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Why transformation among coordinate frames are important?

\camera de=mso \lidar

* Robot consist of many
distributed components  \gripper_r
(sensors, actuators, joints)

 Each component operates

IN Its own coordinate

frame

 Robot moves => each
coordinate frames . B
changes in time. | \QHIOIOGr |

il \wheeld

\'Tw e|2 \wheel3 )



* Each coordinate frame detine 3D Euclidean space.
* |tis uniquely determined by its name.

| head

- ]| #

7N\ camera

gripper

map






In arbitrary time we would like to answer questions like that:
 \What is the pose of the head in the map?

 \What color from camera corresponds to 3D points
measured by 1idar?

 \What is the pose of the object in the gripper relative to
?
head: head

Ka MW camera

gripper

map



Coordinate frames & ROS

e Coordinate frames in ROS form a tree

map |—»| odom |[—|base_link|—| lidar

N\

e |f parent-child transformations are published by your
nodes => you can access arbitrary transformation

$ rosrun tf tf echo /map /lidar

At time 1263248513.809

- Translation: [2.398, 6.783, 0.000]

- Rotation: in Quaternion [0.000, 0.000, -0.707, 0.707]



Coordinate frames & ROS

e Transformation tree for two robots allow to estimate mutual
position and use measurement from other robot.

l

odom |—|base link|—»| lidar

N\

odom?2 [— [pase link?

map

lidar?2

\




Broadcasting static transtormation between two c.f. in ROS

broadcaster = tf2 ros.StaticTransformBroadcaster ()
transform = geometry msgs.msg.TransformStamped()

# estimate R,t (e.g. measure or compute)

# .. “TOPIC OF FOLLOWING TWO LECTURES” => R,t

# convert rotation matrix into quaternion

g = mat2quat(R)

# fill-in transform between coordinate frames (q,t)
transform.translation.x = t[0]
transform.translation.y = t[1]
transform.translation.z = t[2]
transform.rotation.x = ‘
transform.rotation.y =
transform.rotation.z =
transform.rotation.w _
transform.header.stamp rospy.Time.now( )
transform.header.frame id = “base 1link"
transform.child frame i1d = “lidar"”

hQ Q Q Q
w N~ O

# publish transform between coordinate frames (qg,t)
broadcaster.sendTransform(transform)



Listening static transtormation between two c.f. in ROS

(1) in the your own node;:

# initialize listener (10 sec buffer)
buffer = tf2 ros.Buffer()
listener = tf2 ros.TransformlListener (buffer)

# estimate transformation from lidar to map
transform = buffer.lookup transform(’lidar’, 'map',rospy.Time())

(2) In the terminal:

$ rosrun tf tf echo /map /lidar

map |=——p| odom |—p|base_link

i

lidar




Outline

The topic of this lecture:
* estimating transformation between static coord. frames
(sensor calibration)
* principle of lidar, camera, realsense, stereo ...

The topic of next lecture:
* estimating transformation between dynamic coord. frames
(robot/sensor localization - SLAM)
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Lidar

Lidar is device which measure depth of some points Iin its
field-of view by time-of-flight principle.

world

‘laser beam
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Lidar

Lidar is device which measure depth of some points Iin its
field-of view by time-of-flight principle.

world

Record reflected beam

Estimate distance from time-of-tlight.

t
S=1C-—
2
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Lidar

Lidar is device which measure depth of some points Iin its
field-of view by time-of-flight principle.

world

result 1Is 3D point cloud In
idar_p coordinate frame

idar_p
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Euclidean transformation of a rigid body
Let us now work only with two coordinate frames:
e lidar_p in which points are denoted as p € R”

world

lidar_p
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Euclidean transtformation of a rigid body

Let us now work only w

e |idar_qg in which pol

ith two coordinate frames:
e |idar_p in which poil

nts are denoted as p € R®

nts are denoted as q € R?

world
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Euclidean transtformation of a rigid body

Let us now work only wit
IN which pol
IN which pol

e [idar_p
e lidar_g

Transformatio

h two coordinate frames:
nts are denoted as p € R®

nts are denoted as q € R?

