Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- $\rightarrow~$ We do not know anything

we only have a few episodes the robot tried

What to do?

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- $\rightarrow~$ We do not know anything
- we only have a few episodes the robot tried

What to do?

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Policy estimate from training episodes J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- $\rightarrow~$ We do not know anything
- we only have a few episodes the robot tried

What to do?

- A: Run away :-)
- B: Examine episodes and learn
- C: Guess
- D: Try something

Policy estimate from training episodes

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
- $\rightarrow\,$ We do not know anything
- we only have a few episodes the robot tried

What to do?

A: Run away :-)

- B: Examine episodes and learn
- C: Guess

D: Try something

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B, \leftarrow, A, -1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r), known discount factor $\gamma = 1$

Task: for non-terminal states determine the optimal policy. Use model-based learning.

What do we have to learn (model based learning)?

A: policy π

- B: state set S, policy π
- C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B, \leftarrow, A, -1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r), known discount factor $\gamma = 1$

Task: for non-terminal states determine the optimal policy. Use model-based learning.

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy π

C: state set S, action set A, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

Task: for non-terminal states determine the optimal policy

What do we have to learn (model based learning)?

A: policy π

B: state set S, policy π

C: state set *S*, action set *A*, transition model p(s'|s, a)

D: state set S, action set A, rewards r, transition model p(s'|s, a)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1) \ (A,\leftarrow,exit,6)$
			$(A, \leftarrow, exn, 0)$

each field in table is n-tuple (s, a, s', r)

What is the state set S?

A: $S = \{B, C\}$ B: $S = \{A, B, C, D, exit\}$ C: $S = \{A, B, C, D\}$ D: $S = \{A, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	(D, ightarrow, exit, 6)	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

What is the state set S?

- A: $S = \{B, C\}$
- **B**: $S = \{A, B, C, D, exit\}$
- $\mathsf{C}: \ S = \{A, B, C, D\}$
- **D**: $S = \{A, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

```
    ▶ What are the terminal states
    A: {A, B, C, D}
    B: {A, D}
    C: {B, C}
    D: {A, C, D}
```

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

- What are the terminal states?
 - A: $\{A, B, C, D\}$ B: $\{A, D\}$ C: $\{B, C\}$ D: $\{A, C, D\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

What are the terminal states?

A: {*A*, *B*, *C*, *D*} B: {*A*, *D*} C: {*B*, *C*} D: {*A*, *C*, *D*}

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

► Terminal states: {*A*, *D*}

```
    What are the non-terminal state:
    A: {A, B, C, D}
    B: {A, D}
    C: {B, C}
    D: {A, B, C}
```

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

- Terminal states: $\{A, D\}$
- What are the non-terminal states?

```
A: \{A, B, C, D\}
B: \{A, D\}
C: \{B, C\}
D: \{A, B, C\}
```

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$

- Terminal states: $\{A, D\}$
- What are the non-terminal states?

```
A: {A, B, C, D}
B: {A, D}
C: {B, C}
D: {A, B, C}
```

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- A: $\{\rightarrow, \leftarrow\}$
- $B{:}\ \{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- $\mathsf{C} \colon \{ \rightarrow, \leftarrow, \uparrow \}$
- $\mathsf{D}{:}\ \{\rightarrow,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

A: $\{\rightarrow, \leftarrow\}$ B: $\{\rightarrow, \leftarrow, \uparrow, \downarrow\}$ C: $\{\rightarrow, \leftarrow, \uparrow\}$ D: $\{\rightarrow, \leftarrow, \downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?

- A: $\{\rightarrow, \leftarrow\}$
- $\textbf{B:} \ \{\rightarrow,\leftarrow,\uparrow,\downarrow\}$
- $\textbf{C}{:} \ \{\rightarrow,\leftarrow,\uparrow\}$
- $\textbf{D:} \ \{\rightarrow,\leftarrow,\downarrow\}$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

A: deterministic

B: non-deterministic

Let's examine :-)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

- A: deterministic
- B: non-deterministic

Let's examine :-]

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

- A: deterministic
- B: non-deterministic

Let's examine :-)

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- ► How to compute?
 - A: for each state and action
 - B: for each state, action and new state
 - C: for each state
 - D: for each action and new state

