Module VI

3D Structure and Camera Motion

- Reconstructing Camera System
- Bundle Adjustment

covered by

- [1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1
- [2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298–372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In *Proc CVPR*, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software 36(1):1–30, 2009.

▶ Reconstructing Camera System by Stepwise Gluing

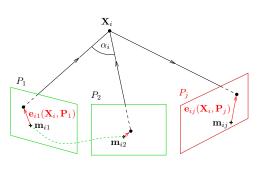
Given: Calibration matrices \mathbf{K}_i and tentative correspondences per camera triples.

Initialization

- 1. initialize camera cluster \mathcal{C} with P_1 , P_2 ,
- 2. find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5-point algorithm
- 3. construct camera pair

$$\mathbf{P}_1 = \mathbf{K}_1 \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \; \mathbf{P}_2 = \mathbf{K}_2 \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

- 4. compute 3D reconstruction $\{X_i\}$ per match from M_{12} $\rightarrow 104$
- 5. initialize point cloud \mathcal{X} with $\{X_i\}$ satisfying chirality constraint $z_i > 0$ and apical angle constraint $|\alpha_i| > \alpha_T$



Attaching camera $P_i \notin \mathcal{C}$

- 1. select points \mathcal{X}_i from \mathcal{X} that have matches to P_i
- 2. estimate P_i using \mathcal{X}_i , RANSAC with the 3-pt alg. (P3P), projection errors e_{ij} in \mathcal{X}_i
- 3. reconstruct 3D points from all tentative matches from P_i to all P_l , $l \neq k$ that are not in \mathcal{X} 4. filter them by the chirality and apical angle constraints and add them to ${\mathcal X}$
- 5. add P_i to \mathcal{C}
- 6. perform bundle adjustment on \mathcal{X} and \mathcal{C}

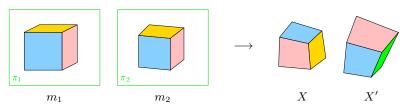
coming next \rightarrow 136

▶The Projective Reconstruction Theorem

Observation: Unless \mathbf{P}_i are constrained, then for any number of cameras $i=1,\ldots,k$

$$\mathbf{\underline{m}}_{i'} \simeq \mathbf{P}_{i} \mathbf{\underline{X}} = \underbrace{\mathbf{P}_{i} \mathbf{H}^{-1}}_{\mathbf{P}'_{i}} \underbrace{\mathbf{H} \mathbf{\underline{X}}}_{\mathbf{\underline{X}}'} = \mathbf{P}'_{i} \mathbf{\underline{X}}'$$

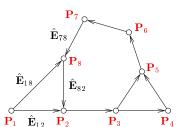
• when \mathbf{P}_i and $\underline{\mathbf{X}}$ are both determined from correspondences (including calibrations \mathbf{K}_i), they are given up to a common 3D homography \mathbf{H} (translation, rotation, scale, shear, pure perspectivity)



• when cameras are internally calibrated (\mathbf{K}_i known) then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_i [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] (translation, rotation, scale)

► Analyzing the Camera System Reconstruction Problem

Problem: Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{ij} = [\hat{\mathbf{t}}_{ij}]_{\times} \hat{\mathbf{R}}_{ij}$ and calibration matrices \mathbf{K}_i reconstruct the camera system \mathbf{P}_i , $i=1,\ldots,k$ \rightarrow 80 and \rightarrow 145 on representing \mathbf{E}



We construct calibrated camera pairs $\hat{\mathbf{P}}_{ij} \in \mathbb{R}^{6,4} \longrightarrow$???

$$\hat{\mathbf{P}}_{ij} = \begin{bmatrix} \mathbf{K}_i^{-1} \hat{\mathbf{P}}_i \\ \mathbf{K}_j^{-1} \hat{\mathbf{P}}_j \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix} \in \mathbb{R}^{6,4}$$

- ullet singletons $i,\ j$ correspond to graph nodes k nodes
- ullet pairs ij correspond to graph edges p edges

$$\hat{\mathbf{P}}_{ij}$$
 are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{ij}\mathbf{H}_{ij}=\mathbf{P}_{ij}$

$$\underbrace{\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix}}_{\mathbf{p}6.4} \underbrace{\begin{bmatrix} \mathbf{R}_{ij} & \mathbf{t}_{ij} \\ \mathbf{0}^{\top} & s_{ij} \end{bmatrix}}_{\mathbf{H} \in \mathbb{P}4.4} \stackrel{!}{=} \underbrace{\begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \\ \mathbf{R}_{j} & \mathbf{t}_{j} \end{bmatrix}}_{\mathbf{p}6.4} \tag{28}$$

- (28) is a linear system of 24p eqs. in 7p+6k unknowns $7p \sim (\mathbf{t}_{ij}, \mathbf{R}_{ij}, s_{ij}), \, 6k \sim (\mathbf{R}_i, \mathbf{t}_i)$
- each \mathbf{P}_i appears on the right side as many times as is the degree of node \mathbf{P}_i eg. P_5 3-times

▶cont'd

$$\begin{bmatrix} \mathbf{R}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{R}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i \\ \mathbf{R}_j \end{bmatrix} \qquad \begin{bmatrix} \mathbf{t}_{ij} \\ \hat{\mathbf{R}}_{ij} \mathbf{t}_{ij} + s_{ij} \hat{\mathbf{t}}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_i \\ \mathbf{t}_j \end{bmatrix}$$

