vec{a}, \vec{b})+D(\vec{b}, \vec{c}) \geq D(\vec{a}, \vec{c})$

What is nearest? Metrics for NN classification ...

A function D which is: nonnegative, reflexive, symmetrical, satisfying triangle inequality:

$$
\begin{aligned}
& D(\vec{a}, \vec{b}) \geq 0 \\
& D(\vec{a}, \vec{b})=0 \text { iff } \vec{a}=\vec{b} \\
& D(\vec{a}, \vec{b})=D(\vec{b}, \vec{a}) \\
& D(\vec{a}, \vec{b})+D(\vec{b}, \vec{c}) \geq D(\vec{a}, \vec{c})
\end{aligned}
$$

Etalon based classification

Represent \vec{x} by etalon,\vec{e}_{s} per each class $s \in S$

Separate etalons

$$
s^{*}=\underset{s \in S}{\arg \min }\left\|\vec{x}-\vec{e}_{s}\right\|^{2}
$$

What etalons?

If $\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)$; all classes same covariance matrices, then

$$
\vec{e}_{s} \stackrel{\text { def }}{=} \vec{\mu}_{s}=\frac{1}{\left|\mathcal{X}^{s}\right|} \sum_{i \in \mathcal{X}^{s}} \vec{x}_{i}^{s}
$$

and separating hyperplanes halve distances between pairs.
minimum distance from etalons

Etalon based classification, $\vec{e}_{s}=\vec{\mu}_{s}$

Digit recognition - etalons $\vec{e}_{s}=\vec{\mu}_{s}$

etalon for 0
etalon for 1
etalon for 2
etalon for 3
etalon for 4

etalon for 5 etalon for $6 \quad$ etalon for 7
etalon for 8

Figures from [5]

Better etalons - Fischer linear discriminant

Better etalons - Fischer linear discriminant

- Dimensionality reduction
- Maximize distance between means,
- ... and minimize within class variance. (minimize overlap)

Figures from [1]

Better etalons?

Figures from [5]

Etalon classifier - Linear classifier

$$
\begin{aligned}
s^{*} & =\arg \min _{s \in S}\left\|\vec{x}-\vec{e}_{s}\right\|^{2}=\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}\right)\right)\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)\right)= \\
& =\arg \max _{s \in S}\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)=\arg \max _{s \in S} g_{s}(\vec{x}) . \quad b_{s}=-\frac{1}{2} \vec{e}_{s}^{\top} \vec{e}_{s}
\end{aligned}
$$

Linear function (plus offset)

$$
g_{s}(\mathbf{x})=\mathbf{w}_{s}^{\top} \mathbf{x}+w_{s 0}
$$

Learning and decision

Learning stage - learning models/function/parameters from data.
Decision stage - decide about a query \vec{x}. What to learn?

- Generative model : Learn $P(\vec{x}, s)$. Decide by computing $P(s \mid \vec{x})$.
- Discriminative model : Learn $P(s \mid \vec{x})$
- Discriminant function : Learn $g(\vec{x})$ which maps \vec{x} directly into class labels.
(1) Linear discriminant function - two class case

$$
g(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}
$$

Decide s_{1} if $g(\mathbf{x})>0$ and s_{2} if $g(\mathbf{x})<0$

(1) Linear discriminant function - two class case

Figure from [2]

Separating hyperplane

$$
\begin{gathered}
\mathbf{w}^{\top} \mathbf{x}_{1}+w_{0}=\mathbf{w}^{\top} \mathbf{x}_{2}+w_{0} \\
\mathbf{w}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0
\end{gathered}
$$

Separating hyperplane

$$
\begin{gathered}
\mathbf{w}^{\top} \mathbf{x}_{1}+w_{0}=\mathbf{w}^{\top} \mathbf{x}_{2}+w_{0} \\
\mathbf{w}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0
\end{gathered}
$$

$g(\mathbf{x})$ gives an algebraic measure of the distance from \mathbf{x} to the hyperplane.

$$
\mathbf{x}=\mathbf{x}_{p}+r \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

as $g\left(\mathbf{x}_{p}\right)=0$, and $g(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+w_{0}$, then:

$$
g(\mathbf{x})=r\|\mathbf{w}\|
$$

Figure from [2]

Separating hyperplane from g_{1} and g_{2}

$$
\begin{aligned}
& g_{1}(\vec{x})=\vec{\mu}_{1}^{\top} \vec{x}-\frac{1}{2} \vec{\mu}_{1}^{\top} \vec{\mu}_{1} \\
& g_{2}(\vec{x})=\vec{\mu}_{2}^{\top} \vec{x}-\frac{1}{2} \vec{\mu}_{2}^{\top} \vec{\mu}_{2}
\end{aligned}
$$

Separating hyperplane:

$$
\begin{gathered}
g_{1}(\vec{x})=g_{2}(\vec{x}) \\
\left(\vec{\mu}_{1}-\vec{\mu}_{2}\right)^{\top} \vec{x}=\frac{1}{2}\left(\vec{\mu}_{1}^{\top} \vec{\mu}_{1}-\vec{\mu}_{2}^{\top} \vec{\mu}_{2}\right)
\end{gathered}
$$

Two classes set-up

$|S|=2$, i.e. two states (typically also classes)

$$
g(\mathbf{x})=\left\{\begin{array}{l}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0 \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0
\end{array}\right.
$$

Two classes set-up

$|S|=2$, i.e. two states (typically also classes)

$$
g(\mathbf{x})=\left\{\begin{array}{l}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0 \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0
\end{array}\right.
$$

$$
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{l}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{l}
w_{0} \\
\mathbf{w}
\end{array}\right]
$$

Two classes set-up

$|S|=2$, i.e. two states (typically also classes)

$$
g(\mathbf{x})=\left\{\begin{array}{l}
s=1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}>0 \\
s=-1, \quad \text { if } \quad \mathbf{w}^{\top} \mathbf{x}+w_{0}<0
\end{array}\right.
$$

$$
\mathbf{x}_{j}^{\prime}=s_{j}\left[\begin{array}{c}
1 \\
\mathbf{x}_{j}
\end{array}\right], \mathbf{w}^{\prime}=\left[\begin{array}{l}
w_{0} \\
\mathbf{w}
\end{array}\right]
$$

for all \mathbf{x}^{\prime}

$$
\mathbf{w}^{\top} \mathbf{x}^{\prime}>0
$$

drop the dashes to avoid notation clutter.

