Policy estimate from training episodes
J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
\rightarrow We do not know anything

Policy estimate from training episodes
J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
\rightarrow We do not know anything
- we only have a few episodes the robot tried

Policy estimate from training episodes
J. Kostlivá, Z. Straka, P. Švarný

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
\rightarrow We do not know anything
- we only have a few episodes the robot tried

What to do?
A: Run away :-)
B: Examine episodes and learn
C: Guess
D: Try something

Policy estimate from training episodes

We have:

- unknown grid world of unknown size and structure/shape
- robot/agents moves in unknown directions with unknown parameters
\rightarrow We do not know anything
- we only have a few episodes the robot tried

What to do?
A: Run away :-
B: Examine episodes and learn
C: Guess
D: Try something

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit,6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r), known discount factor $\gamma=1$
Task: for non-terminal states determine the optimal policy. Use model-based learning.

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r), known discount factor $\gamma=1$
Task: for non-terminal states determine the optimal policy. Use model-based learning.
What do we have to learn (model based learning)?
A: policy π
B: state set S, policy π
C: state set S, action set A, transition model $p\left(s^{\prime} \mid s, a\right)$
D: state set S, action set A, rewards r, transition model $p\left(s^{\prime} \mid s, a\right)$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit,6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6$)$

each field in table is n-tuple (s, a, s^{\prime}, r)
Task: for non-terminal states determine the optimal policy
What do we have to learn (model based learning)?
A:
B:
C: state set S, action set A, transition model $p\left(s^{\prime} \mid s, a\right)$
D: state set S, action set A, rewards r, transition model $p\left(s^{\prime} \mid s, a\right)$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

What is the state set S ?
A: $S=\{B, C\}$
B: $S=\{A, B, C, D$, exit $\}$
C: $S=\{A, B, C, D\}$
D: $S=\{A, D\}$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

What is the state set S ?
A:
B:
C: $S=\{A, B, C, D\}$
D:

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$

- What are the terminal states?

A: $\{A, B, C, D\}$
B: $\{A, D\}$
C: $\{B, C\}$
D: $\{A, C, D\}$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$

- What are the terminal states?

A:
B: $\{A, D\}$
C:
D:

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$

- Terminal states: $\{A, D\}$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit,6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$

- Terminal states: $\{A, D\}$
- What are the non-terminal states?

A: $\{A, B, C, D\}$
B: $\{A, D\}$
C: $\{B, C\}$
D: $\{A, B, C\}$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6$)$

State set $S=\{A, B, C, D\}$

- Terminal states: $\{A, D\}$
- What are the non-terminal states?

A:
B:
C: $\{B, C\}$
D:

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?
A: $\{\rightarrow, \leftarrow\}$
B: $\{\rightarrow, \leftarrow, \uparrow, \downarrow\}$
C: $\{\rightarrow, \leftarrow, \uparrow\}$
D: $\{\rightarrow, \leftarrow, \downarrow\}$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$

What is the action set?
A: $\{\rightarrow, \leftarrow\}$
B:
C:
D:

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A=\{\rightarrow, \leftarrow\}$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A=\{\rightarrow, \leftarrow\}$

What is the transition model?
A: deterministic
B: non-deterministic

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A=\{\rightarrow, \leftarrow\}$

What is the transition model?
A: deterministic
B: non-deterministic

Let's examine :-)

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit,6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

What is the transition model?

- How to compute?

A: for each state and action
B: for each state, action and new state
C: for each state
D: for each action and new state

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A=\{\rightarrow, \leftarrow\}$

What is the transition model?

- How to compute?

A:
B: for each state, action and new state
C:
D: for each action and new state

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A=\{\rightarrow, \leftarrow\}$

What is the transition model?

- How to compute?

1. for each state, action and new state
2. A: as relative frequencies in one episode

B: as sum of occurencies in one episode
C: as relative frequencies in all episodes
D: as sum of occurencies in all episodes

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$ Action set $A=\{\rightarrow, \leftarrow\}$

What is the transition model?

- How to compute?

1. for each state, action and new state
2. A

B:
C: as relative frequencies in all episodes
D: as sum of occurencies in all episodes

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
What is the transition model?