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- ► How to compute?
 - A: for each state and action
 - B: for each state, action and new state
 - C: for each state
 - D: for each action and new state

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - $1. \ \mbox{for each state, action and new state}$
 - 2. A: as relative frequencies in one episode
 - B: as sum of occurencies in one episode
 - C: as relative frequencies in all episodes
 - D: as sum of occurencies in all episodes

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - $1. \ \mbox{for each state, action and new state}$
 - A: as relative frequencies in one episode
 B: as sum of occurencies in one episode
 - C: as relative frequencies in all episodes
 - D: as sum of occurencies in all episodes

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

- How to compute?
 - $1. \ \mbox{for each state, action and new state}$
 - 2. as relative frequencies in all episodes
- evaluate $p(C|B, \rightarrow)$
 - A: 1
 - **B**: 2/3
 - C: 1/2
 - D: 1/3

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

How to compute?

- $1. \ \mbox{for each state, action and new state}$
- 2. as relative frequencies in all episodes

evaluate
$$p(C|B, \rightarrow)$$

A: $1 = \frac{\#(B, \rightarrow, C, \cdot)}{\#(B, \rightarrow, \cdot, \cdot)} = 2/2$
B: 2/3
C: 1/2
D: 1/3

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

 $p(C|B, \rightarrow) = 2/2 = 1$ $p(A|B, \leftarrow) = 2/2 = 1$ $p(D|C, \rightarrow) = 2/2 = 1$ $p(B|C, \leftarrow) = 2/2 = 1$

A: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

▶ $p(C|B, \rightarrow) = 2/2 = 1$ $p(A|B, \leftarrow) = 2/2 = 1$ $p(D|C, \rightarrow) = 2/2 = 1$ $p(B|C, \leftarrow) = 2/2 = 1$

A: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

▶ $p(C|B, \rightarrow) = 2/2 = 1$ $p(A|B, \leftarrow) = 2/2 = 1$ $p(D|C, \rightarrow) = 2/2 = 1$ $p(B|C, \leftarrow) = 2/2 = 1$

A: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$

What is the transition model?

▶ $p(C|B, \rightarrow) = 2/2 = 1$ $p(A|B, \leftarrow) = 2/2 = 1$ $p(D|C, \rightarrow) = 2/2 = 1$ $p(B|C, \leftarrow) = 2/2 = 1$

A: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$

What is the world structure?

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

What is a correct value for the reward function?

A: r(B) = -1B: $r(B, \leftarrow, A) = -4$ C: r(B) = -3D: $r(B, \leftarrow) = -1$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

What is a correct value for the reward function?

A: r(B) = -1B: $r(B, \leftarrow, A) = -4$ C: r(B) = -3

D: $r(B, \leftarrow) = -1$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C, \leftarrow, B, -1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶
$$r(B, \leftarrow) = -1$$

What is also correct for the reward function?

A: r(B) = -1B: $r(B, \rightarrow) = -3$ C: r(B) = -3D: $r(B, \rightarrow C) = -1$

Epise	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶
$$r(B, \leftarrow) = -1$$

What is also correct for the reward function?

A: r(B) = -1B: $r(B, \rightarrow) = -3$ C: r(B) = -3D: $r(B, \rightarrow, C) = -1$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C, \leftarrow, B, -1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶
$$r(B, \leftarrow) = -1$$

- A: r(B) = -1
- B: $r(B, \rightarrow) = -3$
- **C**: r(B) = -3
- **D**: $r(B, \rightarrow, C) = -1$

Epis	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow$, <i>C</i> , -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow)$, D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
(<i>D</i> , ←	, <i>exit</i> , 6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

$$r(B,\leftarrow) = -1, r(B,\rightarrow) = -3$$

- A: r(C) = -1
- B: $r(C, \leftarrow, B) = -3$
- C: None
- D: $r(C, \leftarrow) = -1$

Epis	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow$, <i>C</i> , -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow)$, D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
(<i>D</i> , ←	, <i>exit</i> , 6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3$$

- A: r(C) = -1
- **B**: $r(C, \leftarrow, B) = -3$
- C: None
- D: $r(C, \leftarrow) = -1$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C, \leftarrow, B, -1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3, r(C, \leftarrow) = -1$$

What is also correct for the reward function?