N between measurements uniguely determined:
q p—

Rp +t
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Euclidean transtformation of a rigid body

* Assuming Euclidean motion (no squeezing)
q=Rp+t

» where R € SO(3) is rotation and t € R° is translation.
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Euclidean transtformation of a rigid body

* Assuming Euclidean motion (no squeezing)
q=Rp+t
» where R € SO(3) is rotation and t € R° is translation.

» Special orthogonal group
SOB)_{ReR*> | R'R=1I, det(R) = +1}
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Euclidean transtformation of a rigid body

Assuming Euclidean motion (no squeezing)
q=Rp+t

where R € SO(3) is rotation and t € R® is translation.

Special orthogonal group
SOB)_{ReR*> | R'R=1I, det(R) = +1}

This is affine (not linear) transformation = introduce
homogeneous coordinates

=,
- L , R
Euclidean transformation is given by matrix & = | o7

q=8gp

19



Euclidean transtformation of a rigid body

o Set of all transformations forms Special Euclidean group

SEGB)=18= |,

Rt

1

| R € SO(3),t e R}

where SO(S):{R c R3*3 | R'R =1, det(R) = +1}

20



Euclidean transtformation of a rigid body

Example 1

What is rotation around axis y? 2
What does this rotation preserve?

Z S —

q:

21



Euclidean transtformation of a rigid body

cxample 1. - cosf 0 sinf
What is rotation around axis y? R — 0 1 0

. . Y
What does this rotation preserve? —ginf 0 cosf

/

O 22



Euclidean transtformation of a rigid body

Example 2:

Given transformation from lidar1 to lidar2 gi2, what is inverse
transformation 821

_ Rio tio
51271000 1

23



Euclidean transtformation of a rigid body

Example 2:

Given transformation from lidar1 to lidar2 gi2, what is inverse
transformation 821

Rz t1o gy = Ry, —Rgitor
512 = 1900 1 21 1000 1
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Summary

SE3) = {g = R cSO®3),t e R3)

Rt
_O 1_

'S set of transformations, which model spatio-temporal
change of coordinate frames among sensors, actuators and
world map.
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Mutual calibration of two coordinate frames

_et us consider two lidars mounted on a static robot body.
—ach measures pointcloud in its own c.1.

How can we estimate transformation between them?
Measuring the mutual transtormation by a ruler/protractor is
often very inaccurate => can we estimate the R,t accurately?

20




Mutual calibration of two coordinate frames

worla

\lidar_g
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Mutual calibration of two coordinate frames

worla

\lidar_q \lidar_p
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Mutual calibration of two coordinate frames

29



Mutual calibration of two coordinate frames
3D-3D correspondences
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Mutual calibration of two coordinate frames
3D-3D correspondences

g2 .PQ o
o ® o o

o o I‘)l °
d:
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Mutual calibration of two coordinate frames

32



Mutual calibration of two coordinate frames

q2 = Rp; +t
o o

o
q: = Rp; +¢
o
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Mutual calibration of two coordinate frames

op Z.RP% + t 3N equations:

q; = Rp'l +t qi =Rp; +t Vi—i.n
®
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Mutual calibration of two coordinate frames

3N equations:

q; = Rp; +t V=1 N

35



Mutual calibration of two coordinate frames

3N equations:

q; ZRp; +t Vi—1..n

noise => No exact solution
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Mutual calibration of two coordinate frames

3N equations:

q; ZRp; +t Vi—1..n

noise => No exact solution

Minimize sum of squared
differences between left
and right-hand side.

\|idar_p ML eStln.late W_I‘t:
- gaussian noise
- I.i.d measurements
R*,t* = argmin ZHRpi—I—t—qu%
ReSO(3),teR3 <

37



Mutual calibration of two coordinate frames

R*,t* = argmin Z IRp; +t — q;ll5
RESO(3),teR?

Solution:

38



Mutual calibration of two coordinate frames

R*,t* = argmin Z IRp; +t — q;ll5
RESO(3),teR?

. 1 Z 1 Z
[ / - . - . / —_— . - - .