- How to compute?

1. for each state, action and new state
2. as relative frequencies in all episodes

- evaluate $p(C \mid B, \rightarrow)$

A: 1
B: $2 / 3$
C: $1 / 2$
D: 1/3

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
What is the transition model?

- How to compute?

1. for each state, action and new state
2. as relative frequencies in all episodes

- evaluate $p(C \mid B, \rightarrow)$

A: $1=\frac{\#(B, \rightarrow, C, \cdot)}{\#(B, \rightarrow, \cdot, \cdot)}=2 / 2$
B:
C:
D:

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit,6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
What is the transition model?

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
What is the transition model?

- $p(C \mid B, \rightarrow)=2 / 2=1$

$$
p(A \mid B, \leftarrow)=2 / 2=1
$$

$$
p(D \mid C, \rightarrow)=2 / 2=1
$$

$$
p(B \mid C, \leftarrow)=2 / 2=1
$$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
What is the transition model?

- $p(C \mid B, \rightarrow)=2 / 2=1$

$$
p(A \mid B, \leftarrow)=2 / 2=1
$$

$$
p(D \mid C, \rightarrow)=2 / 2=1
$$

$$
p(B \mid C, \leftarrow)=2 / 2=1
$$

A: non-deterministic
B: deterministic

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
What is the transition model?

- $p(C \mid B, \rightarrow)=2 / 2=1$

$$
p(A \mid B, \leftarrow)=2 / 2=1
$$

$$
p(D \mid C, \rightarrow)=2 / 2=1
$$

$$
p(B \mid C, \leftarrow)=2 / 2=1
$$

[^0]
Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r)
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$
What is the world structure?

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r)
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$
What is the world structure?

A: | A | C | B | D |
| :--- | :--- | :--- | :--- |

B: | | A | B | C |
| :--- | :--- | :--- | :--- |

$\mathrm{C}:$| | B | A | C |
| :--- | :--- | :--- | :--- |

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r)
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$
What is the world structure?
A:

B: | A | B | C | D |
| :--- | :--- | :--- | :--- |

C:
:

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

What is a correct value for the reward function?
A: $r(B)=-1$
B: $r(B, \leftarrow, A)=-4$
C: $r(B)=-3$
D: $r(B, \leftarrow)=-1$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

What is a correct value for the reward function?
A:
B: $r(B, \leftarrow, A)=-4$
C:
D: $r(B, \leftarrow)=-1$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

- $r(B, \leftarrow)=-1$

What is also correct for the reward function?

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

- $r(B, \leftarrow)=-1$

What is also correct for the reward function?
A: $r(B)=-1$
B: $r(B, \rightarrow)=-3$
C: $r(B)=-3$
D: $r(B, \rightarrow, C)=-1$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure: | A | B | C | D |
| :--- | :--- | :--- | :--- |

- $r(B, \leftarrow)=-1$

What is also correct for the reward function?
A:
B: $r(B, \rightarrow)=-3$
C:
D:

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

- $r(B, \leftarrow)=-1, r(B, \rightarrow)=-3$

What is also correct for the reward function?
A: $r(C)=-1$
B: $r(C, \leftarrow, B)=-3$
C: None
D: $r(C, \leftarrow)=-1$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure:	A	B	C	D

- $r(B, \leftarrow)=-1, r(B, \rightarrow)=-3$

What is also correct for the reward function?
A:
B:
C: None
D: $r(C, \leftarrow)=-1$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

- $r(B, \leftarrow)=-1, r(B, \rightarrow)=-3, r(C, \leftarrow)=-1$

What is also correct for the reward function?

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

- $r(B, \leftarrow)=-1, r(B, \rightarrow)=-3, r(C, \leftarrow)=-1$

What is also correct for the reward function?
A: $r(C)=-1$
B: $r(C, \rightarrow)=-3$
C: $r(C)=-3$
D: $r(C, \rightarrow, D)=-4$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$

Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

- $r(B, \leftarrow)=-1, r(B, \rightarrow)=-3, r(C, \leftarrow)=-1$

What is also correct for the reward function?
A:
B: $r(C, \rightarrow)=-3$
C:
D:
: $r(C, \rightarrow, D)=-4$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r)
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$ World structure:

A	B	C	D

- $r(B, \leftarrow)=-1, r(B, \rightarrow)=-3, r(C, \leftarrow)=-1, r(C, \rightarrow)=-3$

Discussion point, do we need more reward values?
A: Yes, for all states and actions.
B: No.
C: Yes, for terminal states.