R_{ij} and t_{ij} can be eliminated:

$$\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j, \qquad \hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} = \mathbf{t}_j, \qquad s_{ij} > 0$$
(29)

note transformations that do not change these equations

assuming no error in $\hat{\mathbf{R}}_{ij}$ 1. $\mathbf{R}_i \mapsto \mathbf{R}_i \mathbf{R}$, 2. $\mathbf{t}_i \mapsto \sigma \mathbf{t}_i$ and $s_{ij} \mapsto \sigma s_{ij}$, 3. $\mathbf{t}_i \mapsto \mathbf{t}_i + \mathbf{R}_i \mathbf{t}$

the global frame is fixed, e.g. by selecting

$$\mathbf{R}_1 = \mathbf{I}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \frac{1}{p} \sum_{i,j} s_{ij} = 1$$
 (30)

- rotation equations are decoupled from translation equations
- ullet in principle, s_{ij} could correct the sign of $\hat{f t}_{ij}$ from essential matrix decomposition \rightarrow 80 but \mathbf{R}_i cannot correct the α sign in $\hat{\mathbf{R}}_{ij}$

 \Rightarrow therefore make sure all points are in front of cameras and constrain $s_{ij} >$ 0; \rightarrow 82

- + pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations)

otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (29): A Global Algorithm

Task: Solve $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j$, $i, j \in V$, $(i, j) \in E$ where \mathbf{R} are a 3×3 rotation matrix each. Per columns c = 1, 2, 3 of \mathbf{R}_i :

$$\hat{\mathbf{R}}_{ij}\mathbf{r}_{i}^{c} - \mathbf{r}_{j}^{c} = \mathbf{0}, \quad \text{for all } i, j$$
• fix c and denote $\mathbf{r}^{c} = [\mathbf{r}_{1}^{c}, \mathbf{r}_{2}^{c}, \dots, \mathbf{r}_{k}^{c}]^{\top}$ c -th columns of all rotation matrices stacked; $\mathbf{r}^{c} \in \mathbb{R}^{3k}$

- then (31) becomes $\mathbf{D} \mathbf{r}^c = \mathbf{0}$ in a 1-connected graph we have to fix $\mathbf{r_1^c} = [1,0,0]$ • 3p equations for 3k unknowns $\rightarrow p \geq k$

•
$$3p$$
 equations for $3k$ unknowns $\rightarrow p \ge k$ in a 1-connected graph we have to fix $\mathbf{r}_1^s = [1,0,0]$
Ex: $(k=p=3)$

must hold for any c

Idea:

[Martinec & Pajdla CVPR 2007]

- 1. find the space of all $\mathbf{r}^c \in \mathbb{R}^{3k}$ that solve (31) D is sparse, use [V,E] = eigs(D'*D,3,0); (Matlab)
- choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors
- 3. find closest rotation matrices per cam. using SVD because $\|\mathbf{r}^c\|=1$ is necessary but insufficient $\mathbf{R}_i^{"} = \mathbf{U}\mathbf{V}^{ op}$, where $\mathbf{R}_i = \mathbf{U}\mathbf{D}\mathbf{V}^{ op}$

global world rotation is arbitrary

Finding The Translation Component in Eq. (29)

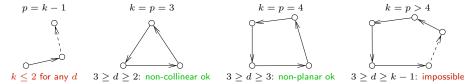
From (29) and (30):

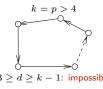
$$d \leq 3$$
 - rank of camera center set, p - #pairs, k - #cameras

$$\hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} - \mathbf{t}_j = \mathbf{0}, \qquad \sum_{i=1}^k \mathbf{t}_i = \mathbf{0}, \qquad \sum_{i,j} s_{ij} = p, \qquad s_{ij} > 0, \qquad \mathbf{t}_i \in \mathbb{R}^d$$

 $\bullet \underbrace{\left(\text{n rank } d \colon\right)} d \cdot p + d + 1 \text{ equations for } d \cdot k + p \text{ unknowns} \to p \geq \frac{d(k-1)-1}{d-1} \stackrel{\text{def}}{=} Q(d,k)$

Ex: Chains and circuits construction from sticks of known orientation and unknown length?





collinear cameras

- equations insufficient for chains, trees, or when d=1
- 3-connectivity implies sufficient equations for d=3cams. in general pos. in 3D
- s-connected graph has $p \geq \lceil \frac{sk}{2} \rceil$ edges for $s \geq 2$, hence $p \geq \lceil \frac{3k}{2} \rceil \geq Q(3,k) = \frac{3k}{2} 2$ • 4-connectivity implies sufficient eqns. for any k when d=2coplanar cams

 - since $p \geq \lceil 2k \rceil \geq Q(2,k) = 2k-3$ - maximal planar tringulated graphs have p = 3k - 6

Linear equations in (29) and (30) can be rewritten to

$$\mathbf{Dt} = \mathbf{0}, \qquad \mathbf{t} = \begin{bmatrix} \mathbf{t}_1^\top, \mathbf{t}_2^\top, \dots, \mathbf{t}_k^\top, s_{12}, \dots, s_{ij}, \dots \end{bmatrix}^\top$$

assuming measurement errors $\mathbf{Dt} = \boldsymbol{\epsilon}$ and d = 3, we have

$$\mathbf{t} \in \mathbb{R}^{3k+p}, \quad \mathbf{D} \in \mathbb{R}^{3p,3k+p}$$
 sparse

and

$$\mathbf{t}^* = \underset{\mathbf{t}, \, s_{ij} > 0}{\min} \, \mathbf{t}^\top \mathbf{D}^\top \mathbf{D} \, \mathbf{t}$$

• this is a quadratic programming problem (mind the constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

but check the rank first!

