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Example: Digit recognition/classification

0123456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.
P Features: Pixel intensities ...
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Notes
Digit recognition is a very classical example of classification problem. It has been used for decades, and it is used
till today, see e.g. MNIST demo at PyTorch



https://pytorch.org/docs/stable/torchvision/datasets.html

Classification as a special case of statistical decision theory

> Attribute vector X = (x1,x2,...): pixels 1, 2, ....
> State set S = decision set D = {0,1,...9}.
P> State = actual class, Decision = recognized class

» Loss function:
0, d=s
/(s,d)—{l’ d+s

0% (X) = argmin I(s,d) P(s|X) = argmin P(s|X
() = wmin 3 I(s.9) P(s1) = argip 3 P6F)
0 if d=s
Obviously ). P(s|X) = 1, then:
P(d|%) + > P(s[x) =1
s#d
Inserting into above:

0" (X) = arg main[l — P(d|X)] = arg max P(d|X)
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Notes
We are using different word — classification instead of decision but the reasoning and methods can be well applied

in both. In classification problem we usually treat all mistakes — wrong classificaions — equally painful, contrary

to decision problem — remember “What to cook for dinner” problem?



Bayes classification in practice

» Usually we are not given P(s|X)
» It has to be estimated from already classified examples — training data
» For discrete X, training examples (X1, s1), (X2, 52), - .. (X1, 5)

> so-called i.i.d (independent, identically distributed) multiset
> every (X},s) is drawn independently from P(X,s)

> Without knowing anything about the distribution, a non-parametric estimate:

_ P(X,s) _ # examples where X; = X and s5; = s

)
P(x) # examples where X; = X

» Hard in practice:

> To reliably estimate P(s|X), the number of examples grows exponentially with the number of
elements of X.
> e.g. with the number of pixels in images
> curse of dimensionality
» denominator often 0
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Notes
Why hard? Way too many various X. Think about simple binary 10 x 10 image - X contains 0, 1, position matters.
What is the total number of unique images? Think binary, 1 x 8 binary image?
What is the difference between set and multiset?

Reminder about math notation. In literature, vectors are mostly denoted by bold lower case x. In lectures, we

use X to match notation used on blackboard. It is difficult to write bold with a chalk.



Naive Bayes classification

» For efficient classification we must thus rely on additional assumptions.
» In the exceptional case of statistical independence between components of X for each
class s it holds
P(X|s) = P(x[1]|s) - P(x[2]]s) - ...
P Use simple Bayes law and maximize:
_y _ P(XIs)P(s) _ P(s)
P = = P(x[1]|s) - P(x[2]|s) - ... =
(59) = = pry ) = pgy Pettls) - PRIl
» No combinatorial curse in estimating P(s) and P(x[i]|s) separately for each i and s.
» No need to estimate P(X). (Why?)
» P(s) may be provided apriori.
> naive = when used despite statistical dependence
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Notes

Why naive at all? Consider N— dimensional space, 8 — bit values. Instead of problem 8" we have 8 x N problem.

Think about statistical independence. Examplel: person’s weight and height. Are they independent? Example2:

pixel values in images.



Example: Digit recognition/classification

0123456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.
P> Features: Pixel intensities ...
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Notes

We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions.

Dimension of X is 13 x 13 = 169. There are 255'%° possible images.




Example: Digit recognition/classification

OT1Z23456788

» Input: 8-bit image 13 x 13, pixel intensities 0 — 255. (0 means black, 255 means white)
» Output: Digit 0 — 9. Decision about the class, classification.
P> Features: Pixel intensities ...

Collect data , ...
» P(X). What is the dimension of X? How many possible images?
» Learn P(X|s) per each class (digit).
» Classify s* = argmax, P(s|X).
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Notes

We can create many more features than just pixel intensities. But first things first.
We are assuming all errors are equally important - minimizing the number of wrong decisions.

Dimension of X is 13 x 13 = 169. There are 255'%° possible images.




From images to X
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Notes




Conditional probabilities, likelihoods

» Apriori digit probabilities P(s)
» Likelihoods for pixels. P(x;c = li|sk)
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Notes
A lexical, especially for Czech speakers. probability as well as likelihood can be translated as pravdépodobnost. |
suggest the following mental model than can work for our purposes.

e Probability is related to the future events (unknown outcome). E.g. what is the probability of selecting
blue box? What is the probability that a random zup number begins with 77

o Likelihood refers to past events (known outcome). In my data, how many images of 7 have dark pixel in
top right corner? We can think about relative frequency (relativni &etnost).