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Add also the terminal state rewards: $r(\{A, D\},\{\leftarrow, \rightarrow\})=6$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r)
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$
World structure: $\mathrm{A}|\mathrm{B}| \mathrm{C} \mid \mathrm{D}$
Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Do we have all we need?
A: Yes
B: No

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Do we have all we need?
A: Yes
B :

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Do we have all we need?
A: Yes
B:
Let's compute the policy.

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r)
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

World structure: | | A | B | C |
| :---: | :---: | :---: | :---: | D

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Observation: Immediate rewards significantly decrease state value.
A: Best is to go directly to terminal state
B: We can go to the terminal state arbitrarily

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple (s, a, s^{\prime}, r)
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

World structure: | | A | B | C |
| :---: | :---: | :---: | :---: | D

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Observation: Immediate rewards significantly decrease state value.
A: Best is to go directly to terminal state
B:
B: We can go to the terminal state arbitrarily

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

A: $q(B, \leftarrow)=5$
B: $q(B, \leftarrow)=3$
C: $q(B, \leftarrow)=-1$
D: $q(B, \leftarrow)=-3$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

A: $q(B, \leftarrow)=B \leftarrow A=6-1=5$
B:
C:
D:

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- $q(B, \leftarrow)=5$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$
World structure: A A
Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- $q(B, \leftarrow)=5$
(What can we assume about $\pi(C)$?)
A: $q(B, \rightarrow)=5$
B: $q(B, \rightarrow)=3$
C: $q(B, \rightarrow)=0$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- $q(B, \leftarrow)=5$
(What can we assume about $\pi(C)$?)
A:
B:
C: $q(B, \rightarrow)=B \rightarrow C \rightarrow D=6-3-3=0$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$
World structure: A A
Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- $q(B, \leftarrow)=5$
- $q(B, \rightarrow)=0$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$
State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$
World structure: A A
Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state Compute:

- $q(B, \leftarrow)=5$
- $q(B, \rightarrow)=0$
$\rightarrow \pi(B)=\leftarrow$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B)=\leftarrow$
Compute now $\pi(C)$:

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B)=\leftarrow$
Compute now $\pi(C)$:
A: $q(C, \rightarrow)=5$
B: $q(C, \rightarrow)=3$
C: $q(C, \rightarrow)=0$
D: $q(C, \rightarrow)=-3$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B)=\leftarrow$
Compute now $\pi(C)$:
A:
B: $q(C, \rightarrow)=C \rightarrow D=6-3=3$
C:

D:

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B)=\leftarrow$
Compute now $\pi(C)$:

- $q(C, \rightarrow)=3$

A: $q(C, \leftarrow)=4$
B: $q(C, \leftarrow)=3$
$C: q(C, \leftarrow)=0$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B)=\leftarrow$
Compute now $\pi(C)$:

- $q(C, \rightarrow)=3$

A: $q(C, \leftarrow)=C \leftarrow B \leftarrow A=6-1-1=4$
B:
C:

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B)=\leftarrow$
Compute now $\pi(C)$:

- $q(C, \rightarrow)=3$
- $q(C, \leftarrow)=4$

Example I

Episode 1 Episode 2 Episode 3 Episode 4 $(B, \rightarrow, C,-3)$ $(B, \leftarrow, A,-1)$ $(C, \rightarrow, D,-3)$ $(C, \leftarrow, B,-1)$ $(C, \rightarrow, D,-3)$ $(A, \rightarrow$, exit, 6) $(D, \rightarrow$, exit, 6) $(B, \rightarrow, C,-3)$ $(D, \leftarrow$, exit, 6) $(C, \leftarrow, B,-1)$ $(B, \leftarrow, A,-1)$ $(A, \leftarrow$, exit, 6)			
each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$			