A: r(C) = -1B: $r(C, \to) = -3$ C: r(C) = -3D: $r(C, \to, D) = -4$

Epis	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow$, <i>C</i> , -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow)$, D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
(<i>D</i> , ←	, <i>exit</i> , 6)			$(C,\leftarrow,B,-1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

►
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3, r(C, \leftarrow) = -1$$

What is also correct for the reward function?

A: r(C) = -1B: $r(C, \rightarrow) = -3$ C: r(C) = -3D: $r(C, \rightarrow, D) = -4$

Episo	ode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$ (D, \leftarrow,$	exit,6)			$(C, \leftarrow, B, -1)$
				$(B,\leftarrow,A,-1)$
				$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$

▶
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3, r(C, \leftarrow) = -1$$

- A: r(C) = -1B: $r(C, \rightarrow) = -3$
- **C**: r(C) = -3
- **D**: $r(C, \to, D) = -4$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C D

►
$$r(B, \leftarrow) = -1, r(B, \rightarrow) = -3, r(C, \leftarrow) = -1, r(C, \rightarrow) = -3$$

Discussion point, do we need more reward values?

A: Yes, for all states and actions.

B: No.

C: Yes, for terminal states.

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3$ Add also the terminal state rewards: $r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Do we have all we need?

- A: Yes
- B: No

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Let's compute the policy.

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Do we have all we need?

A: Yes

B: No

Let's compute the policy.

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C,\leftarrow,B,-1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Observation: Immediate rewards significantly decrease state value.

- A: Best is to go directly to terminal state
- B: We can go to the terminal state arbitrarily

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 \ r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Observation: Immediate rewards significantly decrease state value.

- A: Best is to go directly to terminal state
- **B**: We can go to the terminal state arbitrarily

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute

- A: $q(B, \leftarrow) = !$
- B: $q(B, \leftarrow) = 3$
- C: $q(B, \leftarrow) = -$
- D: $q(B, \leftarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- A: $q(B, \leftarrow) = 5$
- B: $q(B, \leftarrow) = 3$
- C: $q(B, \leftarrow) = -1$
- D: $q(B, \leftarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

A:
$$q(B, \leftarrow) = B \leftarrow A = 6 - 1 = 5$$

B: $q(B, \leftarrow) = 3$
C: $q(B, \leftarrow) = -1$
D: $q(B, \leftarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

▶ $q(B, \leftarrow) = 5$

(What can we assume about $\pi(C)$?)

A: $q(B, \rightarrow) =$

- B: $q(B, \rightarrow) =$
- C: $q(B, \rightarrow) = 0$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

▶ $q(B, \leftarrow) = 5$

(What can we assume about $\pi(C)$?)

A: $q(B, \rightarrow) = 5$ B: $q(B, \rightarrow) = 3$ C: $q(B, \rightarrow) = 0$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

▶ $q(B, \leftarrow) = 5$

(What can we assume about $\pi(C)$?)

- A: $q(B, \rightarrow) = 5$
- **B**: $q(B, \rightarrow) = 3$

C: $q(B, \rightarrow) = B \rightarrow C \rightarrow D = 6 - 3 - 3 = 0$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 \ r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- ▶ $q(B, \leftarrow) = 5$
- ▶ $q(B, \rightarrow) = 0$

 $\rightarrow \pi(B) = 0$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 \ r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- ▶ $q(B, \leftarrow) = 5$
- ▶ $q(B, \rightarrow) = 0$
- $\rightarrow \pi(B) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

A: $q(C, \rightarrow) = 5$ B: $q(C, \rightarrow) = 3$ C: $q(C, \rightarrow) = 0$ D: $q(C, \rightarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4		
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A, \leftarrow, exit, 6)$		

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

A: $q(C, \rightarrow) = 5$ B: $q(C, \rightarrow) = 3$ C: $q(C, \rightarrow) = 0$ D: $q(C, \rightarrow) = -3$

Epise	ode 1	Episode 2	Episode 3	Episode 4		
$(B, \rightarrow,$	C, -3)	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$		
$ (C, \rightarrow, $	D, -3)	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$ (D, \leftarrow,$	exit,6)			$(C,\leftarrow,B,-1)$		
				$(B,\leftarrow,A,-1)$		
				$(A, \leftarrow, exit, 6)$		