Solution (graphically)

Four training samples. Left: orginal, Right: sign corrected
Figure from [2] (notation changed)

Learning w, gradient descent

A criterion to be minimized $J(\mathbf{w})$; assume to be known

```
Initialize w, threshold 0, learning rate \alpha
k\leftarrow0
repeat
    k\leftarrowk+1
    w}\leftarrow\mathbf{w}-\alpha(k)\nablaJ(\mathbf{w}
until }|\alpha(k)\nablaJ(\mathbf{w})|<
return w
```


Learning w-Perceptron criterion

Goal: Find a weight vector $\mathbf{w} \in \Re^{D+1}$ (original feature space dimensionality is D) such that:

$$
\mathbf{w}^{\top} \mathbf{x}_{j}>0 \quad(\forall j \in\{1,2, \ldots, m\})
$$

Learning w-Perceptron criterion

Goal: Find a weight vector $\mathbf{w} \in \Re^{D+1}$ (original feature space dimensionality is D) such that:

$$
\mathbf{w}^{\top} \mathbf{x}_{j}>0 \quad(\forall j \in\{1,2, \ldots, m\})
$$

(Perceptron) Criterion to be minimized:

$$
J(\mathbf{w})=\sum_{\mathbf{x} \in \mathcal{X}}-\mathbf{w}^{\top} \mathbf{x}
$$

where \mathcal{X} is a set of missclassified \mathbf{x}.

$$
\nabla J(\mathbf{w})=\sum_{\mathbf{x} \in \mathcal{X}}-\mathbf{x}
$$

(Batch) Perceptron algorithm

Initialize w, threshold θ, learning rate α
$k \leftarrow 0$
repeat
$k \leftarrow k+1$
$\mathbf{w} \leftarrow \mathbf{w}+\alpha(k) \sum_{\mathbf{x} \in \mathcal{X}(k)} \mathbf{x}$
until $\left|\alpha(k) \sum_{\mathbf{x} \in \mathcal{X}(k)} \mathbf{x}\right|<\theta$
return w

Fixed-increment single-sample Perceptron
n patterns/samples, we are looping over all patterns repeatedly
Initialize w
$k \leftarrow 0$
repeat
$k \leftarrow(k+1) \bmod n$
if \mathbf{x}^{k} missclassified, then $\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}$
until all \mathbf{x} correctly classified
return w

Perceptron iterations/loops

n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$
repeat
$k \leftarrow(k+1) \bmod n$
if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w

(Dark) Blue is w after update step. Reds are + , Greens -.

Perceptron iterations/loops

(Dark) Blue is w after update step. Reds are + , Greens -.
n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$
repeat
$k \leftarrow(k+1) \bmod n$
if \mathbf{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w

Perceptron iterations/loops

(Dark) Blue is w after update step. Reds are + , Greens -.

Perceptron iterations/loops

(Dark) Blue is w after update step. Reds are + , Greens -.
n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$
repeat
$k \leftarrow(k+1) \bmod n$
if \mathbf{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w

Perceptron iterations/loops

(Dark) Blue is w after update step. Reds are + , Greens - .
n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$
repeat
$k \leftarrow(k+1) \bmod n$
if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w

Perceptron iterations/loops

(Dark) Blue is w after update step. Reds are + , Greens -.
n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$
repeat
$k \leftarrow(k+1) \bmod n$
if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w

Perceptron iterations/loops

(Dark) Blue is w after update step. Reds are + , Greens -.
n patterns/samples, we are looping over all patterns repeatedly:

Initialize w
$k \leftarrow 0$
repeat
$k \leftarrow(k+1) \bmod n$
if \boldsymbol{x}^{k} missclassified, then

$$
\mathbf{w} \leftarrow \mathbf{w}+\mathbf{x}^{k}
$$

until all \mathbf{x} correctly classified return w

Etalons: means vs. found by perceptron

Figures from [5]

Digit recognition - etalons means vs. perceptron

Figures from [5]

What if not lin separable?

Dimension lifting

$$
\mathbf{x}=\left[x, x^{2}\right]^{\top}
$$

Dimension lifting, $\mathbf{x}=\left[x, x^{2}\right]^{\top}$

Performance comparison, parameters fixed

Matching table for test set

Matching table for test set

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy vs precision

Reference value

Probability density

References I

Further reading: Chapter 18 of [4], or chapter 4 of [1], or chapter 5 of [2]. Many Matlab figures created with the help of [3]. You may also play with demo functions from [5].
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
PDF freely downloadable.
[2] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification.
John Wiley \& Sons, 2nd edition, 2001.
[3] Votjěch Franc and Václav Hlaváč.
Statistical pattern recognition toolbox.
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.

References II

[4] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[5] Tomáś Svoboda, Jan Kybic, and Hlaváč Václav.
Image Processing, Analysis and Machine Vision - A MATLAB Companion.
Thomson, Toronto, Canada, $1^{\text {st }}$ edition, September 2007.
http://visionbook.felk.cvut.cz/.

[^0]: ${ }^{1}$ Figs from [1]