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state $\pi(B)=\leftarrow$
Compute now $\pi(C)$:

- $q(C, \rightarrow)=3$
- $q(C, \leftarrow)=4$
$\rightarrow \pi(C)=\leftarrow$

Example I

Episode 1	Episode 2	Episode 3	Episode 4
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$
			$(B, \leftarrow, A,-1)$
			$(A, \leftarrow$, exit, 6)

each field in table is n-tuple $\left(s, a, s^{\prime}, r\right)$

State set $S=\{A, B, C, D\}$, terminal states: $\{A, D\}$, non-terminal states: $\{B, C\}$
Action set $A=\{\rightarrow, \leftarrow\}$
Deterministic transition model: $p(C \mid B, \rightarrow)=p(A \mid B, \leftarrow)=p(D \mid C, \rightarrow)=p(B \mid C, \leftarrow)=2 / 2=1$

World structure: | A | B | C | D |
| :---: | :---: | :---: | :---: |

Reward function: $r(\{B, C\}, \leftarrow)=-1, r(\{B, C\}, \rightarrow)=-3 r(\{A, D\},\{\leftarrow, \rightarrow\})=6$
Obs.: Immediate rewards significantly decrease state value. \rightarrow Best is to go directly to terminal state

Solution:

- $\pi(B)=\leftarrow$
- $\pi(C)=\leftarrow$

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
($B, \rightarrow, C,-3$)	$(B, \leftarrow, A,-1)$	($C, \rightarrow, D,-3$)	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6$)$	(D, \rightarrow exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$	(D, \rightarrow, exit, 6$)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$(B, \leftarrow, A,-1)$ $\begin{aligned} & (D, \leftarrow, A,-1) \\ & (A, \leftarrow, \text { exit } 6) \end{aligned}$	$(A, \leftarrow$, exit, 6)		$(D, \leftarrow$, exit, 6$)$	

Calculating policy

- state set S,
- action set A,
- rewards r,
- transition model $p\left(s^{\prime} \mid s, a\right)$
- policy π

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
($C, \rightarrow, D,-3$)	$(A, \rightarrow$, exit, 6)	(D, \rightarrow, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$	(D, \rightarrow, exit, 6)
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$\begin{aligned} & (B, \leftarrow, A,-1) \\ & (A, \leftarrow, \text { exit } 6) \end{aligned}$	$(A, \leftarrow$, exit, 6$)$		$(D, \leftarrow$, exit, 6)	

What is the transition model?
A: deterministic
B: non-deterministic

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
($B, \rightarrow, C,-3$)	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	(D, \rightarrow, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$	(D, \rightarrow, exit, 6)
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$(B, \leftarrow, A,-1)$	$(A, \leftarrow$, exit, 6)		$(D, \leftarrow$, exit, 6$)$	
			$(A, \leftarrow$, exit, 6$)$				

What is a correct transitional probability?
A $p(C \mid B, \rightarrow)=0.75$
B $p(A \mid B, \rightarrow)=0.75$
C $p(A \mid B, \leftarrow)=0.25$
D $p(D \mid B, \leftarrow)=0.75$

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	(A, \rightarrow, exit, 6)	(D, \rightarrow, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$	(D, \rightarrow, exit, 6)
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$\begin{aligned} & (B, \leftarrow, A,-1) \\ & (A, \leftarrow, \text { exit }, 6) \end{aligned}$	$(A, \leftarrow$, exit, 6)		$(D, \leftarrow$, exit, 6)	

What is a correct transitional probability?
A $p(C \mid B, \rightarrow)=0.75$, see the episodes (B, \rightarrow) occurs 4 times, three of which lead to C, one case to A thus also $p(A \mid B, \rightarrow)=0.25$

B
C
D
Transition model: Similarly for other probabilities. Agent follows the direction given with probability 0.75 . Otherwise, it goes the other direction.