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

A: $q(C, \rightarrow) = 5$ B: $q(C, \rightarrow) = C \rightarrow D = 6 - 3 = 3$ C: $q(C, \rightarrow) = 0$ D: $q(C, \rightarrow) = -3$

Episode 1	Episode 2	Episode 3	Episode 4		
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A, \leftarrow, exit, 6)$		

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

- ▶ $q(C, \rightarrow) = 3$
- A: $q(C, \leftarrow) = 4$
- B: $q(C, \leftarrow) = 3$
- C: $q(C, \leftarrow) = 0$

Episode 1	Episode 2	Episode 3	Episode 4		
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A, \leftarrow, exit, 6)$		

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

▶ $q(C, \rightarrow) = 3$

A: $q(C, \leftarrow) = C \leftarrow B \leftarrow A = 6 - 1 - 1 = 4$

- **B**: $q(C, \leftarrow) = 3$
- C: $q(C, \leftarrow) = 0$

Episode 1	Episode 2	Episode 3	Episode 4		
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A, \leftarrow, exit, 6)$		

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

- ▶ $q(C, \rightarrow) = 3$
- ▶ $q(C, \leftarrow) = 4$
- $\rightarrow \pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4		
$[(B, \rightarrow, C, -3)]$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$		
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$		
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$		
			$(B,\leftarrow,A,-1)$		
			$(A, \leftarrow, exit, 6)$		

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: $A \mid B \mid C \mid D$ Reward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B) = \leftarrow$ Compute now $\pi(C)$:

- ▶ $q(C, \rightarrow) = 3$
- ▶ $q(C, \leftarrow) = 4$
- $\rightarrow \pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$
$(D, \leftarrow, exit, 6)$			$(C,\leftarrow,B,-1)$
			$(B,\leftarrow,A,-1)$
			$(A, \leftarrow, exit, 6)$

each field in table is n-tuple (s, a, s', r)

State set $S = \{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A = \{\rightarrow, \leftarrow\}$ Deterministic transition model: $p(C|B, \rightarrow) = p(A|B, \leftarrow) = p(D|C, \rightarrow) = p(B|C, \leftarrow) = 2/2 = 1$ World structure: A B C DReward function: $r(\{B, C\}, \leftarrow) = -1, r(\{B, C\}, \rightarrow) = -3 r(\{A, D\}, \{\leftarrow, \rightarrow\}) = 6$

Obs.: Immediate rewards significantly decrease state value. ightarrow Best is to go directly to terminal state

Solution:

- ► $\pi(B) = \leftarrow$
- ▶ $\pi(C) = \leftarrow$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B,\leftarrow,C,-3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

Calculating policy

- ▶ state set *S*,
- ▶ action set A,
- ▶ rewards *r*,
- transition model p(s'|s, a)
- ▶ policy π

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$ (B, \rightarrow, C, -3) (C, \rightarrow, D, -3) $	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$	$(\Lambda, \neg, exit, 0)$	$(D, \rightarrow, exit, 0)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$	$(\Lambda, \neg, ext, 0)$	$(C, \leftarrow, D, -3)$	$(D, \rightarrow, exit, 0)$
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is the transition model?

- A: deterministic
- B: non-deterministic

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is a correct transitional probability?

A $p(C|B, \to) = 0.75$ B $p(A|B, \to) = 0.75$ C $p(A|B, \leftarrow) = 0.25$ D $p(D|B, \leftarrow) = 0.75$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B,\leftarrow,A,-1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is a correct transitional probability?

- A $p(C|B, \rightarrow) = 0.75$, see the episodes (B, \rightarrow) occurs 4 times, three of which lead to C, one case to A thus also $p(A|B, \rightarrow) = 0.25$
- **B** $p(A|B, \rightarrow) = 0.75$
- **C** $p(A|B, \leftarrow) = 0.25$
- **D** $p(D|B, \leftarrow) = 0.75$

Transition model: Similarly for other probabilities. Agent follows the direction given with probability 0.75. Otherwise, it goes the other direction.

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is the reward function?

A $r(B, \rightarrow, C) = -3$ B $r(B, \rightarrow, A) = -3$ C $r(B, \leftarrow, A) = -3$ D $r(B, \leftarrow, C) = -3$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

What is the reward function?