—~ —~

p q
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Mutual calibration of two coordinate frames

R*,t" = argmin

Z IRp; +t — qi|5

ReSO(3),teR3 <

qé-:qi—%Zq@-

N, o’

—_~

q

. 1
' / — . — — .
Solution: P, = Ps: N E Pi,

40



Mutual calibration of two coordinate frames
R*,t* = argmin Z IRp; +t — q;ll5

ReSO(3),teR3 <

Solution: estimate covariante matrix: H= ") p

1

Ak
i A
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Mutual calibration of two coordinate frames

R*,t* = argmin Z IRp; +t — q;ll5
RESO(3),teR?

Solution: estimate covariante matrix: H= "> pjq;’

find SVD decomposition: H = USV '

42



Mutual calibration of two coordinate frames

R*,t* = argmin Z IRp; +t — q;ll5
RESO(3),teR?

Solution: estimate covariante matrix: H= "> pjq;’

find SVD decomposition: H = USV '

estimate optimal rotation: R* = VU'

43



Mutual calibration of two coordinate frames

R*,t* = argmin Z IRp; +t — q;ll5
RESO(3),teR?

Solution: estimate covariante matrix: H= "> pjq;’

find SVD decomposition: H = USV '

estimate optimal rotation: R* = VU'
t" =4 R'p

44



Mutual calibration of two coordinate frames

R*,t* = argmin Z IRp; +t — q;ll5
RESO(3),teR?

Solution: estimate covariante matrix: H= "> piq;' = PQ'
find SVD decomposition: H = USV '

estimate optimal rotation: R* = VU'
t" =4 R'p

45



Mutual calibration of two coordinate frames

(1) Record pointclouds and manually estimate 3D-3D
correspondences

(2) Solve: R*,t* = argmin Z IRp; +t — a5
ReSO(3),teR3

Solution: R*=VU'

In python:
H=P@OQ.T
U, S, V = np.linalg.svd(H, full matrices=True)

Broadcasting static transformation between two c.f. in ROS:

broadcaster = tf2 ros.StaticTransformBroadcaster()
transform = geometry msgs.msg.TransformStamped()

# compute transform from 3D-3D correspondences
broadcaster.sendTransform(transform) 46



Mutual calibration of two coordinate frames

* Application in Robotics for SLAM.
* Application in Computer graphics for alignment of 3D models

47



]E{’*7 t>l<

Proof [Arun-TPAMI|-87]

arg min Z IRp; +t — qil|3 =
RESO(3) teR3 <
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]E{’*7 t>l<

Proof [Arun-TPAMI|-87]

arg min Z IRp; +t — qil|3 =
RESO(3) teR3 <

argmin = » |R(p}+P)+t—q]—ql3 =
RESO(3),teR?
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]E{’*7 t>l<

Proof [Arun-TPAMI|-87]

arg min Z IRp; +t — qil|3 =
RESO(3) teR3 <

argmin = » |R(p}+P)+t—q]—ql3 =
RESO(3),teR?

argmin Y |Rp; —q;+Rp+t—q3=
RESO(3),t€R3 T

50



Proof [Arun-TPAMI|-87]

R*,t* = argmin Z IRp; +t — q;l|5 =
RESO(3),teR3 <

= argmin Y |R(p;+Dp)+t—q;—ql3=
RESO(3),teR?

— argmin ZHRpZ/ ~q;+Rp+t—qll5=
ReSO(3),teR3 —

t/
= argmin Y (Rp;—q;+t)" (Rp; —q; +t) =
RESO(3) teR?

51



Proof [Arun-TPAMI|-87]

R*,t* = argmin Z IRp; +t — q;l|5 =
ReSO(3),teR3

= _ argmin Z IR(p; +p) +t—a; —dls =
RESO(3),tER3

= argmin Z ||Rp7, q@ +Rp+t—q Hz —
RCSO(3),tERS3 %,_/

= argmin Z(Rpé —d,+t) (Rp] —qf +t) =
RESO(3),tR3 <

—  argmin IRp, — |l + ) 2(Rp; — q)t' +||t']|5 =
aogmin D 2 2

=0
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Proof [Arun-TPAMI|-87]