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
($B, \rightarrow, C,-3$)	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	(D, \rightarrow, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$	(D, \rightarrow, exit, 6)
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$(B, \leftarrow, A,-1)$	$(A, \leftarrow$, exit, 6)		$(D, \leftarrow$, exit, 6$)$	
			$(A, \leftarrow$, exit, 6$)$				

What is the reward function?
A $r(B, \rightarrow, C)=-3$
B $r(B, \rightarrow, A)=-3$
C $r(B, \leftarrow, A)=-3$
D $r(B, \leftarrow, C)=-3$

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	(A, \rightarrow, exit, 6)	(D, \rightarrow, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	(A, \rightarrow, exit, 6)	$(B, \rightarrow, C,-3)$	(D, \rightarrow, exit, 6)
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$(B, \leftarrow, A,-1)$	$(A, \leftarrow$, exit, 6)		$(D, \leftarrow$, exit, 6$)$	

What is the reward function?
A $r(B, \rightarrow, C)=-3$
B
C
D $r(B, \leftarrow, C)=-3$

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
($B, \rightarrow, C,-3$)	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow, e x i t, 6)$	(D, \rightarrow, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	(A, \rightarrow, exit, 6$)$	$(B, \rightarrow, C,-3)$	(D, \rightarrow, exit, 6)
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$(B, \leftarrow, A,-1)$	$(A, \leftarrow$, exit, 6)		$(D, \leftarrow$, exit, 6$)$	
			$(A, \leftarrow$, exit, 6)				

Result:

- States: $S=\{A, B, C, D\}$, terminal $=\{A, D\}$, nonterminal $=\{B, C\}$
- Action set: $\{\leftarrow, \rightarrow\}$
- Rewards:

$$
\begin{aligned}
& r(B,\{\leftarrow, \rightarrow\}, C)=-3, r(B,\{\leftarrow, \rightarrow\}, A)=-1, \\
& r(C,\{\leftarrow, \rightarrow\}, B)=-1, r(C,\{\leftarrow, \rightarrow\}, D)=-3
\end{aligned}
$$

- World structure:
\square
- Transition model: Agent follows the direction given with probability 0.75 . Otherwise, it goes the other direction.
- Policy: $\pi(B)=$?, $\pi(C)=$?

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
($B, \rightarrow, C,-3$)	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6$)$	(D, \rightarrow, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$	$(D, \rightarrow$, exit, 6)
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$\begin{aligned} & (B, \leftarrow, A,-1) \\ & (A, \leftarrow, \text { exit }, 6) \end{aligned}$	$(A, \leftarrow$, exit, 6$)$		$(D, \leftarrow$, exit, 6$)$	

Policy evaluation:

$$
\begin{aligned}
& \leftarrow, \rightarrow q(B, \leftarrow)=?, q(C, \rightarrow)=? \\
& \rightarrow, \rightarrow q(B, \rightarrow)=?, q(C, \rightarrow)=? \\
& \rightarrow, \leftarrow q(B, \rightarrow)=?, q(C, \leftarrow)=? \\
& \leftarrow, \leftarrow q(B, \leftarrow)=?, q(C, \leftarrow)=?
\end{aligned}
$$

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	($B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$	(D, \rightarrow, exit, 6$)$
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$\begin{aligned} & (B, \leftarrow, A,-1) \\ & (A, \leftarrow, \text { exit } 6) \end{aligned}$	$(A, \leftarrow$, exit, 6)		$(D, \leftarrow$, exit, 6$)$	

A single policy computation:

$$
\begin{aligned}
& \leftarrow, \rightarrow q(B, \leftarrow)=?, q(C, \rightarrow)=? \\
& \text { A } q(B, \leftarrow)=.5 \cdot-1+.5 \cdot-3, \\
& q(C, \rightarrow)=.5 \cdot-1+.5 \cdot-3 \\
& \mathrm{~B} q(B, \leftarrow)=.25 \cdot(6-1)+.75 \cdot(-3+V(C)), \\
& q(C, \rightarrow)=.25 \cdot-1+.75 \cdot(-3+V(B)) \\
& \mathrm{C} q(B, \leftarrow)=.75 \cdot(6-1)+.25 \cdot(-3+V(C)), \\
& q(C, \rightarrow)=.75 \cdot(-3+6)+.25 \cdot(-1+V(B)) \\
& \mathrm{D} q(B, \leftarrow)=.75 \cdot(6-1)+.25 \cdot-3, \\
& q(C, \rightarrow)=.5 \cdot-1+.25 \cdot-3
\end{aligned}
$$