A $r(B, \rightarrow, C) = -3$ B $r(B, \rightarrow, A) = -3$ C $r(B, \leftarrow, A) = -3$ D $r(B, \leftarrow, C) = -3$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
$(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	(1, -7, cxit, 0)	(D, \neg) , exit, 0	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$	(71, -7, 0,11, 0)	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$	(2, -, cxi, c)
			$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	

Result:

- ▶ States: $S = \{A, B, C, D\}$, terminal= $\{A, D\}$, nonterminal= $\{B, C\}$
- ▶ Action set: $\{\leftarrow, \rightarrow\}$
- Rewards:

$$r(B, \{\leftarrow, \rightarrow\}, C) = -3, r(B, \{\leftarrow, \rightarrow\}, A) = -1, r(C, \{\leftarrow, \rightarrow\}, B) = -1, r(C, \{\leftarrow, \rightarrow\}, D) = -3$$

World structure:

- Transition model: Agent follows the direction given with probability 0.75. Otherwise, it goes the other direction.
- Policy: $\pi(B) = ?, \pi(C) = ?$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 0)$			$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(B, \leftarrow, A, -1)$ $(A, \leftarrow, exit, 6)$		$(C, \leftarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$	$(A, \leftarrow, exit, o)$		$(D, \leftarrow, cxtt, 0)$	

Policy evaluation:

 $\begin{array}{l} \leftarrow, \rightarrow \quad q(B, \leftarrow) = ?, q(C, \rightarrow) = ?\\ \rightarrow, \rightarrow \quad q(B, \rightarrow) = ?, q(C, \rightarrow) = ?\\ \rightarrow, \leftarrow \quad q(B, \rightarrow) = ?, q(C, \leftarrow) = ?\\ \leftarrow, \leftarrow \quad q(B, \leftarrow) = ?, q(C, \leftarrow) = ?\end{array}$

$ \begin{bmatrix} (B, \rightarrow, C, -3) \\ (C, \rightarrow, D, -3) \\ (D, \leftarrow, exit, 6) \end{bmatrix} \begin{pmatrix} (B, \leftarrow, A, -1) \\ (D, \rightarrow, exit, 6) \\ (D, \leftarrow, exit$	Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(A, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3)$		(-) $(-)$ $(-)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$		$(B, \rightarrow, C, -3)$	

A single policy computation:

 $\begin{array}{l} \leftarrow, \rightarrow \quad q(B, \leftarrow) = ?, q(C, \rightarrow) = ? \\ A \quad q(B, \leftarrow) = .5 \cdot -1 + .5 \cdot -3, \\ q(C, \rightarrow) = .5 \cdot -1 + .5 \cdot -3 \\ B \quad q(B, \leftarrow) = .25 \cdot (6 - 1) + .75 \cdot (-3 + V(C)), \\ q(C, \rightarrow) = .25 \cdot -1 + .75 \cdot (-3 + V(B)) \\ C \quad q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot (-3 + V(C)), \\ q(C, \rightarrow) = .75 \cdot (-3 + 6) + .25 \cdot (-1 + V(B)) \\ D \quad q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot -3, \\ q(C, \rightarrow) = .5 \cdot -1 + .25 \cdot -3 \end{array}$

$ \begin{bmatrix} (B, \rightarrow, C, -3) \\ (C, \rightarrow, D, -3) \\ (D, \leftarrow, exit, 6) \end{bmatrix} \begin{pmatrix} (B, \leftarrow, A, -1) \\ (A, \rightarrow, exit, 6) \\ (D, \leftarrow, exit, 6) \end{bmatrix} \begin{pmatrix} (C, \rightarrow, D, -3) \\ (D, \rightarrow, exit, 6) \\ (D, \rightarrow, exit, 6) \\ (D, \leftarrow, exit$	Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(A, \leftarrow, exit, 6)$	$(C, \rightarrow, D, -3)$	(-7, 7, 7, 7, -7)	(-) $(-)$ $(-)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(C, \leftarrow, B, -1)$		$(B, \rightarrow, C, -3)$	

A single policy computation:

