
IBundle Adjustment

Goal: Use a good (and expensive) error model and improve all estimated parameters

Given:

1. set of 3D points {Xi}pi=1

2. set of cameras {Pj}cj=1

3. fixed tentative projections mij

Required:

1. corrected 3D points {X′i}pi=1

2. corrected cameras {P′j}cj=1

Latent:

1. visibility decision vij ∈ {0, 1} per mijP1 Xi
ei1(Xi;P1) eij(Xi;Pj)mijPjP2mi1 mi2

• for simplicity, X, m are considered Cartesian (not homogeneous)

• we have projection error eij(Xi,Pj) = xi −mi per image feature, where xi = PjXi
• for simplicity, we will work with scalar error eij = ‖eij‖

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 136/189) R. Šára, CMP; rev. 10–Dec–2019

Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization, as in Robust Matching Model →112

p({e} | {P,X}) =
p∏

pts:i=1

c∏
cams:j=1

(
(1− P0)p1(eij | Xi,Pj) + P0 p0(eij | Xi,Pj)

)
marginalized negative log-density is (→113)

− log p({e} | {P,X}) =
∑
i

∑
j

− log
(
e
−
e2ij(Xi,Pj)

2σ2
1 + t

)
︸ ︷︷ ︸
ρ(e2ij(Xi,Pj)) = ν2

ij(Xi,Pj)

def
=
∑
i

∑
j

ν2
ij(Xi,Pj)

• eij is the projection error (not Sampson error)

• νij is a ‘robust’ error fcn.; it is non-robust (νij = eij) when t = 0

• ρ(·) is a ‘robustification function’ we often find in M-estimation

• the Lij in Levenberg-Marquardt changes to vector

(Lij)l =
∂νij

∂θl
=

1

1 + t e
e2ij(θ)/(2σ

2
1)︸ ︷︷ ︸

small for big eij

·
1

νij(θ)
·

1

4σ2
1

·
∂e2ij(θ)

∂θl
(32)

but the LM method stays the same as before →106–107

−4 −2 0 2 4
0

2

4

6

8

10

x

−
lo

g
 p

σ = 1, t = 0.02

e
ij

2
(x)=x

2

ν
ij

2
(x)

• outliers: almost no impact on ds in normal equations because the red term in (32) scales
contributions to both sums down for the particular ij

−
∑
i,j

L>ij νij(θ
s) =

(k∑
i,j

L>ijLij
)
ds

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 137/189) R. Šára, CMP; rev. 10–Dec–2019

ISparsity in Bundle Adjustment

We have q = 3p+ 11k parameters: θ = (X1,X2, . . . ,Xp; P1,P2, . . . ,Pk) points, cameras

We will use a running index r = 1, . . . , z, z = p · k . Then each r corresponds to some i, j

θ∗ = arg min
θ

z∑
r=1

ν2
r (θ), θs+1:=θs+ds, −

z∑
r=1

L>r νr(θ
s) =

(
z∑
r=1

L>r Lr + λ diagL>r Lr

)
ds

The block form of Lr in Levenberg-Marquardt (→106) is zero except in columns i and j:
r-th error term is ν2

r = ρ(e2ij(Xi,Pj))

Lr =
i j r = (i, j) blocks:

: Xi, 1× 3
: Pj , 1× 11

L>r Lr =

jij
i

blocks:
: Xi −Xi, 3× 3
: Xi −Pj , 3× 11
: Pj −Pj , 11× 11

z∑
r=1

L>r Lr =

3p

3p

11k

• “points first, then cameras” scheme

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 138/189) R. Šára, CMP; rev. 10–Dec–2019

ICholeski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

find ds such that −
z∑
r=1

L>r νr(θ
s) =

(z∑
r=1

L>r Lr + λ diag
(
L>r Lr

))
ds

• A is very large approx. 3 · 104 × 3 · 104 for a small problem of 10000 points and 5 cameras

• A is sparse and symmetric, A−1 is dense direct matrix inversion is prohibitive

Choleski: symmetric positive definite matrix A can be decomposed to A =
LL>, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LL> transforms the problem to LL>x︸ ︷︷ ︸
c

= b

2. solve for x in two passes:

Lc = b ci := L−1
ii

(
bi −

∑
j<i

Lijcj
)

forward substitution, i = 1, . . . , q (params)

L>x = c xi := L−1
ii

(
ci −

∑
j>i

Ljixj
)

back-substitution

• Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are 9p + 121k + 66pk ≈ 3.4 · 106; ca. 250× fewer than all elements

• it can be computed on single elements or on entire blocks
• use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]

• λ controls the definiteness

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 139/189) R. Šára, CMP; rev. 10–Dec–2019

Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L’
% for sparse square symmetric positive definite matrix A,
% especially efficient for arrowhead sparse matrices.

% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)

[p,q] = size(A);
if p ~= q, error ’Matrix A is not square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))’;
L(i,j) = a/L(j,j);

end
a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
if a < 0, error ’Matrix A is not positive definite’; end
L(i,i) = sqrt(a);

end
end

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 140/189) R. Šára, CMP; rev. 10–Dec–2019

IGauge Freedom

1. The external frame is not fixed: See Projective Reconstruction Theorem →130

mij ' PjXi = PjH
−1HXi = P′jX

′
i

2. Some representations are not minimal, e.g.

• P is 12 numbers for 11 parameters
• we may represent P in decomposed form K, R, t
• but R is 9 numbers representing the 3 parameters of rotation

As a result

• there is no unique solution
• matrix

∑
r L
>
r Lr is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2a. either imposing constraints on projective entities
• cameras, e.g. P3,4 = 1 this excludes affine cameras
• points, e.g. ‖Xi‖2 = 1 this way we can represent points at infinity

2b. or using minimal representations
• points in their Euclidean representation Xi but finite points may be an unrealistic model
• rotation matrix can be represented by axis-angle or the Cayley transform see next

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 141/189) R. Šára, CMP; rev. 10–Dec–2019

Implementing Simple Constraints

What for?
1. fixing external frame as in θi = ti ‘trivial gauge’

2. representing additional knowledge as in θi = θj e.g. cameras share calibration matrix K

Introduce reduced parameters θ̂ and
replication matrix T:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

then Lr in LM changes to Lr T and
everything else stays the same →106

θ3

θ4
θ5

T = t =

θ2

θ̂1 θ̂2 θ̂3 θ̂4

θ1 1

1

1

1

1

these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t or filter the init by pseudoinverse θ0 7→ T†θ0

• no need for computing derivatives for θj corresponding to all-zero rows of T fixed θ

• constraining projective entities →144–145

• more complex constraints tend to make normal equations dense

• implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

• other methods are much more involved, see [Triggs et al. 1999]

• BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 142/189) R. Šára, CMP; rev. 10–Dec–2019

http://www.ics.forth.gr/~lourakis/sba/

Matrix Exponential

• for any square matrix we define

expmA =
∞∑
k=0

1

k!
Ak

note: A0 = I

• some properties:

expm0 = I, expm(−A) =
(
expmA

)−1
,

expm(aA) expm(bA) = expm((a+ b)A), expm(A + B) 6= expm(A) expm(B)

expm(A>) = (expmA)> hence if A is skew symmetric then expmA is orthogonal:(
expm(A)

)>
= expm(A>) = expm(−A) =

(
expm(A)

)−1

det
(
expmA

)
= etrA

Ex:
• homography can be represented via exponential map with 8 numbers e.g. as

H = expmZ such that trZ = 0, eg. Z =

z11 z12 z13

z21 z22 z23

z31 z32 −(z11 + z22)


• rotation can be represented by skew-symmetric matrix (3 numbers), see next

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 143/189) R. Šára, CMP; rev. 10–Dec–2019

IMinimal Representations for Rotation

• o – rotation axis, ‖o‖ = 1, ϕ – rotation angle
• wanted: simple mapping to/from rotation matrices

1. Matrix exponential. Let ω = ϕo, 0 ≤ ϕ < π, then

R = expm [ω]× =
∞∑
n=0

[ω]n×
n!