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6$)$	$(B, \rightarrow, C,-3)$	$(D, \rightarrow, \rightarrow$, exit, 6)
$(D, \leftarrow$, exit, 6)				$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$
			$(B, \leftarrow, A,-1)$	$(A, \leftarrow$, exit,6)			
			$(A, \leftarrow$, exit, 6)				

A single policy computation:
$\leftarrow, \rightarrow q(B, \leftarrow)=?, q(C, \rightarrow)=$?
A

B
C $q(B, \leftarrow)=.75 \cdot(6-1)+.25 \cdot(-3+V(C))$,

$$
q(C, \rightarrow)=.75 \cdot(-3+6)+.25 \cdot(-1+V(B))
$$

D
\qquad

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
($C, \rightarrow, D,-3$)	(A, \rightarrow, exit, 6)	(D, \rightarrow, exit, 6)	($B, \rightarrow, C,-3$)	$(C, \leftarrow, B,-1)$	(A, \rightarrow, exit, 6$)$	($B, \rightarrow, C,-3$)	(D, \rightarrow, exit, 6)
$(D, \leftarrow$, exit, 6$)$			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$\begin{aligned} & (B, \leftarrow, A,-1) \\ & (A, \leftarrow, \text { exit }, 6) \end{aligned}$	$(A, \leftarrow$, exit, 6)		$(D, \leftarrow$, exit, 6)	

A single policy computation. As the policy is fixed $V(B)=q(B, \leftarrow), V(C)=q(C, \rightarrow)$:

- $q(B, \leftarrow)=.75 \cdot(6-1)+.25 \cdot(-3+q(C, \rightarrow))$
- $q(C, \rightarrow)=.75 \cdot(-3+6)+.25 \cdot(-1+q(B, \leftarrow))$

Therefore:

- $q(B, \leftarrow)=.75 \cdot 5+.25 \cdot(-3+.75 \cdot 3+.25 \cdot(-1+q(B, \leftarrow))=\ldots \approx 3.72$
- $q(C, \rightarrow)=.75 \cdot 3+.25 \cdot(-1+3.72) \approx 2.93$

And we calculate for the remaining policies.

Example II

Episode 1	Episode 2	Episode 3	Episode 4	Episode 5	Episode 6	Episode 7	Episode 8
$(B, \rightarrow, C,-3)$	$(B, \leftarrow, A,-1)$	$(C, \rightarrow, D,-3)$	$(C, \leftarrow, B,-1)$	$(B, \leftarrow, C,-3)$	$(B, \rightarrow, A,-1)$	$(C, \rightarrow, B,-1)$	$(C, \rightarrow, D,-3)$
$(C, \rightarrow, D,-3)$	$(A, \rightarrow$, exit, 6)	$(D, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$	$(C, \leftarrow, B,-1)$	$(A, \rightarrow$, exit, 6)	$(B, \rightarrow, C,-3)$	$(D, \rightarrow$, exit, 6)
$(D, \leftarrow$, exit, 6)			$(C, \leftarrow, B,-1)$	$(B, \leftarrow, A,-1)$		$(C, \leftarrow, D,-3)$	
			$(B, \leftarrow, A,-1)$	$(A, \leftarrow$, exit,6)		$(D, \leftarrow$, exit,6)	

$$
\begin{aligned}
\leftarrow, \rightarrow q(B, \leftarrow) & \approx 3.73, \\
q(C, \rightarrow) & \approx 2.93 \\
\rightarrow, \rightarrow \quad q(B, \rightarrow) & \approx 0.62, \\
q(C, \rightarrow) & \approx 2.15 \\
\rightarrow, \leftarrow q(B, \rightarrow) & \approx-2.29, \\
q(C, \leftarrow) & \approx-1.71 \\
\leftarrow, \leftarrow q(B, \leftarrow) & \approx 3.70, \\
q(C, \leftarrow) & \approx 2.77
\end{aligned}
$$

And we can determine the best policy: $\pi(B)=\leftarrow, \pi(C)=\rightarrow$

[^0]: A: non-deterministic
 B: deterministic