$\leftarrow, \rightarrow q(B, \leftarrow) = ?, q(C, \rightarrow) = ?$

A
$$q(B, \leftarrow) = .5 \cdot -1 + .5 \cdot -3,$$

 $q(C, \rightarrow) = .5 \cdot -1 + .5 \cdot -3$
B $q(B, \leftarrow) = .25 \cdot (6 - 1) + .75 \cdot (-3 + V(C)),$
 $q(C, \rightarrow) = .25 \cdot -1 + .75 \cdot (-3 + V(B))$
C $q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot (-3 + V(C)),$
 $q(C, \rightarrow) = .75 \cdot (-3 + 6) + .25 \cdot (-1 + V(B))$
D $q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot -3,$
 $q(C, \rightarrow) = .5 \cdot -1 + .25 \cdot -3$

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C, -3)$	$(B, \leftarrow, A, -1)$	$(C, \rightarrow, D, -3)$	$(C, \leftarrow, B, -1)$	$(B, \leftarrow, C, -3)$	(B, ightarrow, A, -1)	$(C, \rightarrow, B, -1)$	$(C, \rightarrow, D, -3)$
$(C, \rightarrow, D, -3)$	$(A, \rightarrow, exit, 6)$	$(D, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(C, \leftarrow, B, -1)$	$(A, \rightarrow, exit, 6)$	$(B, \rightarrow, C, -3)$	$(D, \rightarrow, exit, 6)$
$(D, \leftarrow, exit, 6)$			$(C, \leftarrow, B, -1)$	$(B, \leftarrow, A, -1)$		$(C, \leftarrow, D, -3)$	
			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
			$(A, \leftarrow, exit, 6)$				

A single policy computation. As the policy is fixed $V(B) = q(B, \leftarrow), V(C) = q(C, \rightarrow)$:

▶
$$q(B, \leftarrow) = .75 \cdot (6 - 1) + .25 \cdot (-3 + q(C, \rightarrow))$$

▶
$$q(C, \rightarrow) = .75 \cdot (-3 + 6) + .25 \cdot (-1 + q(B, \leftarrow))$$

Therefore:

▶
$$q(B, \leftarrow) = .75 \cdot 5 + .25 \cdot (-3 + .75 \cdot 3 + .25 \cdot (-1 + q(B, \leftarrow))) = ... \approx 3.72$$

▶ $q(C, \rightarrow) = .75 \cdot 3 + .25 \cdot (-1 + 3.72) \approx 2.93$

And we calculate for the remaining policies.

[Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
	$(B, \rightarrow, C, -3)$ $(C, \rightarrow, D, -3)$	$(B, \leftarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$	$(C, \leftarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(B, \leftarrow, C, -3)$	$(B, \rightarrow, A, -1)$ $(A, \rightarrow, exit, 6)$	$(C, \rightarrow, B, -1)$ $(B, \rightarrow, C, -3)$	$(C, \rightarrow, D, -3)$ $(D, \rightarrow, exit, 6)$
	$(C, \rightarrow, D, -3)$ $(D, \leftarrow, exit, 6)$	$(A, \rightarrow, exit, 0)$	$(D, \rightarrow, exit, 0)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, B, -1)$	$(C, \leftarrow, B, -1)$ $(B, \leftarrow, A, -1)$	$(A, \rightarrow, exit, 0)$	$(B, \rightarrow, C, -3)$ $(C, \leftarrow, D, -3)$	$(D, \rightarrow, exit, 0)$
	(_, , , ,, , , ,			$(B, \leftarrow, A, -1)$	$(A, \leftarrow, exit, 6)$		$(D, \leftarrow, exit, 6)$	
l				$(A, \leftarrow, exit, 6)$				

- $\leftarrow,
 ightarrow ~ q(B, \leftarrow) pprox 3.73, \ q(C,
 ightarrow) pprox 2.93$
- $egin{array}{lll}
 ightarrow,
 ightarrow \ q(B,
 ightarrow)pprox 0.62, \ q(C,
 ightarrow)pprox 2.15 \end{array}$
- $ightarrow, \leftarrow q(B,
 ightarrow) pprox -2.29, \ q(C, \leftarrow) pprox -1.71 \ \leftarrow, \leftarrow q(B, \leftarrow) pprox 3.70, \ q(C, \leftarrow) pprox 2.77
 ightarrow$

And we can determine the best policy: $\pi(B) = \leftarrow, \pi(C) = \rightarrow$