Conditional likelihoods
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Notes
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Unseen events

0123456788

Images 13 x 13, intensities 0 — 255, 100 exemplars per each class.
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Notes
Think about the problem of classifying numerals. Some P(x;.c = I | s) = 0. What about an example:

P(Xo,o =100 | s = 7) = 0.05
P(X(),() =101 | S = 7) =0
P(X(),() =102 | S = 7) = 0.06

A new (not in training) query image with xo,0 = 101. How would you classify?



Laplace smoothing ( “additive smoothing”)

P(x) = count(x)
total samples

Problem: count(x) =0
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Laplace smoothing ( “additive smoothing”)

P(x) = count(x)
total samples

Problem: count(x) =0
Pretend you see the (any) sample one more time.

Piap(x) =

Notes
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Laplace smoothing ( “additive smoothing”)

count
P(x) = Ut
total samples
Problem: count(x) =0
Pretend you see the (any) sample one more time.

c(x)+1
el = 5= oG+ 1]
Piap(x) = 7\5)2 |+XT

where N is the number of (total) observations; |X| is the number of possible values X can
take (cardinality).

Notes
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Piap(x) =7

Observation:

01010,

What is P ap(X = red) and P ap(X = blue)?

A: Pap(X = red) = 7/10, P ap(X = blue) = 3/10
B: PLap(X = red) = 2/3, PLap(X = blue) =1/3
C: PLAP(X = red) = 3/5' PLAP(X = blue) — 2/5
D: None of the above.
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Notes
Py (X) =
Ppap(X) =
originally:

o P(red)=2/3
e P(blue)=1/3
after Laplace smoothing — adding one red ball and blue ball to the actual observations:
e Piap(red)=(2+1)/(2+1+1+1)=3/5
e Piap(blue)=(1+1)/2+14+1+1)=2/5
this slide: courtesy of P. Abeel, http://ai.berkeley.edu. 21st lecture of CS 188.


http://ai.berkeley.edu

Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

c(x)+ k
Piap(X) = =~
> [e(x) + K]

c(x)+ k

P —_— 7

Lap () = kX

For conditional, smooth each condition independently
c(x,s) + k
P — ' 7
Pbels) = () + k]
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Notes

Hyperparameter would be tuned along with your classifier
For k = 100 and blue and red, you would get:

o Puap(red) = (2 +100)/(3 + 100 + 2) = 102/203
e Piap(blue) = (14 100)/(3 + 100 * 2) = 101/203

In this case, smoothing ("prior”) would dominate over the observations - shifting estimate from empirical to

uniform.

In the digit recognition from pixels example: 256 intensity values; 13 x 13 = 169 pixels:

Applying Laplace

smoothing with k = 1 to P(x) (prior probability of a particular pixel will take an intensity value i): P(x,,c = i) =

(e(x) +1)/(N + 256)
Conditional: relevant for the Naive Bayes case.



Laplace smoothing - as a hyperparameter k
Pretend you see every sample k extra times:

c(x)+ k
Piap(X) = =~
> [e(x) + K]
c(x)+ k
P = 7
Lap () = kX
For conditional, smooth each condition independently
c(x,s) + k
P = 7
Lap(x]s) c(s) + k| X]
What is | X| equal to?
1 A: 10
B: 2
D: None of the above
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Notes

Hyperparameter would be tuned along with your classifier
For k = 100 and blue and red, you would get:

o Puap(red) = (2 +100)/(3 + 100 + 2) = 102/203
e Piap(blue) = (14 100)/(3 + 100 * 2) = 101/203

In this case, smoothing ("prior”) would dominate over the observations - shifting estimate from empirical to
uniform.

In the digit recognition from pixels example: 256 intensity values; 13 x 13 = 169 pixels: Applying Laplace
smoothing with k = 1 to P(x) (prior probability of a particular pixel will take an intensity value i): P(x,,c = i) =
(e(x) +1)/(N + 256)

Conditional: relevant for the Naive Bayes case.



What is the right degree of polynomial (hyperparameter

of a regressor)

1.2 T

points

1: 0.00211
2:0.00193
——3:0.00024
——4:0.00000
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see the overfit.m demo




Generalization and overfiting

» Data: training, validating, testing . Wanted classifier performs well on what data?
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Generalization and overfiting

» Data: training, validating, testing . Wanted classifier performs well on what data?

» Overfitting: too close to training, poor on testing.
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Notes




Training and testing

Data labeled instances.

» Training set

» Held-out (validation) set
P> Testing set.

Features : Attribute-value pairs.
Learning cycle:

> Learn parameters (e.g. probabilities) on training set.

» Tune hyperparameters on held-out (validation) set.

» Evaluate performance on testing set.

Notes

AN UNAD
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Training set - biggest part.