R*,t* = argmin Z IRp; +t — q;l|5 =
ReSO(3),teR3

= _ argmin Z IR(p; +p) +t—a; —dls =
RESO(3),tER3

= argmin Z ||Rp7, q@ +Rp+t—q Hz —
RCSO(3),tERS3 %,_/

= argmin Z(Rpé —d,+t) (Rp] —qf +t) =
RESO(3),tR3 <

—  argmin IRp, — |l + ) 2(Rp; — q)t' +||t']|5 =
aogmin D 2 2

=0

— arg min Z HRp@ quQ + ||t H2
ReSO(3),teR3

we can reach second termzeroby t=q— Rp =t~

53



roof [Arun-TPAMI-87]

P
= argmin Z |IRp; — ngg + ||t’H3
ReSO(3),teR3

we can reach second termzeroby t =q— Rp =t~
arg min Z IRp, — q||5 = arg maXZq;TRpr. —

ReSO(3) ReSO(3)
— arg maxz q.,' Rp, = argmax trace RPQ' =VU'
ReSO(3) - ~~~"~~ ReSO(3) 7
a; b;

argmax trace RR*USV' | expand into two rotations
R/, R*€S0(3)

arg max trace R’ VU USV' = argmax trace R’ (VVS) (VSV) ' =

R/€S0(3) N T RESO®B) —— ——
A
a.

T/ v
— arg max a, Ra, =E
R’€S0(3) EZ: LR’ai

trace BA! = Z a' b,

AT
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Camera

55



Camera model

Object in front of camera

Pinhole camera model

50



Camera model

_O_
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Camera model

|
_O_
‘\

Sun ray is reflected from Lambertian surface in hemisphere
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Camera model

|
_O_
‘\

Reflected ray (red) forms inverted image of the object
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Camera model




Camera model




Camera model

SEeNsor



Camera model

|

O_

— © o
N~ 7

Light energy from rays traversed through pinhole is small
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Camera model

|
_O_
‘\

SEeNsor

0

Increasing hole size yields more energy but blurs image

64



Camera model

{
{/\

Increasing hole size yields more energy but blurs image
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Camera model

{
/

7\
Al

Lens focus cone of light rays in a single point

SEeNsor
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Camera model

|

O_

|
|

Since source and target of these cones are points, we omit the
lens geometry.
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Camera model

|
_O_
‘\

A

Recorded inverted image is finally tlipped on the chip
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Projection of 3D point in \camera on image plane

Simplified geometry
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Projection of 3D point in \camera on image plane
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Projection of 3D point in \camera on image plane
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Projection of 3D point in \camera on image plane

/2



/3



Pz
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Pz
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Pz

/6



Pz

’r’



image plane

Pz

/8



Projection 3D points on the image plane
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Projection SD points on the image plane

Pz = )\uy:fpy

80



Projection 3D points on the image plane

= )\uy:fpy =
A= D,

f

0
0

0
f
0

O |pas
0 Dy
Ll |p-

31




Projection 3D points on the image plane

Sof
0

0

0

Sy J
0

Oy
Oy
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Projection 3D points on the image plane

U, | _sxf 0 o,

uy | =1\ 0 s,f o,

1 0 0 Ll
K c RSXS

upper-triangular,
regular matrix with
INntrinsic parameters
of the camera

83



Projection 3D points on the image plane

Uy s.f 0 oy

uy | = 0 s,f o

1 0 0 L{]
K c RSXS

upper-triangular,
regular matrix with
INntrinsic parameters
of the camera

Au = Kp

34



Projection 3D points on the image plane
Applications:

* 3D->2D projecting 3D PCL on image plane (colorizing)

* 2D->3D raycasting (projecting detections into 3D map)

« RGBD->3D PCL
* field-of-view, focal length and spatial resolution

Au = Kp

385



et us have one lidar and one camera

\camera
\

86



Camera
Projection from lidar to image plane consists of two steps:

* transform of 3D point in\lidar_q q € R’to \camera p € R3

q
5 >
p=Rq+1 \lidar_q
TR

\camera
AN

37




Camera

Projection from lidar to image plane consists of two steps:
e transform of 3D pointin\lidar_g q € R’ to \camera pER’

» projection of 3D point in \camera on image plane u € R”

&S q
7@// R A
p=Rq+1 \lidar_g
| .lj§~~~
. A
; X

\camera
AN

38



\camera to \lidar_g calibration

au=K R t|q
P

\camera
AN

89



Projection 3D points on the image plane

s, S, oz| [f O O
Aam=|0 s, o, |O f O [R t: q
0 0 1 0 0 1
K € ¥
P c R3X4

KeR3> ... intrinsic parameters

...... extrinsic parameters
PcR3> camera projection matrix

-xample 1: Project point to a given camera.