=
~ 1· · · = I +

sinϕ

ϕ
[ω]× +

1− cosϕ

ϕ2
[ω]2×

• for ϕ = 0 we take the limit and get R = I
• this is the Rodrigues’ formula for rotation
• inverse (the principal logarithm of R) from

0 ≤ ϕ < π, cosϕ =
1

2
(trR− 1), [ω]× =

ϕ

2 sinϕ
(R−R>),

• can be generalized to full Euclidean motion →145

2. Cayley’s representation; let a = o tan ϕ
2

, then

R = (I + [a]×)(I− [a]×)−1, [a]× = (R + I)−1(R− I)

a1 ◦ a2 =
a1 + a2 − a1 × a2

1− a>1 a2
composition of rotations R = R1R2

• again, cannot represent rotations for φ ≥ π
• no trigonometric functions
• explicit composition formula
• can be generalized to full Euclidean motion [Borri 2000]

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 144/189) R. Šára, CMP; rev. 10–Dec–2019

IMinimal Representations for Other Entities

1. fundamental matrix

F = UDV>, D = diag(1, d2, 0), U,V are rotations, 3 + 1 + 3 = 7 DOF

2. essential matrix

E = [−t]×R, R is rotation, ‖t‖ = 1, 3 + 2 = 5 DOF

3. camera
P = K

[
R t

]
, 5 + 3 + 3 = 11 DOF

Interestingly, let [Eade 2017]

B =

[
[ω]× u

0> 0

]
, B ∈ R4,4

then, assuming ‖ω‖ = φ > 0 for φ = 0 we take the limits[
R t
0> 1

]
= expmB = I4 +B+ h2(φ)B

2 + h3(φ)B
3 =

[
expm [ω]× Vu

0> 1

]
V = I3 + h2(φ) [ω]× + h3(φ) [ω]2×, V−1 = I3 −

1

2
[ω]× + h4(φ)[ω]2×

h1(φ) =
sinφ

φ
, h2(φ) =

1− cosφ

φ2
, h3(φ) =

φ− sinφ

φ3
, h4(φ) =

1

φ2

(
1−

1

2
φ cot

φ

2

)
the functions hi(φ) have limits at φ→ 0.

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 145/189) R. Šára, CMP; rev. 10–Dec–2019

Module VII

Stereovision

7.1 Introduction
7.2 Epipolar Rectification
7.3 Binocular Disparity and Matching Table
7.4 Image Similarity
7.5 Marroquin’s Winner Take All Algorithm
7.6 Maximum Likelihood Matching
7.7 Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP]

additional references

C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision

and Pattern Recognition Workshop, p. 73, 2003.

J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE

CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.

M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In

Proc Int Conf on Computer Vision, vol. 1:496–501, 1999.

3D Computer Vision: VII. Stereovision (p. 146/189) R. Šára, CMP; rev. 10–Dec–2019

What Are The Relative Distances?

• monocular vision already gives a rough 3D sketch because we understand the scene

3D Computer Vision: VII. Stereovision (p. 147/189) R. Šára, CMP; rev. 10–Dec–2019

What Are The Relative Distances?

Centrum för teknikstudier at Malmö Högskola, Sweden The Vyšehrad Fortress, Prague

• left: we have no help from image interpretation

• right: ambiguous interpretation due to a combination of missing texture and occlusion

3D Computer Vision: VII. Stereovision (p. 148/189) R. Šára, CMP; rev. 10–Dec–2019

IHow Difficult Is Stereo?

• when we do not recognize the scene and cannot use high-level constraints the problem
seems difficult (right, less so in the center)

• most stereo matching algorithms do not require scene understanding prior to matching

• the success of a model-free stereo matching algorithm is unlikely:

left image a good disparity map disparity map from WTA

WTA Matching:

for every left-image pixel
find the most similar
right-image pixel
along the
corresponding epipolar
line [Marroquin 83]

3D Computer Vision: VII. Stereovision (p. 149/189) R. Šára, CMP; rev. 10–Dec–2019

Thank You

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 10–Dec–2019

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 10–Dec–2019

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 10–Dec–2019

	3D Structure and Camera Motion
	Reconstructing Camera System
	Bundle Adjustment

	Stereovision
	Introduction
	Binocular Disparity and Matching Table
	Image Similarity
	Marroquin's Winner Take All Algorithm
	Maximum Likelihood Matching
	Uniqueness and Ordering as Occlusion Models

	End of Slides