How to evaluate a classifier? Confusion table
Matching table for test set

494 0 0 1 (0]
g0 99 0 O 1
20 0 92 0 (0]

" &80 0 0 96 1

Rl o 0 0 © 0

[0}

2 g4 0 2 0 O (0]
g4 0 0 0 0 O (0]
4o 0 2 0 O (0]
3 0 0 1 0 10
g0 0 0 4 0 86

0 1 2 3 4 5 6 7 8 9
#times classified as

Figure from [5]

Notes
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A result for a one particular classifer and its setting (parameters), one particular testing set



Precision and Recall, and . ..
Consider digit detection (is there a digit?) or SPAM/HAM
classification.
Recall
» How many relevant items are selected?
> Are we missing some items?
» Also called: True positive rate (TPR), sensitivity, hit
rate ...
Precision
» How many selected items are relevant?
> Also called: Positive predictive value
False positive rate (FPR)
» Probability of false alarm

relevant elements

false negatives

true negatives

selected elements

How many selected
items are relevant?

Precision =

elevant
items are selected?

Recall = ——

By Walber - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36926283 1824
Notes
TP TP
TPR= 5 =+
Precision = L
T TP+ FP
FP FP
PR = = F+Tn

Think about TPR vs FPR graph, what is the best classifier?


https://commons.wikimedia.org/w/index.php?curid=36926283

ROC — Receiver operating characteristics curve

N ROC curve
Tpr_ TP TP
0.9 il = — = -
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FPR - False positive rate
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Notes

e How do you slide along the curve?

e What is the meaning of the diagonal?

e What would be the shape of the curve for the ideal /worst classifier?

e How would you compare various curve and select the best classifier?

e Think/read about other ways to evaluate/visualise classification results.



Discriminant functions (X, s)

Pentagon data

s* = argmax f(X, s)
seS W
Conditional likelihoods: N (X|fis, Xs) X% x > b
050 Yx X X i *S!i
1 ]._, o \Te——1/— - ><xx OO@***;
1/2 eXp{—*(X - Ms) Zs (X - Ms)} ooqbg
27| X 2 & ol A 0T
pac8
Bayes: sl %"%‘A
o NS
. h8
. _ oy _ P(X1s)P(s)
s* = argmax P(s|X) = Z b
ses P(X)
'35 -1 05 0 05 1 15
F(%,5) = ()75 bl 5(% — i) 55 (% — o)}
X,S5) = S)———75 EXpPy—=<(X — X —
) 27_‘_‘25’1/2 p 2 IU/S S /“LS
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Notes
Normal distribution for general dimensionality D:
. 1 1 1. . 15 =
N E) = G e @Pl- 3= A2 (@ =)

How about learning (X, s) directly without explicit modeling of underlying probabilities?

What about f(X,s) = w{ X + wso



Towards linear classifier, geometrical thoughts . ..

F(%,5) = P(s)——

1., . 1 o
P exp{—5 (X — fi) ' LM% — fis)}
S

21/24
Notes




Product of many small numbers ...

P(X|s)P(s) _ P(s)
P(X) P(X)

P(s|X) = P(x[1]]s) - P(x[2]|s) - - ..

P(X) not needed, ... ...
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Notes
just try

e prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.
e prod(rand(1,100)) == 0 and prod(rand(1,10000)) == 0 in Matlab.
or in python console:
e >>> import numpy as np
e >>> np.prod(np.random.rand(100))==0
e >>> np.prod(np.random.rand(1000))==0
e >>> a = np.random.rand(1000)
>>> b = np.random.rand(1000)
>>> np.prod(a)>np.prod(b)
False
>>> np.prod(a)<np.prod(b)
False
>>> np.sum(np.log(a))>np.sum(np.log(b))

True

Hitting the limit of number representation.
What is the way out?

P(X) not needed — does not depend on the class.
Laws of logarithms...



Product of many small numbers ...

P(X|s)P(s) _ P(s)
P(X) P(X)

P(s|X) = P(x[1]]s) - P(x[2]|s) - - ..

P(X) not needed, ... ...

log(P(x[1]|s)P(x[2]]s) - - - ) = log(P(x[1]|s)) + log(P(x[2]]s)) + - --
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Notes

just try
e prod(rand(1,100)) and prod(rand(1,10000)) in Matlab.
e prod(rand(1,100)) == 0 and prod(rand(1,10000)) == 0 in Matlab.
or in python console:
e >>> import numpy as np
e >>> np.prod(np.random.rand(100))==0
e >>> np.prod(np.random.rand(1000))==0
e >>> a = np.random.rand(1000)
>>> b = np.random.rand(1000)
>>> np.prod(a)>np.prod(b)
False
>>> np.prod(a)<np.prod(b)
False
>>> np.sum(np.log(a))>np.sum(np.log(b))

True

Hitting the limit of number representation.
What is the way out?

P(X) not needed — does not depend on the class.
Laws of logarithms...
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