—xample 2: What is a ray of a pixel?
—xample 3: Depth to 3D point-cloud?

90



Projection of 3D point in \camera on image plane

P
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Albrecht Durer (1545), Hitachi Viewmuseum
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Projection of 3D point in \camera on image plane

Pinhole camera model

92



\camera to \lidar_g calibration

au=K R t|q
N——

P
https://docs.opencv.org/2.4/modules/calib3d/doc/

opentV camera_calibration_and_3d_reconstruction.html
q
X \lidar_g
@”\
&
+ %
AT
: A
vy X

\camera
AN
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\camera to \lidar g calibration

\T = [Pq

unknown

calibration from 2D-3D correspondences

LS
v
\camera N\

N

X

~

~

A

=~

q

A \lidar_g
Qd
A\
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\camera to \lidar_g calibration

Au = Pq =

LS
[V
\camera N\

i _qT 07 uqu T 51
OT =T 2 — T 2
— q——/yq | P3 |
A2 12] v
Pl12x1]
q
O\ \lidar_g
N
&

= Opax1]
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\camera to \lidar_g calibration
Each 2D-3D correspondence yields two equations:

_ _q;l_ 0' umq: | g; — Oy g
0"  —q; wu,q; 2

\camera




\camera to \lidar_g calibration
Each 2D-3D correspondence yields two equations:

=T T =T 7| P1
0' —q' w,q, X
_ () yr™1g I P3 ]
A2 12] v
Pl12x1]

For N 2D-3D correspondences, we obtain
(2Nx12) homogeneous linear system Ap =0

Assuming
* |.I.d. measurements and
* gaussian noise between left-hand-side and right-hand-side

p* = argmin||Ap|

97



\camera to \lidar_g calibration
Each 2D-3D correspondence yields two equations:

=T T =T 7| P1

_ () yr™1g I P3 ]
A2 12] v

Pl12x1]

For N 2D-3D correspondences, we obtain
(2Nx12) homogeneous linear system Ap =0

Assuming
* |.I.d. measurements and
* gaussian noise between left-hand-side and right-hand-side

p* = argmin||Ap|| subject to ||p|| =1

98



p* = argmin||Ap|| subject to ||p|| =1

Lagrange function:
L(p,A) = |lAp[l + A(1 = [pl) =p 'A"Ap+ A\(1 — p ' p)
Critical points:

L
OL(p, ) _ 20" Ap —2Xp =0
Jp
OL(p, M) -
o PP

-irst equation is characteristic equation (ATA — AI)p = 0
“very eigen-vector of A" A is the critical point  choose one
Cost function in these eigen vectors is equal to eigen-values
IAp| =p'A"Ap=p'Ap=Xp'p=A|p| = A

Solution is the eigen-vector of AT A with
the smallest eigen-value

99



Summary camera calibration
Manually estimate 2D-3D correspondences

Build matrix

A =

_qT
OT

OT T 7

—q

Uzq
T T
Uy q

Find eigen-values and eigen-vectors of A" A
(python: numpy.linalg.eig)

Reshape the eigen-vector p € R'**" with the smallest
eigen-value to camera matrix P ¢ R3*4

Scale does not matter: P = P/||[ps1, P32, P33 ' |
Optionally decompose:

P = [KR
B

Kt]=[B

C

K,R = ¢r(B)
t=K 'c

(python: numpy.linalg.qgr)
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Summary
lidar-lidar calibration from 3D-3D correspondences

Solve: R*,t* = argmin Z IRp; +t — a5
ReSO(3),teR3
Solution: R*=VU'
t“=q—R'p

101



Summary
camera-lidar calibration from 2D-3D correspondences

\lidar_q

\camera

Solve: p" = argmin||Ap|| subject to ||p|| =1

Solution: smallest eigen-vector of AT A

102



Summary
Broadcasting static transtormation between two c.t. in ROS

Tutorial: http://wiki.ros.org/tf2/Tutorials/
Writing %20a%20tt2%20static %20broadcaster%20%28Python

%29

103


http://wiki.ros.org/tf2/Tutorials/Writing%20a%20tf2%20static%20broadcaster%20(Python)
http://wiki.ros.org/tf2/Tutorials/Writing%20a%20tf2%20static%20broadcaster%20(Python)
http://wiki.ros.org/tf2/Tutorials/Writing%20a%20tf2%20static%20broadcaster%20(Python)

Stereo

FireWire

BUMBLEBEE2

e Pair of cameras mounted on a common rigid body, which
porovide depth (or 3D point cloud).

e Simulate human binocular vision.

* |[n contrast to lidar, it Is a passive sensor.

104



Stereo

\camera 1

LA . \camera_2
P UL Ty

Given pixel u1 in \camera_1, where does the corresponding
pixel a2 lie in \camera_27 105




Stereo .

e \camera_2
LSRN

\camera 1

Given pixel u1 in \camera_1, where does the corresponding
pixel a2 lie in \camera_27 106



Stereo

epipolar line

' \camera 2

~
~
~

\camera 1

Corresponding pixel lies on the epipolar line
(.e. projection of the ray from camera_1 to \camera_2) .,



Stereo

epipolar line

~
~
~

\camera 1

E={weR’| u, K'Y Rxt)Ku =0}
\—
F 108



Stereo

109



Stereo

110



Stereo

111



Stereo
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Stereo

Similarity function:

Y (J(e +x) — I(X))2

xeW
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Stereo

greedy solution

Similarity function:

xeW

x €W

ecé
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Stereo

liIne smoothness

Similarity function:

Y (J(e +x) — I(X))2

xeW

115



Stereo

neighbourhood
smoothness

Similarity function:

Y (J(e +x) — I(X))2

xeW

X e W X € W
ec & 116



Stereo: summary

* Passive depth sensor created from pair of cameras.

* |naccurate on long distance (sub-pixel disparity).

* \Works well on textured, not reflective, smooth surfaces.
» Computationally demanding optimisation.

¢ Some OpenCV implementation:

stereo = cv2.createStereoBM(numDisparities=16,
blockSize=15)
depth = stereo.compute(imgL, imgR)

hitps://opencv-python-tutroals.readthedocs.io/en/latest/
oy_tutorials/py_calib3d/py_depthmap/py_depthmap.html

nttps://docs.opencv.org/3.1.0/d3/d 14/
tutorial_ximgproc_disparity_filtering.html#gsc.tab=0 1,
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Kinect

» Stereo looks at the same object two-times and estimate its
depth from two RGB images.

* Kinect avoid ambiguity by actively projecting a unigue IR
pattern on the object and search for its known appearance
in the IR camera.

119



Kinect

* Fixed camera-projector relative position.
* Correspondence between projected patch and observed
patch lies on the epipolar line.
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Summary: Kinect

Active depth sensor consisting of IR camera and projector.
Does not work outdoor due to strong illumination.
naccurate on long distances.

t does not require well textured surface.

Cheap and fast solution for indoor robotics.
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RealSense

‘FEF NN R R R R R R R R R R REE

IR projector RGB camera

Right IR camera Left IR camera

* Indoor: IR projector avoid ambiguities by projecting
unigue IR pattern
 Outdoor: It work like stereo in IR spectrum.
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Solid-state lidar

Lidar with independent steering of depth-measuring rays

ey S3 principle

Emitted laser beams

Transmitted through
# " Optical Phased Array
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Controlling optical properties of
OPA elements, allows to steer
laser beams In desired directions
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Reflected laser beams are
captured by SPAD array

Images of S3 Lidar redistributed with permission of Quanergy Systems (http://quanergy.com)
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Experiment: Qualitative evaluation

Sparse measurements

Reconstructed map

Ground truth
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Active mapping [Zimmermann, Petricek et al. ICCV 2017]

[1] Zimmermann, Petricek, Salansky, Svob@daalearmingoiosor
w2 Active 3D Mapping, ICCV oral, 2017
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